
Analyzing and Inferring the
Structure of Code Changes

Miryung Kim
University of Texas at Austin

SNU Seminar, Nov 17th

Software evolution plays an ever-increasing
role in software development

Motivating Scenarios

• “This program worked a month ago but is not
working now. What changed since then? Which
change led to a bug?”

• “Did Bob implement the intended changes correctly?”

• “There’s a merge conflict. What did Alice change?”

Diff Output

- public class CmiRegistry implements
NameService {
+ public class CmiRegistry extends
AbsRegistry implements NameService {
- private int port = ...
- private String host = null
- public void setPort (int p) {
- if (TraceCarol. isDebug()) { ...
- }
- }
- public int getPort() {
- return port;
- }
- public void setHost(String host)
{
 ...

Changed Code
File Name Status Lines

DummyRegistry New 20 lines

AbsRegistry New 133 lines

JRMPRegistry Modified 123 lines

JeremieRegistry Modified 52 lines

JacORBCosNaming Modified 133 lines

IIOPCosNaming Modified 50 lines

CmiRegistry Modified 39 lines

NameService Modified 197 lines

NameServiceManager Modified 15 lines

Total Change: 9 files, 723 lines

Check-In Comment

“Common methods go in an abstract class. Easier to
extend/maintain/fix”

Changed Code
File Name Status Lines

DummyRegistry New 20 lines

AbsRegistry New 133 lines

JRMPRegistry Modified 123 lines

JeremieRegistry Modified 52 lines

JacORBCosNaming Modified 133 lines

IIOPCosNaming Modified 50 lines

CmiRegistry Modified 39 lines

NameService Modified 197 lines

NameServiceManager Modified 15 lines

Total Change: 9 files, 723 lines

Why did all these files change together?
Is anything missing in this change?

Diff

•Low-level

Natural Language
Description

(Check-In Comment)

•Often incomplete
•Difficult to trace back to
code changes

Limitations

Research Question

How do we automatically extract the
differences between two versions into a
concise and meaningful program change
representation?

Research Question

•Help programmers reason about code changes at a high level
• Enable researchers to study software evolution better

How do we automatically extract the
differences between two versions into a
concise and meaningful program change
representation?

Example Output

All draw methods take an additional int input argument.

All setHost methods in Service’s subclasses deleted
calls to SQL library except NameService class.
...

Concise
Easy to note inconsistent changes

Systematic Changes

“Move related classes from one package to another package”

• Refactoring [Opdyke 92, Griswold 92, Fowler 99...]

“Update an API and all call sites of the API”

Systematic Changes

• Refactoring [Opdyke 92, Griswold 92, Fowler 99...]

• API update [Chow&Notkin 96, Henkel&Diwan 05,
Dig&Johnson 05...]

“Adding logging feature throughout code”

Systematic Changes

• Refactoring [Opdyke 92, Griswold 92, Fowler 99...]

• API update [Chow&Notkin 96, Henkel&Diwan 05,
Dig&Johnson 05...]

• Crosscutting concerns [Kiczales et. al. 97, Tarr et. al. 99,
Griswold 01...]

“Apply similar changes to syntactically similar code fragments”

Systematic Changes

• Refactoring [Opdyke 92, Griswold 92, Fowler 99...]

• API update [Chow&Notkin 96, Henkel&Diwan 05,
Dig&Johnson 05...]

• Crosscutting concerns [Kiczales et. al. 97, Tarr et. al. 99,
Griswold 01...]

• Consistent updates on code clones [Miller&Myers 02,
Toomim et. al. 04, Kim et. al. 05]

Analyses of Software Evolution
- Evolution of Code Clones

Automatic Inference of
High-Level Change Descriptions

- Rule-based Change Representations
- Rule Learning Algorithms

V1 V2

∆

Thesis Overview

High-level changes are often systematic at
a code level

Outline

• Empirical Analyses of Code Clone Evolution [ISESE
04, ESEC/FSE 05]

• Automatic Inference of High-Level Change
Descriptions

• Changes to API Names and Signatures [ICSE 07]

• Changes to Code Elements and Structural
Dependencies

• Future Directions

Code Clones

public void updateFrom (Class c) {
String cType = Util.makeType(c.Name
());
if (seenClasses.contain(cType)) {

return;
}
seenClasses.add(cType);
if (hierarchy!=null) {

....
}
...

public void updateFrom (ClassReader c) {
String cType = CTD.convertType
(c.Name());
if (seenClasses.contain(cType)) {

return;
}
seenClasses.add(cType);
if (hierarchy!=null) {

....
}
...

Code clones are syntactically similar code fragments

Found by a clone detector, CCFinder [Kamiya et al. 2002]

Conventional Wisdom about
Code Clones

public void updateFrom (Class c) {
String cType = Util.makeType(c.Name
());
if (seenClasses.contain(cType)) {

return;
}
seenClasses.add(cType);
if (hierarchy!=null) {

....
}
...

public void updateFrom (ClassReader c) {
String cType = CTD.convertType
(c.Name());
if (seenClasses.contain(cType)) {

return;
}
seenClasses.add(cType);
if (hierarchy!=null) {

....
}
...

 “Code clones must be aggressively refactored because they
indicate poor software quality.”

[Fowler 00, Beck 00, Nickell & Smith 03 ...]

Found by a clone detector, CCFinder [Kamiya et al. 2002]

A Study of Copy and Paste
Programming Practices at IBM

• To understand programmers’ copy and paste coding
behavior, I built an Eclipse plug-in that
records edits and replays the captured edits

• Programmers often create and manage code
clones with clear intent

[Kim et al. ISESE 2004]

*

An Empirical Study of Code
Clone Genealogies

• I developed an approach that automatically
reconstructs the history of code clones from a
source code repository

• I studied clone evolution in two Java open source
projects, carol and dnsjava

[Kim et al. ESEC/FSE 2005]

*

Clone Genealogy

Clone genealogy is a representation that captures clone change
patterns over a sequence of program versions

A

B

A

B

C

D

A

B

C

D

A

B

D

ADD CONSISTENT_
CHANGE

INCONSISTENT_
CHANGE

Version i Version i+1 Version i+2 Version i+3

Contradicting Evidence to
Conventional Wisdom

example

• Many clones are short-lived, diverging clones

• 48-72% of clone genealogies lasted less than 8 check-ins
out of over 160 check-ins

• 26-34% of these clones disappeared due to divergent
changes

• Refactoring cannot remove many long-lived clones

• 65-73% of long-lived, consistently changing clones are not
easy to refactor using standard refactoring techniques
[Folwer 00]

Summary of
Studies on Code Clones

By focusing on the evolutionary aspects of
clones, I found

• Clones are inevitable parts of software evolution
• Refactoring may not be applicable to or beneficial

for many code clones

My studies shifted research efforts from automatic clone detection
to code clone management support (e.g., [Duala-Ekoko & Robillard
07, Krinke 07, Aversano et al. 07, Lozano et al. 07, etc.])

Outline

• Empirical Analyses of Code Clone Evolution

• Automatic Inference of High-Level Change
Descriptions

• Changes to API Names and Signatures

• Changes to Code Elements and Structural
Dependencies

• Future Directions

Time

P P’

Code Element

Motivation:
Code Evolution Analyses

Time

P P’

Code Element

Research Question

 “How do we automatically match corresponding code elements
between two program versions?”

Existing Approaches

diff, Syntactic Diff (CDiff), Semantic Diff, JDiff,
BMAT, origin analysis, refactoring
reconstruction tools, clone detectors, etc.

Individually compare code elements
 at particular granularities
 using similarity measures

[Kim et al. MSR 2006]

P P’

Limitations of Existing
Approaches

Bar.Bar()

Bar.mC(int)

Foo.mA()

Foo.mB()

Foo.mC()

Boo.mA(long)

Boo.mB(long)

Bar.Bar()

Bar.mC(int)

Foo.mA(float)

Foo.mB(float)

Foo.mC()

Bar.mA(long)

Boo.mA(int)

Boo.mB(int)

P P’

Limitations of Existing
Approaches

Bar.Bar()

Bar.mC(int)

Foo.mA()

Foo.mB()

Foo.mC()

Boo.mA(long)

Boo.mB(long)

Bar.Bar()

Bar.mC(int)

Foo.mA(float)

Foo.mB(float)

Foo.mC()

Bar.mA(long)

Boo.mA(int)

Boo.mB(int)

P P’

Limitations of Existing
Approaches

Bar.Bar()

Bar.mC(int)

Foo.mA()

Foo.mB()

Foo.mC()

Boo.mA(long)

Boo.mB(long)

Bar.Bar()

Bar.mC(int)

Foo.mA(float)

Foo.mB(float)

Foo.mC()

Bar.mA(long)

Boo.mA(int)

Boo.mB(int)

P P’

Limitations of Existing
Approaches

P P’

Limitation 1.
Poor Conciseness

Output is an unstructured, usually lengthy list of matches

Bar.Bar()

Bar.mC(int)

Foo.mA()

Foo.mB()

Foo.mC()

Boo.mA(long)

Boo.mB(long)

Bar.Bar()

Bar.mC(int)

Foo.mA(float)

Foo.mB(float)

Foo.mC()

Bar.mA(long)

Boo.mA(int)

Boo.mB(int)

P P’

Difficult to spot inconsistent changes

Limitation 2.
Hard to Identify Exception

Bar.Bar()

Bar.mC(int)

Foo.mA()

Foo.mB()

Foo.mC()

Boo.mA(long)

Boo.mB(long)

Bar.Bar()

Bar.mC(int)

Foo.mA(float)

Foo.mB(float)

Foo.mC()

Bar.mA(long)

Boo.mA(int)

Boo.mB(int)

P P’

Difficult to disambiguate among many potential matches

Limitation 3.
Low Recall

What is the Core Question?

Given two program versions (P, P’),
with respect to a particular vocabulary of changes,

find changes from P to P’

Example Change

Factory.createChart()
Factory.createBarChart()
...
Factory.createPieChart()
Factory.createLineChart()

Factory.createChart(int)
Factory.createBarChart(int)
...
Factory.createPieChart()
Factory.createLineChart(int)

P P’

“Add int input argument to all chart creation APIs”

• Our change-rules can concisely describe a set
of related API-level changes.

• Our tool automatically infers a set of change
rules between two versions of a program.

[Kim et al. ICSE 2007]

Our Rule-based Matching
Approach

Change-Rule Syntax

.

P P’

FOR ALL x:method-header IN
scope

transformation(x)

Scope

• We use a regular expression to denote a set of
methods

e.g. chart.Factory.create*Chart(*)

API-Level Transformations

• Replace the name of package, class, and method

• Replace the return type

• Modify the input signature, etc.

Example Change-Rule

Factory.createChart()
Factory.createBarChart()
...
Factory.createPieChart()
Factory.createLineChart()

Factory.createChart(int)
Factory.createBarChart(int)
...
Factory.createPieChart()
Factory.createLineChart(int)

P P’

FOR ALL x:method-header IN
Factory.create*Chart(*)

argAppend(x, [int])

Example Change-Rule

.

Factory.createChart()
Factory.createBarChart()
...
Factory.createPieChart()
Factory.createLineChart()

Factory.createChart(int)
Factory.createBarChart(int)
...
Factory.createPieChart()
Factory.createLineChart(int)

P P’

FOR ALL x:method-header IN
Factory.create*Chart(*)

argAppend(x, [int])
except {Factory.createPieChart()}

Algorithm Overview

Input: two versions of a program

Output: a set of change-rules

1. Generate seed matches

2. Generate candidate rules by generalizing seed
matches

3. Evaluate and select candidate rules

Step 1: Generate Seed Matches

• Seed matches provide hints about likely changes.

• We generate seeds based on textual similarity
between two method headers.

• Seed matches need not be all correct matches.

Textual
similarity: 0.75 ..

Foo.getBar(int)
Foo.getBar(bool)

Step 2: Generate Candidate Rules
Given a seed match,
[Foo.getBar(int), Boo.getBar(long)]

Transformations = {
replaceArg(x, int, long)
replaceClass(x, Foo, Boo)}

Scopes = {*.*(*), Foo.*(*), ...,
 .get(*), *.*Bar(*), ... ,
 Foo.get*(int),... }

Candidate Rules = {
 FOR ALL x IN *.*(*)
replaceArg(x, int, long),

 FOR ALL x IN Foo.*(*)
replaceClass(x, Foo, Boo), ...,

 FOR ALL x IN *.*(*)
replaceArg(x, int, long) AND
replaceClass(x, Foo, Boo)

... }

• Compare x and y and
reverse engineer a set of
transformations, T.

• Based on x, guess a set of
scopes, S.

• Generate candidate rules
for each pair in S ×
PowerSet(T).

For each seed [x, y]

Step 3: Evaluate and Select Rules

• Greedily select a small subset of candidate rules that
explain a large number of matches.

• In each iteration

• evaluate all candidate rules

• select a valid rule with the most number of
matches

• exclude the matched methods from the set of
remaining unmatched methods

• Repeat until no rule can find any additional matches.

Optimizations

• We create and evaluate rules on demand

1. Candidate rules have subsumption structure
e.g., *.*.*(*Axis) ⊂ *.*.*(*)

2. The nature of greedy algorithm

• Running time: a few seconds (usual check-ins),
average 7 minutes (releases)

*

Comparative Evaluation

• 3 other tools [Xing and Stroulia 05]
[Weißgerber and Diehl 06] [S. Kim, Pan, and
Whitehead 05]

• Evaluation data set (E)

• Precision
(|M ∩ E| / |M|)

• Recall
(|M ∩ E| / |E|)

• Conciseness

Comparison: Recall & Precision

programs
Other’s
Recall

Our
Recall

Other’s
Prec.

Our
Prec.

[Xing &
Stroulia 05]

jfreechart
18 releases 92% 98% 99% 97%

[Weissgerber
& Diehl 06]

jEdit
2715 check-ins 72% 96% 93% 98%

Tomcat
5096 check-ins 82% 89% 89% 93%

 [Kim, Pan &
Whitehead 05]

jEdit
1189 check-ins 70% 96% 98% 96%

ArgoUML
4683 check-ins 82% 95% 98% 94%

*

Comparison: Recall & Precision

programs
Other’s
Recall

Our
Recall

Other’s
Prec.

Our
Prec.

[Xing &
Stroulia 05]

jfreechart
18 releases 92% 98% 99% 97%

[Weissgerber
& Diehl 06]

jEdit
2715 check-ins 72% 96% 93% 98%

Tomcat
5096 check-ins 82% 89% 89% 93%

 [Kim, Pan &
Whitehead 05]

jEdit
1189 check-ins 70% 96% 98% 96%

ArgoUML
4683 check-ins 82% 95% 98% 94%

Precision: 93-98%
Recall: 89-98%

6-26% higher recall with roughly the
same precision

Comparison: Conciseness

programs Other’s Results
Our

Results
Our Improvement

[Xing &
Stroulia 05]

jfreechart
18 releases

4004
refactorings

939
rules

77% decrease in
size

[Weissgerber
& Diehl 06]

jEdit
2715 check-ins

1218
refactorings

906
rules

26% decrease in
size

Tomcat
5096 check-ins

2700
refactorings

1033
rules

62% decrease in
size

 [Kim, Pan &
Whitehead 05]

jEdit
1189 check-ins

1430
matches

1119
rules

22% decrease in
size

ArgoUML
4683 check-ins

3819
matches

2127
rules

44% decrease in
size

*

Comparison: Conciseness

programs Other’s Results
Our

Results
Our Improvement

[Xing &
Stroulia 05]

jfreechart
18 releases

4004
refactorings

939
rules

77% decrease in
size

[Weissgerber
& Diehl 06]

jEdit
2715 check-ins

1218
refactorings

906
rules

26% decrease in
size

Tomcat
5096 check-ins

2700
refactorings

1033
rules

62% decrease in
size

 [Kim, Pan &
Whitehead 05]

jEdit
1189 check-ins

1430
matches

1119
rules

22% decrease in
size

ArgoUML
4683 check-ins

3819
matches

2127
rules

44% decrease in
size

22-77% reduction in the size of
matching results

Summary of
Code Matching

• Our change-rules concisely capture API-level
changes and identify anomalies to systematic
changes

• By inferring such rules, we find method-header level
matches with high recall and precision

Outline

• Empirical Analyses of Code Clone Evolution

• Automatic Inference of High-Level Change
Descriptions

• Changes to API name and signature

• Changes to Code Elements and Structural
Dependencies (Logical Structural Diff)

• Future Directions

Research Question

 “What is a concise change representation beyond API-level
refactorings?”

public class CmiRegistry implements
NameService {

 public void setPort (int p) {
 ...
- SQL.exec(query)
+ SafeSQL.exec(query)

 }

 }
 ...

public class JacORB implements NameService
{
 public void setPort (int p) {
- if (TraceCarol. isDebug()) {
 ...
- SQL.exec(query)
+ SafeSQL.exec(query)

 }

 ...

public class LmiRegistry extends
AbsRegistry implements NameService {
- private int port = ...
- private String host = null
 public void setPort (int p) {
 ...
- SQL.exec(query)
+ SafeSQL.exec(query)
 }
 public int getPort() {
 return port;
 }
 public void setHost(String host)

Logical Structural Diff

Abstraction
Level

Code elements and structural dependencies
(package, type, method, field,

overriding, subtyping, method call, field access, and containment)

Scope Conjunctive logic literal

Transformation
Structural differences

Account for changes in method-bodies as well as at a field level

Example Rule

past_method(m,t)^
past_subtype(“Factory”,t)^
past_calls(m,“render()”)
=> added_calls(m, “Util.log()”)

Logical Structural Diff
Algorithm

1. Extract a set of facts from a program using JQuery
[Jensen & DeVolder 03]

2. Compute fact-level differences

3. Learn Datalog rules using an inductive logic
programming algorithm

Output: logic rules and facts that describe changes to
code elements and structural dependencies

*

Logical Structural Diff Output

• “Replace all calls to SQL.exec with SafeSQL.exec”

• “All setHost methods in Service’s subclasses in the old
version deleted calls to SQL.exec except the setHost
method in the NameSvc class.

past_subtype(“Service”, t) ∧ past_method
(m, “setHost”, t)
⇒ deleted calls(m, “SQL.exec”)
except t=“NameSvc”

deleted_calls(m,“SQL.exec”)=>
added_calls(m,“SafeSQL.exec”)

Quantitative Assessment of
LSDiff

• 75% of fact-level differences are explained by
rules.

• vs. fact-level delta: 9.3 times more concise

• vs. fact-level delta: 9.7 additional contextual facts

• vs. Diff: on average 7 rules and 27 facts for 997
lines of changes across 16 files

*

Focus Group Study

• Pre-screener survey

• Participants: five professional software engineers

• industry experience ranging from 6 to over 30 years

• use diff and diff-based version control system daily

• review code changes daily except one who did weekly

• One hour structured discussion

• I worked as the moderator. We also had a note-taker
transcribe the discussion. Discussion was audio-taped
and transcribed.

http://www.cs.washington.edu/homes/miryung/LSDiff/carol429-430.htm

Focus Group Hands-On Trial

Overview

http://www.cs.washington.edu/homes/miryung/LSDiff/carol429-430.htm

Focus Group Hands-On Trial

Show related changes

“You can’t infer the intent of a programmer,
but this is pretty close.”

“This ‘except’ thing is great!”

Focus-Group Participants’
Comments

*

“This is cool. I’d use it if we had one.”

“This is a definitely winner tool.”

“This looks great for big architectural changes, but I
wonder what it would give you if you had lots of random

changes.”

“This will look for relationships that do not exist.”

Focus-Group Participants’
Comments

*

“This wouldn’t be used if you were just working with one
file.”

Summary of
Logical Structural Diff

• We extended our rule-based approach to infer
systematic changes within method bodies

• LSDiff produces 9.3 times more concise results by
identifying 75% of structural differences as systematic
changes

• LSDiff complements diff

• by grouping systematic structural differences

• by detecting potential missed updates.

Outline

• Empirical Analyses of Code Clone Evolution

• Automatic Inference of High-Level Change
Descriptions

• Changes to API name and signature

• Changes to Structural Dependencies

• Future Directions

Next Steps

• Develop higher-order representations

• Use change-rules to improve regression testing

• Use change-rules to backport security patches to
old versions

• Search program changes of interest in a source code
repository by evaluating programmer-provided rules

• Changes in models, requirements, and run-time behavior

• Use change history to help programmers make decisions

• “When and how should I refactor my program?”

My long-term vision is to help programmers
by making software change a first class entity

Analyses of Software Evolution

Contributions

Automatic Inference of
High-Level Change Descriptions

V1 V2

∆
• Rule-based change representations
• Rule learning algorithms

• Disproving conventional wisdom about clones
• Insights into systematicness of high-level
changes

Questions?

