

지능형 로봇 소프트웨어 무결점 검증기 개발

박종우 서울대학교 로봇자동화연구실

Present Status of Intelligent Robot Softwares

- Robotics Research
 - From a tiny bolt to a graphical user interface.
 - Hardware requires huge resources of money.
 - Software requires vast man powers.
- Not-reusable Resources
 - General standards of hardware and software does not exist yet.
 - Hardware and software are generally not reusable, especially software is not.
 - Even, small changes of a hardware cause big changes of a corresponding software.

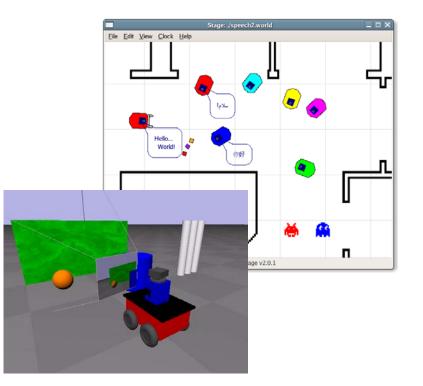
Robot Software Development

- Implement basic math library to high-level controller.
- Develop each of functional modules—sensing, actuating, decision, etc. and integrate them.
- Simulation environment is essential.
 - Hardware is expensive.
 - Unverified controller is dangerous to an operator as well as a robot.
 - However, building a simulation environment is another burden.
- Integrated environment are required.

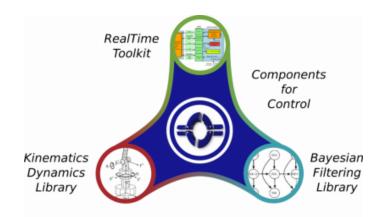
Efforts for Integrated Environment

- From early 2000's.
 - Player/Stage/Gazebo, USA
 - OpenHRP, Japan
 - Orocos, EU
 - RUPI, 차세대 로봇 소프트웨어 플랫폼 사업, 한국 and so forth.
- Still there's no leading group.

OpenHRP



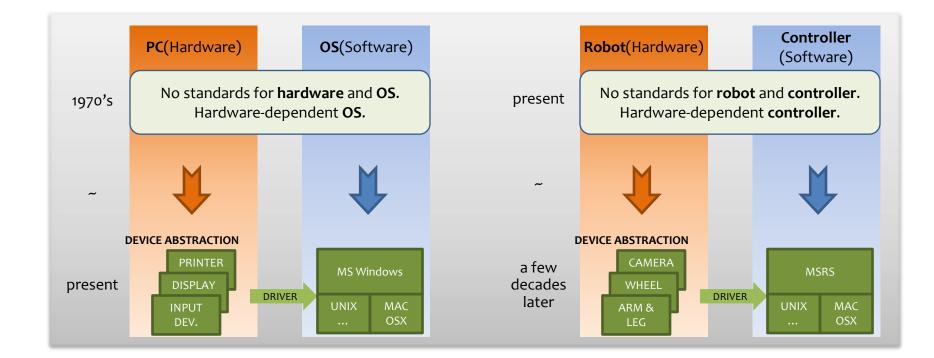
Player/Stage/Gazebo


- Open source, cross platform.
- Player
 - Network server for robot control.
 - Provide an interface to the robot's sensors and actuators over the IP network.
- Stage
 - 2D kinematics simulation environment.
- Gazebo
 - 3D dynamics simulation environment.

- A general-purpose, free software, and modular framework for robot and machine control.
- 4 C++ libraries:
 - Real-time toolkit.
 - Kinematics and dynamics library.
 - Bayesian filtering library.
 - Orocos component library.

OpenHRP

Open Architecture Humanoid Robotics Platform

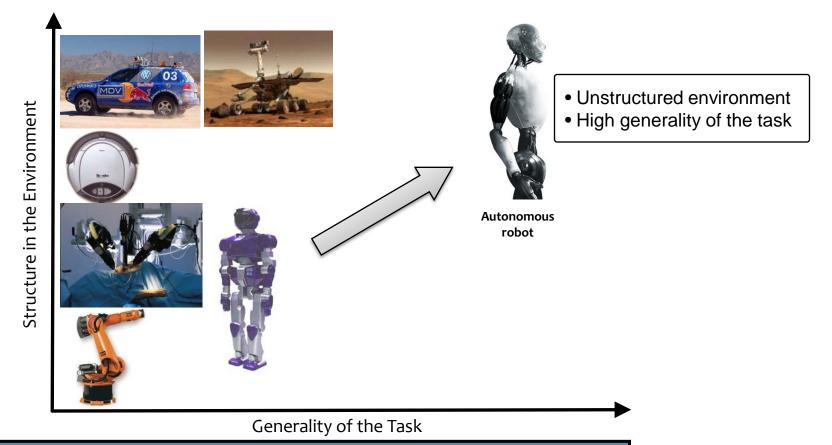

- Software platform for humanoid robotics.
 - Dynamics simulator.
 - View(camera) simulator.
 - Motion controllers.
 - Motion planners of humanoid robots.
- Integrated with CORBA.

Emergence of MSRS

- Dec 2006, Microsoft released Microsoft Robotics Studio a.k.a. MSRS.
- Various robot software platforms have emerged.

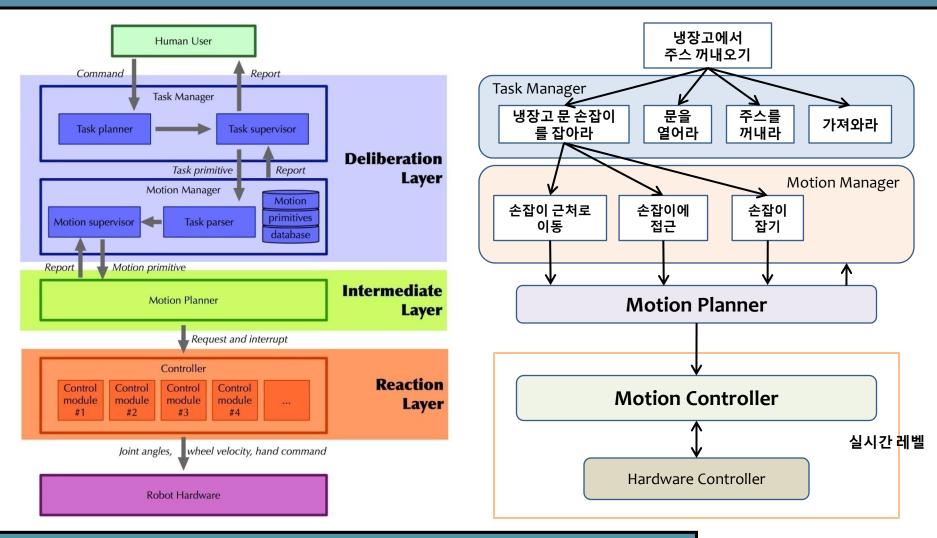
• Robot control softwares are about to explode.

• However, Player/Stage/Gazebo, Orocos, OpenHRP, etc. are not proper for software verification, since they are environments, not robot controllers.



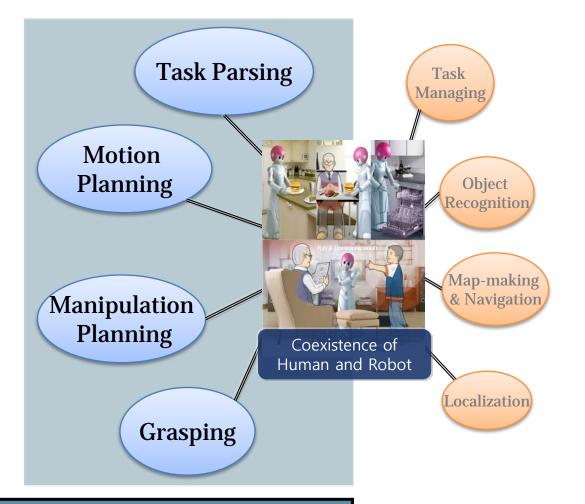
Motion Planner for Mobile Manipulator

Autonomous Robot Motion Planner


• Algorithms and software for motion planning and control of autonomous robot.

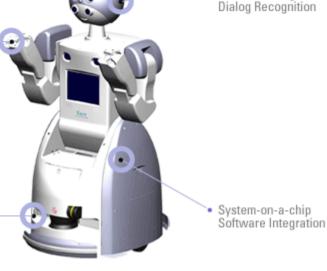
 \bigcirc \bigcirc

The Scheme for Autonomous Motion Planning



Research Scope

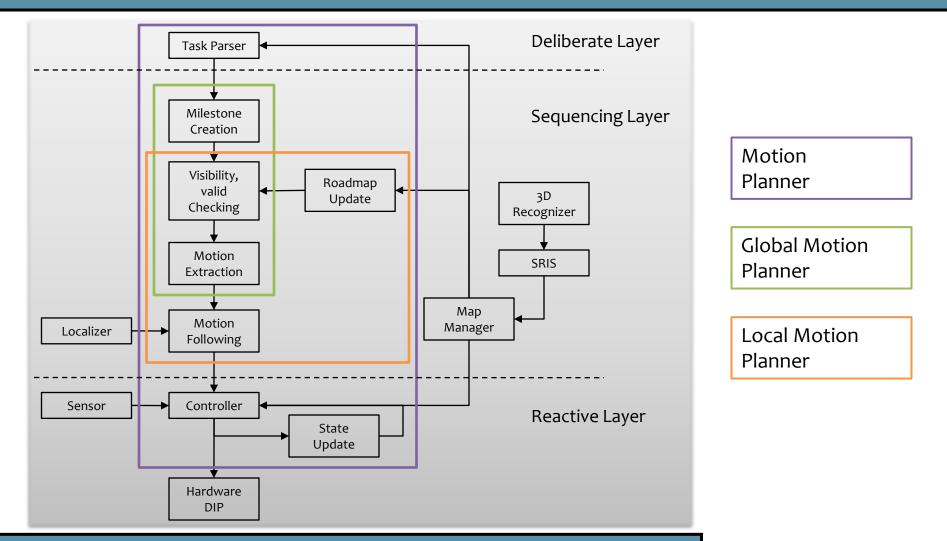
- Task analysis
- Complex task segmentation
- Movement primitives
- Hierarchical command language
- Collision avoidance
- Finding feasible/optimal/natural motions
- Nonholonomic vehicles
- Legged robots
- Collaboration
- Collision avoidance
- Finding feasible/optimal/natural motions
- Force/compliance planning & control
- Multi-arm manipulation/ closed chain control
- Multi-objective manipulation
- Primitive based grasp planning
- Stability measure of grasp
- Stable grasping using force sensor
- Grasp simulation



Target Hardware: CIROS

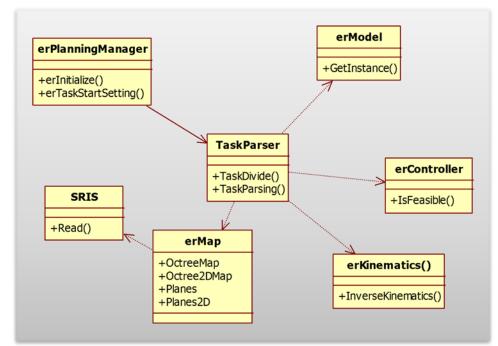
Dependable Navigation

- Service robot for the elder.
 - Dependable manipulation.
 - Dependable navigation.
 - Recognition, etc.
- At least, robot should be as intelligent as 5-year-old child.
- Two 7-DOF arms
- Two 3-fingered hands
- Two-differential-wheel mobile base. (nonholonomic system)


Dependable Manipulation •_____

Seoul National University School of Mechanical and Aerospace Engineering Intelligence Gesture Recognition

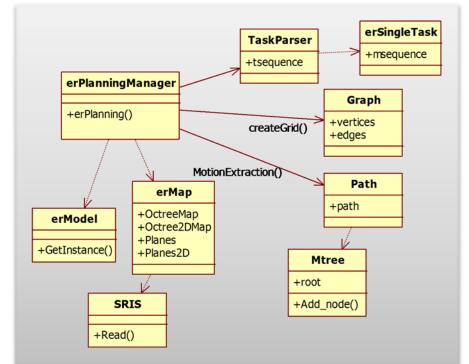
The Flow Chart of Motion Planning

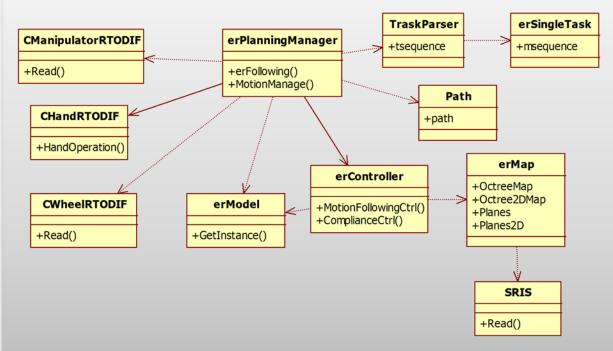


Task Parser

Task Parser

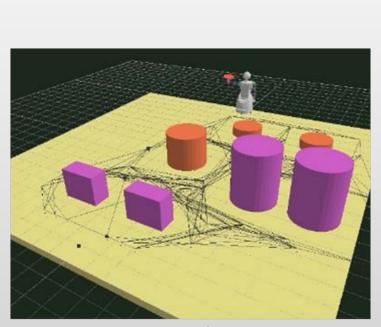
0


- Read task commands from Task Manager.
- A complex task is decomposed with subtasks.
- A subtask is decomposed with motion primitives.
- Set final configurations.
- Build constraints.
- Construct task environment.

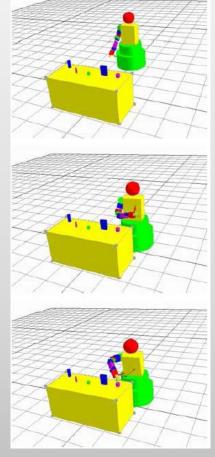

Motion Planner

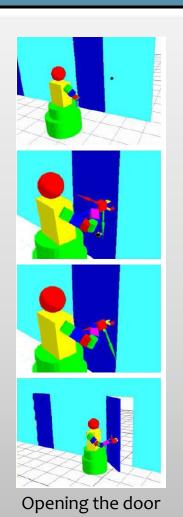
- Motion Planner
 - Global Motion Planner
 - Analyze predefined task space without moving obstacles.
 - Preprocess milestones for constructing collision-free paths.
 - Offline process.
 - Local Motion Planner
 - Find collision-free path with moving obstacles.
 - Online process.

Controller


Controller

0


- Calculate control inputs from collision-free path which Motion Planner creates,
- Considering given task and various constraints simultaneously,
- and reading obstacle information from embedded sensors.


Demonstrations

Collision-free path planning

Grasping and object

20

Technology Roadmap

	2006	2007	20	08	2009	201	0	2	011	2012 ~	
Sub-goals	Realization of basic skills and integration				Interaction with environment : realization of high level skills			High level intelligence : autonomy and interaction with user			
Task parsing	Architect			Architectu	re for autonomous robot				Hierarchical motion		
						Movement primitive			program	nming language	
Motion planning and control Manipulation planning	Holonomic Nonholonomic mobile manipulation			ipulation	Humanoid motion planning			ng			
	Kinematic level control				Dynamics based control						
						Balancing					
							urbulence				
		Sensor data based motion planning									
					Two-arm manipulat	ion					
								Multiple robots collaboration			
	Task based motion planning (multi-objective)					F			Fine manipulation		
				Compliant motion planning							
Movement coordination		Dynamics based motion optimization					Complex and multi-objective				
	Stability compensation Stable movement							movement generation			
	Human-like, Natural movement generation					-			<u>.</u>		
Grasping	namai	Visual simulator for grasping									
			Grasp measure Primitive based grasp planning			Stable grasp using force sensor					
		· · · ·				asp using for			Advance	daraen	
						uulatian			Auvance	u yrasp	
		Grasp				nified with arm manipulation					

• Motion Planner for Mobile Manipulator is suitable for software verification.

Bugs to be considered

Safety Bug & Security Bug

- Autonomous robot
 - is naturally unmanned mechanism.
 - always has a big red button for emergency.
- Bugs such as buffer overrun, and divide-by-zero, may cause disaster.
- Autonomous robot communicates wirelessly with a host computer or with coworkers.
 - working at hazardous environments.
 - multi-agent robotics.
 - military robots.
 - surveillance & security system.

- Imprecise sensor data / Sensor data saturation.
- Temporary invalid sensor data.
- Improper control value.
 - cf. over/underflow
- Home position error.
- Wrong estimation of calculation time.
 - Real-time OS problem.
 - Many control modules work together.
 - Time sync is essential.

Future Plan

단 계	연도	목 표
	1	Motion planner for Mobile Manipulator 분석 Functionality bug 선정
1단계(4년) 로봇 소프트웨어 오류 검출기	2	Global/Local Motion Planner 모듈 및 Controller 모듈 오류 검출 기술 개발
	3	Task Parser 모듈 오류 검출 기술 개발
	4	오류 검출 성능 개선

