SAT-based Model Checking for
Debugging Embedded Software

Moonzoo Kim
Provable Software Lab, CS Dept, KAIST

KAIST

arch Theme

-_— s - s 8 " § § S 5 § § W

Res

5 W

e SW reliability

— Quality attribute for minimizing malfunctions of systems to reduces damage to
human life or valuable properties

e Highly reliable SW technology is a key to the success of industrial products
— The portion of SW in embedded devices increases continuously

Intelligent Medical Devices Home Service Robots

s May) help you?

Industrial Robot Control - = Intelligent Mobile Systems
] ? = i B / \4 O «\
>i#‘ ' . \\ T@J 3
- Highly Reliable
= Software-intensive
Systems

-’ W I W U W Wi -_— @ ww WV W § W

e A practical end-to-end formal framework for
software development

‘ A SW Development Framework for SW with High Assurance ‘
; > e |
&2 Ty

AR
74| =)
e 5=

Requirement System DeS|gn Implement- Testing Monitoring
analysis design analysis ation
_)
Formal - i
eque- | Formal | Model | KON | Model- SRS
system analysis/ based 9
ment yd i " yt code tasti and
Spec. modeling verification generatio esting checking

Unified Formal Verification Framework

« Unified formal framework of the following three
approaches can make synergy

— Model Verification
* Targets a system model
* Req. spec is limited
 Complete coverage
— Code verification
» Targets a real code
e Extracts an abstract system

model from a real code
Req. spec is limited

— Runtime Verification

Targets a real code

Verifies correctness of current
execution run

Req. spec can be very
expressive

AN

Pee,quiremen‘t\

"1 Specification

L fF————= -

= = — ——
W /

7’

Edmlinlie sl de
\

s, Runtime Monitor|!
\ Program//

& Checker

Research Approach

* Practical formal methods that can be applied to
software intensive systems to enhance reliability

Light-weight

Embedded Systems | IT Infrastructure

(QS device drivers. | . (middlewares.. .

formal methods
. Robot
robot systems, etc) security, applications
protocols, etc)

Formal Verification ,
(modeling/requirement |

aEEEERRENT

: 3 Distributed
Computational Theory " protocols
(corr;putitkllonall cc‘)mpJI[eX|ty, Embedded
algorithm, logic, etc) System

5

Overview of the Case Study

Fil eman Unified
he Paging
System Storage
Platform
ector :
. ranslatio
Layer 0S
ocC dapt—
tion
odule
57 D4
X0-Plcture Gard

256 ve N

Flash Memory Devices

In 2807, Samsung requested to debug the device driver for the OneNAND™
flash memory

We reviewed the requirement specifications, the design documents, and C
code to identify code-level properties to check.

Then, we applied several model checkers including CBMC (C Bounded Model
Checker) to check the properties

— Found several bugs

—6/Provided high confidence in multi-sector read operation through exhaustive exploratior'a.“ST

Overview of the OneNAND” Flash Memory

e Characteristics of OneNAND® flash

— Each memory cell can be written 7 Source:
. . App3 Software Center
limited number of times only , of Samsung

Electronics ‘06

* Logical-to-physical sector mapping

'08 ASE [7]
e Bad block management e
. eman £
* Wear-leveling File Paging PRO |Unified
_ _ System ———— Storage
— XIP by emulating NOR interface Platform
through demand-paging scheme o
* Multiple processes access the de\w 08 Spin MSR c-tor ofislation Layer
concurrently
. SEH 08 ASE DS
* Urgent read operation should have a /08 ASE . apt-
higher priority SM ation
* Synchronization among processes is Module
crucial Low I_'eve 'LLD
— Performance enhancement I
e Multi-sector read/write
« Asynchronous operations OneNAND Flash Memory Devices

e Deferred operation result check

7/28 KAIST

Logical to Physical Sector Mapping

1:N mapping from a LUN to PUNs

LUNO: iLUNT: iLUN2: {LUN3: | LUN4i{ | LUN5; | LUNG
Y Y Y Y Y

PUN3| [PUN2| | PUN1 | [PUNG PUN 4
Y Y

PUN 0 PUN 5

STEP 0

STEP 1

STEP 2

STEP 3 STEP 4 STEP 5
i LUNO i { LUNO: {LUNO: {LUNO: {LUNO: { LUNO :
[[[[[[
PUN 1 PUN 1 PUN 1 PUN 1 PUN 1 PUN 1
LS 0 LSO LS 0 LSO LSO
LS 1 LS4 LS4 LS4
LS 1 LS 1 LS 1
LSO LS 0
} t t t |
Empty Wwrite LSO WriteLS1 ModifyLS1 Modify LSO | PUN4
Physical Unit
LS 2
Sector mapping i
Write LS 2

LUNO
........ (
SAM1
: , PUN 1
Logical offset | Physical offset
0 3 LSO
1 2 LS4
2 >~ LS 1
3 A LSO
|
SAM4 PUN 4
Logical offset | Physical offset
0 ¢ LS2
1
2 0
3

Sector Allocation Map (SAM)

In flash memory, logical
data are distributed over
physical sectors.

KAIST

Overview of SAT-based Bounded Model Checkin

C Program
Requirement Abstract
Properties Model
) M
Model
Checker
Okay Counter
ME ¢ example

9/28

pourlridcd i1viod f KiTlg
Requirement
Properties In C Program
C assertion P
| /
Translation to the
SAT formula
-¢p NP
~$ AP SAT Solver b AP
Unsatisf? \Satisfiable
Okay Counter
PE® example

KAIST

C Program to SAT Translation (1/2)

e Unwinding a loop

Original code

Unwinding the loop

x=0;

while (x < 2) {
Y=Yy+X;
X++

}

X=0;
IT (x <2) {
y=y+X;
X++;}
IT (x <2) {
y=y+X;
X++;}
//unwinding assertion
assert (1(x < 2))

e From C code to SAT formula

Original code

X=X+Y;
it (xI=1)
X=2;
else
X++
assert(x<=3);

* Generate constraints
P =X,=XgtYo A X,=2 A X=X+ A((X,1=1 A X,=X%5) v (X=1 A X,=X3))

O=%X,<=3

Convert to static single
assignment (SSA)

X1=X0"Yo>
It (x;1=1)

X,=23;
else

X3=X;+1;
X,=(X1=1)?X,: X33
assert(x,<=3);

Check if P A —¢ is satisfiable, if it is then the assertion is violated

10/28

KAIST

C Program to SAT Translation (2/2)

eExample of arithmetic encoding into pure propositional formula

Assume that x,y,z are three bits positive integers represented by
propositions X,X;X,, YoY1Y2s ZoZ1Z5
C=z=x+y = (25 XeBYe)B((X1AY) V ((X1BY)AKXAY)))
N (Z1 (X BY)BXAYS))
A (2,4 (X,BY5))

S Cin 1-
} C Cout

Full adder circuit diagram
Inputs: {A, B, Carryin} — Outputs: {Sum, CarryOut}

oo

Half adder circuit diagram

11/28 KAIST

C Bounded Model Checker (CBMC)

Handles function calls using inlining
Unwinds the loops a fixed number of times (bounded MC)

— A user has to know a upper bound of each loop

* Loops often have clear upper bounds
* We can still get debugging result without upper bounds

Specifies constraints to describe an environment of the
target program, which can model non-deterministic user

inputs, or multiple scenarios
— Ex. _ CPROVER assume(0<=nDev && nDev<=7)

— Ex.__CPROVER_assume(SHDC.nPhySctsPerUnit ==
SHPC.nBlksPerUnit * SHVC.nPgsPerBlk * SHVC.nSctsPerPg)

Checks properties by assertions

12/28 KAIST

Overview of the Case Study

 The goal of the project

— To check whether USP conforms to the given high-
level requirements

 we needed to identify the code-level properties to check
from the given high-level requirements

e Atop-down approach to identify the code level
properties from high-level requirements

— USP has a set of elaborated design documents
e Software requirement specification (SRS)
e Architecture design specification (ADS)

e Detailed design specification (DDS)
— DPM, STL, BML, and LLD

KAIST

Three High-level Requirements in SRS

e SRS specifies 13 functional requirements, 3 of which
have “very high” priorities
— Support prioritized read operation

 To minimize the fault latency, USP should serve a read request from
DPM prior to generic requests from a file system.

e This prioritized read request can preempt a generic |/O operation
and the preempted operation can be resumed later.

— Concurrency handling

e BML and LLD should avoid a race condition or deadlock through
synchronization mechanisms such as semaphores and locks.

— Manage sectors

e STL provides logical-to-physical mapping, i.e. multiple logical

sectors written over the distributed physical sectors should be read
back correctly.

KAIST

Top-down Approach to Identify Code-level Property

SRS

ADS

Multi-sector
read

Prioritized
read

Concurrency
handling

DDS

Code

Page fault
handling while a
device is being
read

Page fault handling
while a device is
being programmed

> . J
/ ' 1 ‘>\

L’ ~ Check “Step 14. heck “Step

wait until the 18. Store”the

device is ready ” . statu\s\
e Is the status JREINEN
. really stored?

- - ;)
v \

At line 494 of PriRead() in LLD.c
assert(bNeedToSave->saved))

Legend

Spec. in the
design docs

User defined
property to check

Total 43 code-level properties
are identified

15/28

R X

Page Fault Page Cache
MMU Handler Management BML LLD | OSGNAND
— = evige

']

page cache

[issue page fault pkception

|: 2} request a free frame i

———
If there is a free frame,__ 3: fipfl a free frame
go to Stepb6.

4: find a victim page

5: ppge out the victim pdge

—

6: return the free ff{gm

/. find a location Where the page is storefl in OneNAND deyide

|

8: request fead operation

4 % fequest read operation

i 10: Set the|Areempted flag

i

11: request] the ready/busyistatus

12: return the ready/busy $tatus
In case of busy status R -
because of program ~h._13: check if the device is ready

operation

i

14: wait until the device is I[eady
1

1
15: check the NeedToSave Iflag
— i

1
16: request| fhe operation status

i

17: return theéoperation stafus

I 18: store tHd status I

A sequence diagram of page fault handling
while a device is being programmed in LLD DDS

KAIST

Results of Unit Testings

e Prioritized read operation

— Detected a bug of not saving the status of suspended
erase operation

e Concurrency handling
— Confirmed that the BML semaphore was used correctly
— Detected a bug of ignoring BML semaphore exceptions
e Multi-sector read operation (MSR)

— Provided high assurance on the correctness of MSR, since
no violation was detected even after exhaustive analysis
(at least with a small number of physical units(~10))

KAIST

A Bug in PriRead()

374: VOID PriRead(Read(UINT32 nDev, UINT32 nPbn, UINT32 nPgOffset) {

416; if (bEraseCmd==FALSE32) && (pstInfo->bNeedToSave==TRUE32)) {

417: pstinfo->nSavedStatus = GET_ONLD_CTRL_STAT(pstReg, ALL_STATE);
418: pstinfo->bNeedToSave = FALSE32;
4109: saved=1; // added for verification purpose }

424: assert(!(pstinfo->bNeedToSave) || saved);

 We added a flag saved to 0l:..

n whether th f th 02:State 14 file LLD.c line 408 function PriRead thread 0
denote ethert _e St_atus of the 03: LLD::PriRead::1::bEraseCmd=1
preempted operation is saved 04:State 15 file LLD.c line 412 function PriRead thread 0
. 05: LLD::PriRead::1::1::2:nWaitingTimeOut=...
* CBMC_deteCtEd_the given 06:State 17 file LLD.c line 412 function PriRead thread 0
assertion was violated when an 07: LLD::PriRead::1::1::2:nWaitingTimeQut=...

i 08....
erase operation was preempted 09iolated property.
— It takes 8 seconds and 325 Mb on 10: file LLD.c line 424 function PriRead
the 3Ghz Xeon machine 11: assertion !(_Bool)pstIinfo->bNeedToSave || (_Bool)saved
— CBMC 2.6 with MiniSAT 1.1.4 12:VERIFICATION FAILED

17/28 KAIST

BML Semaphore Usage

e The standard requirements for a binary semaphore
— Semaphore acquire should be followed by a semaphore release

— Every function should return with a semaphore released
* unless the semaphore operation creates an exception error.

 There exist 14 BML functions that use the BML semaphore.

— We inserted an smp to indicate the status of the semaphore

— and simple codes to decrease/increase smp at the
corresponding semaphore operation.

e CBMC concluded that all 14 BML functions satisfied the
above two properties.

— Consumes 10 seconds and 300 megabytes of memory on
average to analyze each BML function

KAIST

BML Semaphore Exception Handling (1/2)

Topmost STL
functions
_____—— SM_Activate f— .
""----.______ |
Bug '.
STL_Read - SM_ReadSectors \H _M_amtamWearLevel L detected | BML_GetVollnfo lull||
—_— \ — \
N - —\— — - BML_Read \
SM_WriteSectors _KeepBoundsOtDepth PartlaIMer e _ConstructSam _LoadSam [{ _GetSInfo)‘" ———————————————
STLAWiite 1 =1 H — H % P N { BML_ReplaceBik H_‘_”fr"_"_ﬂfﬂt”_oj’_"_d]
\"" ,_{_ / /
A - BML_S :PIE i
STL Delets [Gompaction |/ [VNGreats | [BuL-storemiext)

I_Delete H SM_MarkDeletion |——" BML_IOCH! ||
|

e The BML semaphore operation might cause an exception depending
on the hardware status.

e Once such BML semaphore exception occurs, that exception should
be propagated to the topmost STL functions to reset the file system

— We checked this property by the following assert statement inserted before the
return statement of the topmost STL functions:

— assert(!(SMerr==1)| | nErr==STL CRITICAL ERR)

19/28 KAIST

BML Semaphore Exception Handling (2/2)

Topmost STL
functions

Bug

I|

X o \

\.\ " " |

STLRead I\ 7 Roagseoiors \%Hj__:r_ﬂamtamWearLevel L i} detocted [BML_GetVolinfo l,III
—— — \

STL Write |-\ A _) [BMLRead ||

- i\
STL_AWIIte - BML_HED'&CEB”{ |>.l OAM_AcquireSM

_PartialMerge = _ConstructSam |- _LoadSam [{ _GetSinfo

—
AN A\

———{ SM_WriteSectors k—{ _KeepBoundsOfDepth }7\1
\ g

\ L — / f-om
v BML_StorePIExt |
STL Delete |, [_Compaction | [VN Greate | [BuL_StorePiEXt i
A _Delete |» SM_MarkDeletion } BML_IOCH II.'

e CBMC analyzed a call graph of each of the topmost STL functions and
detected that BML semaphore exception might not propagate due to
bug at GetSInfo()

* The bug was detected when loop bound was set 2 with ignoring loop
unwinding assertion.

— Memory overflow occurred with the loop bound 3

e For STL_Write(), this verification task consumed 616 megabytes of
memory in 97 seconds

— Each call sequence is around 1000 lines long on average.
20/28 KAIST

———————————————

Multi-sector Read Operation (MSR) (1/2)

SAMO~SAM4 PUO~PU4

Sector 0
Sector 1
Sector 2
Sector 3

SAMO~SAM4 PUO~PU4

"ABCDEF"

"ABCDEF"

1 0 E 3 3| B
1 1| AB F| O D
2 C 3 =
3 D 1 AC| E
a) A distribution of b) Another distribution of

MSR reads adjacent multiple physical sectors once in order to
improve read speed

— MSRis 157 lines long, but highly complex due to its 4 level loops
We built a small test environment for MSR

— The test environment contains only upto 10 physical units

— The test environment should follow constraints, which are described by

_CPROVER_assume(Boolean exp) statement
 SAM tables and PUs should correspond each other
* For each logical sector, at least one physical sector that has the same value exists

KAIST

Modeling in NuSMV (2/2)

The test environment should follow constraints, which are described by
_CPROVER_assume(Boolean exp) statement

— SAM tables and PUs should correspond each other

The environment of MSR (i.e., PUs and SAMs configurations) can be described by
invariant rules. Some of them are

1. One PU is mapped to at most one LU
2. Valid correspondence between SAMs and PUs:

If the i th LS is written in the k th sector of the j th PU, then the i th offset of
the j th SAM is valid and indicates the k’th PS,

Ex> 31 LS (‘C’) is in the 3" sector of the 2" PU, then SAM1[2] ==
i=3 k=3 j=2
3. Forone LS, there exists only one PS that contains the value of the LS:
The PS number of the i th LS must be written in
only one of the (i mod 4) th offsets of the SAM tables SAMO~SAMA PUO~PUA

for the PUs mapped to the corresponding LU. Sector 0 [0 E

Sector 1

[
[

A F

B
Sector 2 2 C

Sector 3 3 D

Multi-sector Read Operation (MSR) (2/2)

10000.0 -
¢ Alength
] \ of data
10000 - —7
£ : _l/l/ s
c
o
9 | 6
wv
100.0 - -7
8
10.0
5 6 7 8 9 10
A number of physical units

We checked MSR for data that was 5~8 sectors long and distributed over 5~10 PUs.
— CBMC analyzed all possible scenarios/distributions in this environment
CBMC detected no violation of the property (read buffer should contain correct
data) in this series of experiments with small flash memory.
— Each of the experiments consumed 280 to 700 megabytes of memory
More details of this verification task, see “Formal Verification of a Flash Memory
Device Driver -an Experience Report” published at Spin 08

23/28

KAIST

.U
D
-5
—h
@)
-5
S
D
S
o
D
(
o
=3
e
Y
3
W
@)
S

100000 - - - 100000 _
Time complexity LS = 6 Space complexity LS = 6
[|
10000 10000 -
n |
3 < .
51000 -@1000
é ‘ ""Spin % ® Spin
//"'NUSMV =NuSMV
100 — == CBMC 100 +——j=—— CBMC
/
0 10
5 6 7. 8. 9 _ 10
> A nédmber’of physical @nits 10 A number of physical units

24

Promising Research Topics (1/3)

e Requirement property derivation is a crucial starting
activity in model checking, but often neglected

— No systematic study yet, to my knowledge

e Close relation to requirement engineering

e Environment modeling as well as target modeling is a
crucial issue for industrial success of model checking
— Garbage in, garbage out
— No automation yet
— No significant research activities yet

Promising Research Topics (2/3)

* Practical application of SAT-based model checking
for program verification

— Bit-level accuracy is a big advantage!!!
* Less restriction and limitation compared to CEGAR approach
e We can avoid many misleading results due to abstraction

— SMT is a new challenger, but

e SMT has overwhelming restrictions (e.g. linear
arithmetic, requirement of loop invariants, etc)
e Performance of SMT is not significantly better than that of SAT

— Decision procedures in most SMT theories are based on SAT.
— SAT solvers possess industrial strength through 50 years’s research

Promising Research T

m

’-\
\

\J

e Clear limitation of model checking

— The result of model checking can guarantee the
correctness of MSR only for a small environment

e Natural subsequent approach => Theorem proving

— No automation aimed (at least by me ;)), but an
intellectually challenging task

— For a specific domain, such as MSR in flash memory
device driver, one pattern of logical specification can be
reused and may give back reward to the investment

Conclusion

e We successfully applied CBMC to detect hidden bugs in
the device driver for Samsung’s OneNAND flash memory

— Also, we established confidence in the correctness of the
complex MSR

e Lessons learned

— Software model checker as an effective unit testing tool
e CBMC took modest amount of memory and time to detect bugs in USP
e Exhaustive analysis can detect hidden bugs
— Advantages of a SAT-based model checker
e Analysis capability of whole ANSI-C
* No abstract model required

 We believe that a SAT-based model checker can be utilized
effectively as a unit testing tool to complement
conventional testing

KAIST

