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Motivation

» Software engineering perspective

Increasing needs for a structured (or systematic)
development methodology for embedded software

Increasing need for efficient and effective verification
technique

» Verification perspective

Programming analysis is limited to certain code-specific
properties

e.g., array-bound checking, dangling pointer, assertion
checking, etc.

Design and/or requirements errors are hard to identify and
costly to correct

e.g. process deadlock, incorrect behavior due to loss of
input messages
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Our approach

» Integration of verification techniques into existing development
process

We chose one of the component-based, model-driven development (MDD)
methodologies named MARMOT

» Provide a framework for the V&V-integrated development
methodology including
Modeling language
Design simulation
Design verification
Code generation
» Provide automation to support the V&V-integrated development
framework
UML subset + action language for the modeling language
Extension of existing UML support tools
Integration of model checking techniques
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MARMOT Methodology

» Stands for Method for Component-Based Real-Time Object-
Oriented Development and Testing

» Branched from KobrA by Atkinson et. al

Designed for the development of embedded systems
» High quality system through systematic, structured development
» Based on

the principle of “separation of concerns”: specification vs. realization
Iterative decomposition and refinements

» Components are the focus of entire development process
Tree-structured hierarchy of components
Flexibility and reuse of components
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Recursive Development

Identification
Specification
— Realization

Component
Reuse /

—, Kpt C

COTS Component

.......
1
L]
.

Kpt B d

m
.....
»

KNU SSELAB



Things to be checked
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A few huddles to get over

» Models do not exist!

Where do we start!?

» No universally accepted modeling notations
UML!?

» Model checking does not scale well

Is it usable!?
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Creating models — reverse engineering

» Start from existing codes and reverse engineer them into
abstract component models

We start from open source wireless sensor network

» Once reverse engineered, the same model can be reused
for future developments
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Creating models — reverse engineering
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Applying MDD and verification
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Applying MDD and verification
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Ultimate Goal — round trip development
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Modeling language & Tools (1)

» UML as a modeling language

Pros:
Independent from program languages to be used
widely accepted in industry
A number of CASE tools are available and widely used in industry
With simulation, code generation, and reverse engineering capability
Cons:
Unclear semantics: dynamic semantics is left to the CASE tools
Ambiguity : allow informal expressions

Existing CASE tools does not support the notion of abstract
component
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Modeling language & Tools (2)

» Solution
Define UML extensions and formal semantics

action language
Syntax for describing abstract component — sterotype and

» Utilize existing CASE tools as much as possible ,
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Verification methods (1)

» Model simulation for behavior checking

Use the simulation tool of existing CASE tools as much as
possible

Provide extension to the existing simulation tool to support
different dynamic semantics

Simulation of abstraction components
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Verification methods (2)

» Use model checking as a back-end verifier
Based on the exhaustive search of system state-space

Can check process deadlock and other concurrency-related
properties

Fully automated

Provide counter-examples

» Need a translation to the input language of model checker
SPIN, SMV, CADP

» Need to support efficient feed-back

Replay of the counter-examples through simulation
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Verification methods (2) — framework
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Verification methods (3)

» Successive verification through abstraction
Verification of the entire system at once is not feasible
311+ nesC files for basic features of TinyOS
Mixture of top-down and bottom-up approaches

Environmental constraints : top-down extraction

Behavior abstraction : bottom-up abstraction
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Model verification : Consistency
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Model verification : Consistency
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module PlatformP{
provides interface Init;

uses interface |nit as
Msp430Clocklnit;

uses interface Init as Motelnit;
uses interface Init as Ledslnit;

}

implementation {
command error_t Init.init() {
call Msp430Clocklnit.init();
call Motelnit.init();
call Ledslnit.init();
return SUCCESS;

default command error t

Ledslnit.init() { return SUCCESS; }

« extraction of statecharts from code
» statechart composition and reduction
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Verification methods (4) -- scalability

Successive verification approach may limit the number of
components to be verified at the same time — good!

Still, scalability issue is potentially the most serious problem

We will investigate on techniques such as
Property-based abstraction

Compositional verification
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Code generation

» Use intermediate language
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Related work
» OMEGA project

http://www-omega.imag.fr
» SYNTHESES
|CSE 2007

» Adaptor
TSE 2008

http://www.ibisc.univ-evry.fr/~poizat
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Work in progress

» Reverse engineering tinyOS
Define modeling notations for abstract components

Model extraction from code

» Model simulation using Rhapsody
|dentify the limitation of Rhapsody simulator

Design extensions of Rhapsody simulator
» Participants

| professor, 2 graduate students, | undergraduate student
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