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Motivation
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 Software engineering perspective

 Increasing needs for a structured (or systematic) 
development methodology for embedded  software

 Increasing need for efficient and effective verification 
technique

 Verification perspective

 Programming analysis is limited to certain code-specific 
properties

 e.g., array-bound checking, dangling pointer, assertion 
checking, etc.

 Design and/or requirements errors are hard to identify and 
costly to correct

 e.g. process deadlock, incorrect behavior due to loss of 
input messages



Our approach
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 Integration of verification techniques into existing development 
process 
 We chose one of the component-based, model-driven development (MDD) 

methodologies named MARMOT

 Provide a framework for the V&V-integrated development 
methodology including
 Modeling language

 Design simulation

 Design verification

 Code generation

 Provide automation to support the V&V-integrated development 
framework
 UML subset + action language for the modeling language

 Extension of existing UML support tools 

 Integration of model checking techniques



MARMOT Methodology
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 Stands for Method for Component-Based Real-Time Object-
Oriented Development and Testing

 Branched from KobrA by Atkinson et. al
 Designed for the development of embedded systems

 High quality system through systematic, structured development

 Based on 
 the principle of “separation of concerns”: specification vs. realization

 Iterative decomposition and refinements

 Components are the focus of entire development process
 Tree-structured hierarchy of components 

 Flexibility and reuse of components



MARMOT Component
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Component Refinements
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Recursive Development
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A few huddles to get over
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 Models do not exist!

 Where do we start?

 No universally accepted modeling notations

 UML?

 Model checking does not scale well

 Is it usable?



Creating models – reverse engineering

 Start from existing codes and reverse engineer them into 

abstract component models

 We start from open source wireless sensor network

 Once reverse engineered, the same model can be reused 

for future developments
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Modeling language & Tools (1)

 UML as a modeling language

 Pros: 

 Independent from program languages to be used

 widely accepted in industry

 A number of CASE tools are available and widely used in industry

 With simulation, code generation, and reverse engineering capability

 Cons:

 Unclear semantics:  dynamic semantics is left to the CASE tools

 Ambiguity : allow informal expressions

 Existing CASE tools does not support the notion of abstract 

component
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request_for_moving

entry/ floor::location := CHOOSE { 1..5 }

exit/ Call Elevator_Context::move(floor::location)...

[ Elevator_Context::elevator_status = Normal ]

get_into_elevator

[ Elevator_Context::current_position = floor::location 

and Elevator_Context::door_status = Open ]

hold_door

in_elevator
get_out

select_destination

close_door

entry/ Call Elevator_Context::close()

[ else ]

[ Elevator_Context::current_position 

= user::destination and 

Elevator_Context::door_status = 

Open ]

Modeling language & Tools (2)

 Solution

 Define UML extensions and formal semantics

 action language

 Syntax for describing abstract component – sterotype and annotation

 Utilize existing CASE tools as much as possible

 We use Telelogic Rhapsody

 But,  our V&V approach

and other extensions

are to be tool-independent
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Verification methods (1)

 Model simulation for behavior checking

 Use the simulation tool of existing CASE tools as much as 

possible

 Provide extension to the existing simulation tool to support 

 different dynamic semantics

 Simulation of abstraction components 
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Verification methods (2)

 Use model checking as a back-end verifier

 Based on the exhaustive search of system state-space

 Can check process deadlock and other concurrency-related 

properties

 Fully automated

 Provide counter-examples

 Need a translation to the input language of model checker

 SPIN,  SMV, CADP

 Need to support efficient feed-back 

 Replay of the counter-examples through simulation
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Verification methods (2) – framework
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Verification methods (3)

 Successive verification through abstraction

 Verification of the entire system at once is not feasible

 311+ nesC files for basic features of TinyOS

 Mixture of top-down and bottom-up approaches

 Environmental constraints : top-down extraction

 Behavior abstraction : bottom-up abstraction
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Model verification : Consistency
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module PlatformP{

provides interface Init;

uses interface Init as  

Msp430ClockInit;

uses interface Init as MoteInit;

uses interface Init as LedsInit;

}

implementation {

command error_t Init.init() {

call Msp430ClockInit.init();

call MoteInit.init();

call LedsInit.init();

return SUCCESS;

}

default command error_t

LedsInit.init() { return SUCCESS; }

}

• extraction of statecharts from code

• statechart composition and reduction

Compositional 

statecharts



Verification methods (4) -- scalability

 Successive verification approach may limit the number of 

components to be verified at the same time – good!

 Still, scalability issue is potentially the most serious problem 

 We will investigate on techniques such as

 Property-based abstraction

 Compositional verification
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Code generation

 Use intermediate language
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Related work

 OMEGA project 

 http://www-omega.imag.fr

 SYNTHESES

 ICSE 2007

 Adaptor

 TSE 2008

 http://www.ibisc.univ-evry.fr/~poizat
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Research Plan (for next 4 years)

 기초 프레임워크 개발 단계

 1차년

 제어소프트웨어의 컴포넌트 기반 정형적 참조모델 개발

 부분적 정형기법의 적용과 동적 코드 검증의 결합을 위한 기초 프레임워
크 연구

 2차년

 비정형적 소프트웨어 모델의 정형화 기법연구

 사례연구를 통한 정형화 기법의 적용성 평가

 동적분석의 일반화와 코드-모델간 피드백 시스템 개발

 3차년

 컴포넌트 기반 부분 추출기법을 통한 조합적 검증 프레임워크 개발

 동적분석을 이용한 정적분석의 허위경보 색출과 피드백 시스템 개발

 4차년

 실제 제어 소프트웨어 개발과정에의 적용과 사용성 평가

 피드백 시스템의 평가와 보완
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Work in progress

 Reverse engineering tinyOS

 Define modeling notations for abstract components

 Model extraction from code 

 Model simulation using Rhapsody

 Identify the limitation of Rhapsody simulator

 Design extensions of Rhapsody simulator

 Participants

 1 professor, 2 graduate students, 1 undergraduate student
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