
A Model-driven development and

verification framework for

embedded software

Software Safety Engineering Laboratory

School of Electrical Engineering and Computer Science

Kyungpook National University

Yunja Choi

Motivation

KNU SSELAB2

 Software engineering perspective

 Increasing needs for a structured (or systematic)
development methodology for embedded software

 Increasing need for efficient and effective verification
technique

 Verification perspective

 Programming analysis is limited to certain code-specific
properties

 e.g., array-bound checking, dangling pointer, assertion
checking, etc.

 Design and/or requirements errors are hard to identify and
costly to correct

 e.g. process deadlock, incorrect behavior due to loss of
input messages

Our approach

KNU SSELAB3

 Integration of verification techniques into existing development
process
 We chose one of the component-based, model-driven development (MDD)

methodologies named MARMOT

 Provide a framework for the V&V-integrated development
methodology including
 Modeling language

 Design simulation

 Design verification

 Code generation

 Provide automation to support the V&V-integrated development
framework
 UML subset + action language for the modeling language

 Extension of existing UML support tools

 Integration of model checking techniques

MARMOT Methodology

KNU SSELAB4

 Stands for Method for Component-Based Real-Time Object-
Oriented Development and Testing

 Branched from KobrA by Atkinson et. al
 Designed for the development of embedded systems

 High quality system through systematic, structured development

 Based on
 the principle of “separation of concerns”: specification vs. realization

 Iterative decomposition and refinements

 Components are the focus of entire development process
 Tree-structured hierarchy of components

 Flexibility and reuse of components

MARMOT Component

KNU SSELAB5

Component Refinements

KNU SSELAB6

Statecharts

Class Diagram

Operation

Schemata

Class Diagram

Sequence

Diagram

Object

Diagram

(Architecture)

Specification

Realization

Refined
component

Refining
component

Recursive Development

KNU SSELAB7

Specification
Realization

Identification

Kpt A

Kpt B

Kpt D

Kpt C

Component
Reuse

COTS Component

KNU SSELAB8

Things to be checked

Statecharts

Class Diagram

Operation

Schemata

Class Diagram

Sequence

Diagram

Object

Diagram

(Architecture)

correctness

Specification-
realization

consistency

}Interaction
consistency

{

A few huddles to get over

KNU SSELAB9

 Models do not exist!

 Where do we start?

 No universally accepted modeling notations

 UML?

 Model checking does not scale well

 Is it usable?

Creating models – reverse engineering

 Start from existing codes and reverse engineer them into

abstract component models

 We start from open source wireless sensor network

 Once reverse engineered, the same model can be reused

for future developments

KNU SSELAB10

KNU SSELAB11

Low-level design

implementation

testing

Requirements

analysis

deployment

PIM

PSM

code

Code

Component model

with annotation

Abstract component model

Reverse

engineering

Creating models – reverse engineering

KNU SSELAB12

Low-level design

implementation

testing

Requirements

analysis

deployment

PIM

PSM

code

Code

Component model

with annotation

Abstract component model

Reverse

engineering

Applying MDD and verification

Verification of design change

KNU SSELAB13

Low-level design

implementation

testing

Requirements

analysis

deployment

PIM

PSM

code

Code

Component model

with annotation

Abstract component model

Reverse

engineering

Applying MDD and verification

Verification of design change

Verification of

generated codes

KNU SSELAB14

Low-level design

implementation

testing

Requirements

analysis

deployment

PIM

PSM

code

Code

Component model

with annotation

Abstract component model

Ultimate Goal – round trip development

Modeling language & Tools (1)

 UML as a modeling language

 Pros:

 Independent from program languages to be used

 widely accepted in industry

 A number of CASE tools are available and widely used in industry

 With simulation, code generation, and reverse engineering capability

 Cons:

 Unclear semantics: dynamic semantics is left to the CASE tools

 Ambiguity : allow informal expressions

 Existing CASE tools does not support the notion of abstract

component

KNU SSELAB15

request_for_moving

entry/ floor::location := CHOOSE { 1..5 }

exit/ Call Elevator_Context::move(floor::location)...

[Elevator_Context::elevator_status = Normal]

get_into_elevator

[Elevator_Context::current_position = floor::location

and Elevator_Context::door_status = Open]

hold_door

in_elevator
get_out

select_destination

close_door

entry/ Call Elevator_Context::close()

[else]

[Elevator_Context::current_position

= user::destination and

Elevator_Context::door_status =

Open]

Modeling language & Tools (2)

 Solution

 Define UML extensions and formal semantics

 action language

 Syntax for describing abstract component – sterotype and annotation

 Utilize existing CASE tools as much as possible

 We use Telelogic Rhapsody

 But, our V&V approach

and other extensions

are to be tool-independent

KNU SSELAB16

Verification methods (1)

 Model simulation for behavior checking

 Use the simulation tool of existing CASE tools as much as

possible

 Provide extension to the existing simulation tool to support

 different dynamic semantics

 Simulation of abstraction components

KNU SSELAB17

Verification methods (2)

 Use model checking as a back-end verifier

 Based on the exhaustive search of system state-space

 Can check process deadlock and other concurrency-related

properties

 Fully automated

 Provide counter-examples

 Need a translation to the input language of model checker

 SPIN, SMV, CADP

 Need to support efficient feed-back

 Replay of the counter-examples through simulation

KNU SSELAB18

Verification methods (2) – framework

KNU SSELAB19

consistency model

original model

UML model

(tool & version

dependent)

model in xml

format

 UML 2.0.

metamodel library

UML abstract

syntax tree (tool

& version

independent)

SMV metamodel

library

XMI export

generate

abstract syntax

tree

xml DTD/

Schema

mapping

JDOM

PROMELA

metamodel library

SMV

consistency

model

UML-to-SMV

translation

UML-to-

PROMELA

translation

PROMELA

 consistency

model

Verification methods (3)

 Successive verification through abstraction

 Verification of the entire system at once is not feasible

 311+ nesC files for basic features of TinyOS

 Mixture of top-down and bottom-up approaches

 Environmental constraints : top-down extraction

 Behavior abstraction : bottom-up abstraction

KNU SSELAB20

KNU SSELAB21

Statecharts

Class Diagram

Operation

Schemata

Class Diagram

Sequence

Diagram

Object

Diagram

(Architecture)

Specification

Realization

System

processes

External stimuli

Model verification : Consistency

Model verification : Consistency

KNU SSELAB22

external internal

external internal

behavior

attribute

operation

structure

external internal

external internal

behavior

attribute

operation

structure

component

component

+refined

+refining

component model at i_th level

component model at (i+1)_th level

component model at (i-1)_th

level

A compositonal process

forming an environment

Process P_1 from

refining component 1

Process P_2 from

refining component 2

Process P_i from

refining component i

actions generated by the

environment change of states

consistency model

KNU SSELAB23

Snoop

Component_AMSenderC

≪container≫

E

Component_AMQueueEntryP

≪Module≫Component_AMQueueP

Component_ActiveMessageC

G

AMPacket

≪Interface≫

AMQueueEntryP

amId

AMPacket

port_4

Sendport_3

AMSend

port_2

AMSend

≪Interface≫

Receive

≪Interface≫

Receive

≪Interface≫

Packet

≪Interface≫

PacketAcknowledgements

≪Interface≫

component_CC2420ActiveMessageC

AM

CC2420Packet

≪Interface≫

RadioBackoff

≪Interface≫

LowPowerListening

≪Interface≫

PacketLink

≪Interface≫

Component_CC2420ActiveMessageP

AM

CC2420ActiveMessageP

CC2420Packet

port_7

ReceiveSubReceive SendSubsend

Packet

port_4

AMPacketport_3

Receive

port_2

Receiveport_1

AMSend

port_0

Component_CC2420PacketC

CC2420PacketC

PacketAcknowledgements

port_1

CC2420Packet

port_0

LplC

AMQueueImplP

numClien

ts

Packet

port_5

PacketAcknowledgements

port_4

AMSendport_3

Send

port_2

Send

≪Interface≫

Component_RadioCountToLedsC

≪Module≫

AMSend

Packet

AMSend

Packet

boot

Component_MainC

boot

Component_LedsC

C

Leds

Leds

Leds

Component_AMReceiverC

≪container≫

receive

Receive

Packet

AMPacket

receive

Receive

Packet

AMPacket

Component_TimerMilliC

F

MilliTimerMilliTimer

Level 1

Level 2

Level 3

component_CC2420AckLplC

SplitControl

≪Interface≫

Send

≪Interface≫

Receive

≪Interface≫

SubSend Send

≪Interface≫
SubSend

LowPowerListening

≪Interface≫

State

≪Interface≫

SubReceive

Receive

≪Interface≫

SubReceive

SplitControl

≪Interface≫

SubControlSubControl

component_NoAckLplC

LinkC

component_PacketLinkC

Send

≪Interface≫

Send

≪Interface≫

SubSendSubSend

component_PacketLinkDummyC

Level 4

SplitControl

≪Interface≫

SplitControl

≪Interface≫

SplitControlSplitControl

AMSend

≪Interface≫

Receive

≪Interface≫

Packet

≪Interface≫

AMPacket

≪Interface≫

A

B

D

Level 0

Receive

≪Interface≫

Snoop

PacketAcknowledgements

≪Interface≫

component_CC2420CsmaC

CsmaC

component_UniqueSendC

component_UniqueReceiveC

component_CC2420TinyosNetworkC

SplitControl

≪Interface≫

CC2420AckLplP

Ledsport_18 TimerSendDoneTimer

Timer

OffTimer

Randomport_15

State

SplitControlState

StateRadioState

State

SendState

PacketAcknowledgementsport_11CC2420Packetport_10CC2420DutyCycleport_9

SplitControl

SubControl

AMPacket

port_7

ReceiveSubReceive CC2420TransmitResend

Send

Subsend

Receiveport_3

Send

port_2

LowPowerListeningport_1

init

port_0

component_CC2420DutyCycleC

component_CC2420TransmitC

see component

diagram

component_RandomC

component_StateC

SendSt

ateC

component_StateC

Radio

StateC

Component_TimerMilliC

OfftT

imer

C

Component_TimerMilliC

Sen

dDo

neTi

mer

C

SplitControl

≪Interface≫

CC2420DutyCycle

≪Interface≫

SplitControl

≪Interface≫

CC2420DutyCycleP

Random

port_13

CC2420Ccaport_12Ledsport_11

State

SendState

State

CheckState

State

SplitControlState

StateDutyCycleState StateRadioPowerState

SplitControl

SubControl

TimerOnTimer

SplitControl

port_3

initport_2

softwareInit

CC2420DutyCycle

port_1

softwareInit

Leds

State

≪Interface≫

SplitContr

olState

component_StateC

Rad

ioP

owe

rSta

teC

component_StateC

Dut

yCy

cle

Stat

eC

component_StateC

Check

StateC

component_StateC

Splic

Contr

olStat

eCComponent_TimerMilliC

OnTimer

C

Component_TimerMilliC

CheckTi

merC

component_StateImplC

State

≪Interface≫

StateImplP

Stateport_1

init

port_0

SendState

ActiveMessageAddressC

≪module≫

UniqueSendP

CC2420Packet

port_6

Randomport_5

State

port_4Send

SubSend

initport_1

Sendport_0

Receive

≪Interface≫

Receive

≪Interface≫

Receive

≪Interface≫

UniqueReceiveP

CC2420Packet

port_4

ReceiveSubReceive

init

port_2

SoftwareInit

ReceiveDuplicateReceive

Receive

port_0

SoftwareInit

CC2420TinyosNetworkP

CC2420Packetport_5

Receive

SubReceive

SendSubSend

Receive

NonTinyosReceive

Receiveport_1

Send

port_0

CC2420CsmaP

CC2420Packet

port_12

Leds

port_11
AMPacketport_10Randomport_9

RadioBackoff

SubBackoff

CC2420Transmit

port_7

StdControlSubControl CC2420Powerport_5

Resource

port_4

RadioBackoffport_3

Send

port_2

SplitControlport_1

init

port_0

Send

≪Interface≫

Receive

≪Interface≫

RadioBackoff

≪Interface≫

component_CC2420ControlC

see

component

diagram

PacketLink

≪Interface≫

PacketLinkDummyP

PacketAcknowledgementsport_1

PacketLink

port_0

component_RandomMlcgC

init

≪Interface≫

ParameterInit

≪Interface≫

pa

ra

m

et

er
Random

≪Interface≫

RandomMlcgP

Random

Random

ParameterInitport_1

init

port_0

component_StateC

Send

State

C

Component_TimerMilliC

DelayT

imerC

PacketLinkP

CC2420Packet

port_7

AMPacketport_6

TimerDelayTimer

PacketAcknowledgementsport_4

StateSendState

Send

SubSend

PacketLinkport_1

Send

port_0

KNU SSELAB24

Component_LedsC

LedsP

GeneralIOLed2GeneralIOLed1

GeneralIO

Led0

Leds

port_1
init

port_0

component_PlatformLedsC

≪hardware≫
GeneralIO

≪Interface≫

≪flow≫≪flow≫

GeneralIO

≪Interface≫

≪flow≫≪flow≫
GeneralIO

≪Interface≫

≪flow≫≪flow≫

init

≪Interface≫

≪required≫

≪flow≫

≪required≫

≪flow≫

Leds

≪Interface≫

KNU SSELAB25

component_PlatformLedsC

≪hardware≫GeneralIO

≪Interface≫

GeneralIO

≪Interface≫

GeneralIO

≪Interface≫

init

≪Interface≫

≪required≫≪required≫

Msp430GpioC

≪module≫

HplMsp430GeneralIOHplGeneralIO

GeneralIO

port_0

Msp430GpioC

≪module≫

HplMsp430GeneralIOHplGeneralIO

GeneralIO

port_0

Msp430GpioC

≪module≫

HplMsp430GeneralIOHplGeneralIO

GeneralIO

port_0

PlatformP

≪module≫

initMoteInit

initLedsInit

init

Msp430ClockInit

init

port_0

Led0

Led1

Led2

HplMsp430GeneralIOC

≪configuration≫

port_57

port_56 port_55

port_54

port_53

port_52

port_51

port_50

Led1Impl
GeneralIO

C

Led0Impl Led2Impl

KNU SSELAB26

component_PlatformLedsC

≪hardware≫GeneralIO

≪Interface≫

GeneralIO

≪Interface≫

GeneralIO

≪Interface≫

init

≪Interface≫

≪required≫≪required≫

Msp430GpioC

≪module≫

HplMsp430GeneralIOHplGeneralIO

GeneralIO

port_0

Msp430GpioC

≪module≫

HplMsp430GeneralIOHplGeneralIO

GeneralIO

port_0

Msp430GpioC

≪module≫

HplMsp430GeneralIOHplGeneralIO

GeneralIO

port_0

PlatformP

≪module≫

initMoteInit

initLedsInit

init

Msp430ClockInit

init

port_0

Led0

Led1

Led2

HplMsp430GeneralIOC

≪configuration≫

port_57

port_56 port_55

port_54

port_53

port_52

port_51

port_50

Led1Impl
GeneralIO

C

Led0Impl Led2Impl

module PlatformP{

provides interface Init;

uses interface Init as

Msp430ClockInit;

uses interface Init as MoteInit;

uses interface Init as LedsInit;

}

implementation {

command error_t Init.init() {

call Msp430ClockInit.init();

call MoteInit.init();

call LedsInit.init();

return SUCCESS;

}

default command error_t

LedsInit.init() { return SUCCESS; }

}

• extraction of statecharts from code

• statechart composition and reduction

Compositional

statecharts

Verification methods (4) -- scalability

 Successive verification approach may limit the number of

components to be verified at the same time – good!

 Still, scalability issue is potentially the most serious problem

 We will investigate on techniques such as

 Property-based abstraction

 Compositional verification

KNU SSELAB27

Code generation

 Use intermediate language

KNU SSELAB28

Low-level design

implementation

testing

Requirements

analysis

deployment

PIM

PSM

code

Intermediate code

Related work

 OMEGA project

 http://www-omega.imag.fr

 SYNTHESES

 ICSE 2007

 Adaptor

 TSE 2008

 http://www.ibisc.univ-evry.fr/~poizat

KNU SSELAB29

Research Plan (for next 4 years)

 기초 프레임워크 개발 단계

 1차년

 제어소프트웨어의 컴포넌트 기반 정형적 참조모델 개발

 부분적 정형기법의 적용과 동적 코드 검증의 결합을 위한 기초 프레임워
크 연구

 2차년

 비정형적 소프트웨어 모델의 정형화 기법연구

 사례연구를 통한 정형화 기법의 적용성 평가

 동적분석의 일반화와 코드-모델간 피드백 시스템 개발

 3차년

 컴포넌트 기반 부분 추출기법을 통한 조합적 검증 프레임워크 개발

 동적분석을 이용한 정적분석의 허위경보 색출과 피드백 시스템 개발

 4차년

 실제 제어 소프트웨어 개발과정에의 적용과 사용성 평가

 피드백 시스템의 평가와 보완
KNU SSELAB30

Work in progress

 Reverse engineering tinyOS

 Define modeling notations for abstract components

 Model extraction from code

 Model simulation using Rhapsody

 Identify the limitation of Rhapsody simulator

 Design extensions of Rhapsody simulator

 Participants

 1 professor, 2 graduate students, 1 undergraduate student

KNU SSELAB31

