A Model-driven development and
verification framework for
embedded software

Yunja Choi

Software Safety Engineering Laboratory
School of Electrical Engineering and Computer Science
Kyungpook National University

Motivation

» Software engineering perspective

Increasing needs for a structured (or systematic)
development methodology for embedded software

Increasing need for efficient and effective verification
technique

» Verification perspective

Programming analysis is limited to certain code-specific
properties

e.g., array-bound checking, dangling pointer, assertion
checking, etc.

Design and/or requirements errors are hard to identify and
costly to correct

e.g. process deadlock, incorrect behavior due to loss of
input messages

2 KNU SSELAB

Our approach

» Integration of verification techniques into existing development
process

We chose one of the component-based, model-driven development (MDD)
methodologies named MARMOT

» Provide a framework for the V&V-integrated development
methodology including
Modeling language
Design simulation
Design verification
Code generation
» Provide automation to support the V&V-integrated development
framework
UML subset + action language for the modeling language
Extension of existing UML support tools
Integration of model checking techniques

3 KNU SSELAB

MARMOT Methodology

» Stands for Method for Component-Based Real-Time Object-
Oriented Development and Testing

» Branched from KobrA by Atkinson et. al

Designed for the development of embedded systems
» High quality system through systematic, structured development
» Based on

the principle of “separation of concerns”: specification vs. realization
Iterative decomposition and refinements

» Components are the focus of entire development process
Tree-structured hierarchy of components
Flexibility and reuse of components

4 KNU SSELAB

MARMOT Component

attribute

operation relation
Hefined
* 0..'
structure component Hefining
v 0.”
1."
1."
external internal behavior
Zh has
has
1 1.7
interface
external internal
| 1.7
KNU SSELAB

Component Refinements

Statecharsgnecification

Operation

"— Class Diagram
N

Sequence v v
' V~2ZZZ"" Class Diagram

Diagram

_Object Realization

.~ Diagram
=~ (Architecture)

6 KNU SSELAB

Recursive Development

Identification
Specification
— Realization

Component
Reuse /

—, Kpt C

COTS Component

.......
1
L]
.

Kpt B d

m
.....
»

KNU SSELAB

Things to be checked

Operation
Schemaya @
‘ “é Class Diagram

A /[\

Sequence N

\
Diagraﬁif | — 227 Class Diagram

~Object
~ Diagram
~ (Architecture)

N

e
0
.
0
0
0
0
0
0
0
0
0
0
0
e
.

8 KNU SSELAB

A few huddles to get over

» Models do not exist!

Where do we start!?

» No universally accepted modeling notations
UML!?

» Model checking does not scale well

Is it usable!?

9 KNU SSELAB

Creating models — reverse engineering

» Start from existing codes and reverse engineer them into
abstract component models

We start from open source wireless sensor network

» Once reverse engineered, the same model can be reused
for future developments

10 KNU SSELAB

Creating models — reverse engineering

Requirements

|

analysis

testing

Reverse
engineering

deployment

11 KNU SSELAB

Applying MDD and verification

Requirements

|

analysis il=

| Low-level design

Verification of design change

testing

Reverse
engineering

deployment

12 KNU SSELAB

Applying MDD and verification

Requirements

|

Verification of design change

analysis il=

| Low-level design

4

implementation [

4

testing

Verification of
generated codes

Reverse
engineeri

deployment

13 KNU SSELAB

Ultimate Goal — round trip development

Requirements

analysis | - R

| Low-level design

4

implementation [

4

testing

deployment

14 KNU SSELAB

Modeling language & Tools (1)

» UML as a modeling language

Pros:
Independent from program languages to be used
widely accepted in industry
A number of CASE tools are available and widely used in industry
With simulation, code generation, and reverse engineering capability
Cons:
Unclear semantics: dynamic semantics is left to the CASE tools
Ambiguity : allow informal expressions

Existing CASE tools does not support the notion of abstract
component

15 KNU SSELAB

Modeling language & Tools (2)

» Solution
Define UML extensions and formal semantics

action language
Syntax for describing abstract component — sterotype and

» Utilize existing CASE tools as much as possible ,

annotation

[Elevator_Context::elevator_status = Normal]

We use Telelogic Rhapsody (=

entry/ floor::location

elevator_senice exit/ Call Elevator_C

r_moving
:= CHOOSE { 1.5}
ontext::move(floor::locatign)

[Elevator_Context::current_position = floor:location
and Elevator_Context::door_status = Open]

Help_Center
But, our V&V approach |cesom
{—> “Cstaart(en ! %notify()

¢ \'\,

and other extensions____

(e
are to be tool-independentescs | | /C

%ele»at l atus /
Bpdoo

Bpmovi g d ctio
S E— main_senice hold_doo
4mowe() @————= (from Contex1)
select_destination

[Elev: t C ntext::current_position
r::destin I and
Elev: I C nte: Id _status

D

[else]
close_door
entry/ Call Elevator_Context::close| @

$selectFloor()

Shold()

%close() \

Shelp() Y

$startEleator() supporting_senice /
*slopEIevator{' (from Context)

16 KNU SSELAB

Verification methods (1)

» Model simulation for behavior checking

Use the simulation tool of existing CASE tools as much as
possible

Provide extension to the existing simulation tool to support
different dynamic semantics

Simulation of abstraction components

17 KNU SSELAB

Verification methods (2)

» Use model checking as a back-end verifier
Based on the exhaustive search of system state-space

Can check process deadlock and other concurrency-related
properties

Fully automated

Provide counter-examples

» Need a translation to the input language of model checker
SPIN, SMV, CADP

» Need to support efficient feed-back

Replay of the counter-examples through simulation

18 KNU SSELAB

Verification methods (2) — framework

19

xml DTD/

UML model .
(tool & version | model in xml
dependent) format

JDOM

Schema

LI

mapping

UML 2.0.
metamodel library

generate
—P(abstract syntax
tree

original model

SMV metamodel
library

UML abstract
syntax tree (tool
& version
independent)

UML-to-SMV
translation

UML-to-
PROMELA
translation

consistency model

SMV
consistency
model

PROMELA
consistency
model

PROMELA
metamodel library

KNU SSELAB

Verification methods (3)

» Successive verification through abstraction
Verification of the entire system at once is not feasible
311+ nesC files for basic features of TinyOS
Mixture of top-down and bottom-up approaches

Environmental constraints : top-down extraction

Behavior abstraction : bottom-up abstraction

20 KNU SSELAB

Model verification : Consistency

/

Statecharts
Operation
Schemata PB4
External stimuli S “22222"" Class Diagram
A 1
Sequence i J’
Diagramlz?aag ;—’ ‘ —£ZZ" Class Diagram

.~ Object
.~ Diagram
.~ (Architecture)

21 KNU SSELAB

Model verification : Consistency

component model at(i-1)_th

e

N v /

<!

|_operation | external internal consistency model
attribute)
A compositonal process
structure component behavior forming an environment
/< : R +refingd)
actions generated by th

external internal environment change of states

component mo at i th level

-

0000000000000 000000
operation external internal \

Process P_1 from Process P_2 from

refining component1 refining component2

attribute
1 +refining j E

structure component behavior
ﬁ % Process P_i from
refining component i
|_external | internal

component model at(i+1)_th level

22

KNU SSELAB

Component_RadioCoul
Lewl 0

Component_LedsC]

Component_MainC
B

oontainer>
/4 Component_AMRect

‘Component_TimerMil €1
F

Component_ActiveMe £}

= container >
Component_AMS

Component_ AMQuet &1

——
l Lewl 3 [ts]
| ‘cumpcnenl_CCZAZE‘ " AMQueuelmplf AMQueueEntr{
port_
l —if
‘Send|
port_2
I port 4 or_5
Pl
|| - e | o
\ ‘ KRipacket
|

port_3 | Send
UniqueSendP -
component_Packetl £]

port_a

[state

-

| _ port_1 | init port\5 Random SubRecei
‘ ‘ component_ | —— o Loic Recsive
| Send port_5 | CC2a20Packet
\ ‘ R =3

| nméd’ component -

\ el diagram £

| Asen t_] r &

\ g ,, or -) r- O k 3%0 ZATS \

2h20P -) fesource —— - <52
‘T ’ 2420Power < — SendState
‘ — e |

component_NoAckLpiC]

<int m
Param

| — I — —
port 9 , g L random_por 1o, | Packeszs
T sunhControl .

SplitControl

component_Stati &1

component_RandomC

Radio

Nt_CC2420Transmitc— 4

ee component
component_CC2420DutyCycleC €] EeE

/ /

component_Statel £1

ntimer | Timer port 11 [Leds port_12 | cczazocca i

component_RandomMIicgC.

component_ £1
SendSt

‘RandomMIcgP
softwarelnit

‘ SubReceive | Receive port_18 [Ledport 1 | LptPoweRistesitge | StatSendDoneTimer | ResendTime]
A A) A A

L
= Component_TimerMi £1
M=t Sen

dbo

“intertace

CC24a20Trans:

plitContr
olState

CC2420DutyCycleP _St: €] sg s] __StateC &1
Ve 1
‘] =) Rad Dut Check Splic
l . State] cc24200ut | ioP vCv StateC Contr
| — port_13
- Checkstate] =,
‘ Compor £1 ’m‘ N Random
OnTimer CheckTi
\ c merC
1 — = pe—
SplitControlState o
> SplitControl
State]
., ., i
ButyCycleState | State — port_2' | it ~RadioPowerState | State

StatelimplP

KNU SSELAB

init]

port_1'| State
P

Component_LedsC]

<lIntet

Leds VA

<LInterface >

GenerallO
< hardware >
Y2 ~ component_PlatformLedsC
<Interface >
Generallo K
< flow>
flow <lInterface>
GenerallO
< flow>

<LInterface >
init

KNU SSELAB

<lInter
LedO

—
Gene

< hardware>

component_PlatformLedsC

/

<lInter
init

<lInterfa:
Ledl | Generekd— required
P 7
-

<Inter|,))\/ l}

GenelX / \

Led2 e \

\
\\
e \
- \V4
pOI’T_SSD ~ <module> <module>
< configuration> Msp430GpioC Msp430GpioC
HplMsp430GenerallOC port_0 port_0
7 port_50 "o e
(G [fi-6 GenerallO GenerallO
port_54
ol m
HplGenerallO i HplMsp430GenerdfidGenerallo T HplMsp430
port_56o pa
\ 1 P
\ N J e
\ \\ . |
\ \ / - //
\ \ / - P
\\\ \\ //// P /
\ \ - - //

25

<module> ~
Msp430GpioC
port_O
ne
GenerallO

=
&inlGenesallo i HplMsp430Generallo

7

KNU SSELAB

N\rg

\\\Le\dslnit;init
<module>

PlatformP

port_0O

Motelnit

init
Msp430ClockInit

init

port_O
e

GenerallO

—
 <lInter
do Gene < hardware>]
component_PlatformLedsC
L <Inter
init
<Ini it /
terfar
Led1 Generz <]7 CompOSItlonal required
statecharts
et A/
Led2 ene /
AV4
port_53,_| <module> <module> <<m0du|e.>>
<configiration > Msp430GpioC Msp430GpioC Msp430GpioC
HplMsp430GenerallOC port_0 port_O
port_52 [r=77 port_50 Y [g e
port_57 (=1 0] fi-8 GenerallO GenerallO
—
—

port_56o

HplGenerallO

—
HplMsp430GeneratigGenerallo I HpIMsp43OC§Mg}%ﬂ€fa”O

HplMsp430GenerallO

module PlatformP{
provides interface Init;

uses interface |nit as
Msp430Clocklnit;

uses interface Init as Motelnit;
uses interface Init as Ledslnit;

}

implementation {
command error_t Init.init() {
call Msp430Clocklnit.init();
call Motelnit.init();
call Ledslnit.init();
return SUCCESS;

default command error t

Ledslnit.init() { return SUCCESS; }

« extraction of statecharts from code
» statechart composition and reduction

KNU SSELAB

Verification methods (4) -- scalability

Successive verification approach may limit the number of
components to be verified at the same time — good!

Still, scalability issue is potentially the most serious problem

We will investigate on techniques such as
Property-based abstraction

Compositional verification

27 KNU SSELAB

Code generation

» Use intermediate language

Requirements

analysis | - R

| Low-level design i

implementation |#

testing

deployment

28 KNU SSELAB

Related work
» OMEGA project

http://www-omega.imag.fr
» SYNTHESES
|CSE 2007

» Adaptor
TSE 2008

http://www.ibisc.univ-evry.fr/~poizat

29 KNU SSELAB

Research Plan (for next 4 years)
r 71 =YY/ HE A

EiE
RO|AZER 0] HEHE 7|uh HEH SXDE
22 YNT| Mo MEIH 5N R HB0| AWS 93 7| x Ty
397
2K}
HIMEN AZEQ0 BHO| YN} 7|WelT
AATE S35 HEs 7| ¢l Hey BT}
ST 20| Uursiot AE-DUZH T A A Ff2
3K
HATUE 7|5 B8 25742 53 AN A3 T Y3 Y
SMENS 0|88 YHENO| 59HE MBI S ALY T
4X}H
AR F|O| AZEQOf Lo 0| MBIt ALEA B

=
In

o A|AEI0| F7tot gl
30 KNU SSELAB

Work in progress

» Reverse engineering tinyOS
Define modeling notations for abstract components

Model extraction from code

» Model simulation using Rhapsody
|dentify the limitation of Rhapsody simulator

Design extensions of Rhapsody simulator
» Participants

| professor, 2 graduate students, | undergraduate student

31 KNU SSELAB

