
ROSAEC Survey Workshop
SELab. Soohyun Baik

 Cross-Site Scripting Prevention with Dynamic Data
Tainting and Static Analysis

 Philipp Vogt, Florian Nentwich, Nenad Jovanovic,
Engin Kirda, Christopher Kruegel, and Giovanni Vigna

 Proceeding of the Network and Distributed System
Security Symposium (NDSS) February 2007

 Many web sites make extensive use of client-side
scripts to enhance user experience.

 Web applications must properly validate all inputs,
and in particular, remove malicious scripts.

 Many Service provider do not fix their web
applications in a timely way .

 It is necessary to deploy the security mechanisms on
the client side.

 A dynamic taint analysis and a complementary static
analysis that prevent XSS attacks by monitoring the
flows of sensitive information in the web browser.

 The integration of the analyses into the popular Fire-
fox web browser.

 The development of a Fire-fox based web crawler
capable of simulating user actions.

 We can keep track of how sensitive data is used in
the browser.

 Sensitive data is first marked(or tainted).

 When this data is accessed by scripts running in the
web browser, Its use is dynamically tracked by our
system.

 When tainted data is about to be transferred to a
third party, different kinds of actions can be taken.

 A data source is considered sensitive when it holds
information that could be abused by an adversary to
launch attacks or to learn information about a user.

 Sensitive data must be initially tainted so that its use
by scripting code can be appropriately tracked.

Object Tainted properties

Document cookie, domain, forms, lastModified, links, referrer,
title, URL

Form action

Any form input element checked, defaultChecked, defaultValue, name,
selectedIndex, toString, value

History current, next, previous, toString

Select option defaultSelected, selected, text, value

Location and Link Hash, host, hostname, href, pathname, port,
protocol, search, toString

Window defaultStatus, status

Table 1. Initial sources of taint values.

 To track the use of sensitive information by
JavaScript programs, we have extended the
semantics of the bytecode instructions so that taint
information is correctly propagated.

 assignments;
 arithmetic and logic operations(+, -, &, etc.);
 control structures and loops (if, while, switch, for

in);
 function calls and eval.

 If the right-hand side of the assignment is tainted,
then the target on the left-hand side is also tainted.

 The JavaScript engine has different instructions for
assignment to single variables, function variables,
function arguments, array elements, and object
properties.

 In some cases, the variable that is assigned a tainted
value is not the only object that must be tainted.

Figure 1. Array element assignment.

 If the condition of a control structure tests a tainted
value, a tainted scope is generated that covers the
whole control structure.

 The result of all operations and assignments in the
scope are tainted.

 A variable is dynamically tainted only when its value
is modified inside a scope during the actual execution
of the program.

Figure 2. Attack using direct control dependency

 Functions are tainted if they are defined in a tainted
scope.

 Everything that is done within or returned by a tainted
function is also tainted.

 When called with tainted actual parameters, the
corresponding formal parameters of the function are
tainted.

 If eval is called in a tainted scope or if its parameter is
tainted, a scope around the executed program is
generated, and we taint every operation in this program.

Figure 3. Function tainting.

 Dynamic techniques cannot be used for the
detection of all kinds of control dependencies.

 To cover both direct and indirect control
dependencies, all possible program paths in a scope
need to be examined.

 The static analysis must ensure that all variables that
could receive a new value on any program path within
the tainted scope are tainted.

Figure 4. Attack using indirect control dependency.

 For every branch in the control flow that depends on a
tainted value, we have to statically analyze this scope.

 A simple, but effective linear static pass through the
bytecode of the tainted scope.

 All matters is whether a variable is modified or not.

 If a function call or an eval statement is encountered,
the JavaScript engine is switched into a special
conservative mode where every subsequent executed
instruction is considered as being part of a tainted scope.

 The instructions responsible for setting object properties do
not specify the target as immediate arguments because the
stack-based nature of the JavaScript Interpreter.

 For each analyzed operation, we simulate the effects of this
operation on the real stack by modifying an abstract stack
accordingly.

 Subsequently, the static taint analysis safely assumes that all
variables that are loaded onto the stack in this scope will be
the target of an assignment, and taints them as a result.

 For a cross-site scripting attack to be successful, the
tainted data has to be transferred to a site that is
under the attacker’s control.

 Changing the location of the current web page by
setting document.location.
 Changing the source of an image in the web page.
 Automatically submitting a form in the web page.

 To successfully foil a cross-site scripting attack, we
ask the user whether the transfer should be allowed.

 Prototype implementation extends the Mozilla Fire-fox
1.0pre Web browser.

 There are two different parts in the web browser that
can contain tainted data objects.

 One part is the JavaScript engine, which is called Spider
Monkey. The other part is the Implementation of the DOM
tree.

 To store the additional tainting information, we
modified data structures in both parts of the browser.

 Using the Firefox browser with a web crawling engine,
we were able to automatically visit a total of 1,033,000
unique web pages.

 From all visited pages, 88,589(8.58%) triggered an XSS
alert prompt.

 A majority of warnings were caused by attempted
connections to only a few destination domains.

 These domains belong to companies that collect
statistics about traffic on the web sites of their customers.

Table 2. Top-30 domains that caused
the majority of the alert prompts.

Table 3. Sensitive information
transferred to the remaining domains
(not Top-30).

 When providing rules for only top 30 domains, it is
possible to reduce the number of alert prompts to
13,964(1.35%).

 Usually, the sole information that has to be protected in
order to foil XSS attacks is information stored in cookies.

 Only 5,289 of these alerts were due to attempts to
transfer cookie data.

 Focusing on the protection of cookies, the number of
alert prompts can be further reduced from 13,964 to 5,289.

 Warnings were “semantic” false positives, in the sense that
even though cookie information was transferred to a different
domain, it was not transferred across company borders.

 Some false positives that were due to our conservative
tainting approach.

 The results of our empirical evaluation demonstrate that only
a small number of false warnings is generated.

 Besides, even though these warnings do not correspond to
real XSS attacks, they still provide the user with additional
control in terms of web privacy.

