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ABSTRACT
Web applications support many of our daily activities, but they of-
ten have security problems, and their accessibility makes them easy
to exploit. In cross-site scripting (XSS), an attacker exploits the
trust a web client (browser) has for a trusted server and executes
injected script on the browser with the server’s privileges. In 2006,
XSS constituted the largest class of newly reported vulnerabilities
making it the most prevalent class of attacks today. Web applica-
tions have XSS vulnerabilities because the validation they perform
on untrusted input does not suffice to prevent that input from invok-
ing a browser’s JavaScript interpreter, and this validation is partic-
ularly difficult to get right if it must admit some HTML mark-up.
Most existing approaches to finding XSS vulnerabilities are taint-
based and assume input validation functions to be adequate, so they
either miss real vulnerabilities or report many false positives.

This paper presents a static analysis for finding XSS vulnerabil-
ities that directly addresses weak or absent input validation. Our
approach combines work on tainted information flow with string
analysis. Proper input validation is difficult largely because of the
many ways to invoke the JavaScript interpreter; we face the same
obstacle checking for vulnerabilities statically, and we address it by
formalizing a policy based on the W3C recommendation, the Fire-
fox source code, and online tutorials about closed-source browsers.
We provide effective checking algorithms based on our policy. We
implement our approach and provide an extensive evaluation that
finds both known and unknown vulnerabilities in real-world web
applications.
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1. INTRODUCTION
Web application vulnerabilities have greater impact than vulner-

abilities in other kinds of applications and software. Attackers only
need a web browser to access them, and normal web application
use involves sensitive information, such as keys for secure sessions.
Additionally, such vulnerabilities can serve as launching pads for
other, more severe attacks on web users’ local systems. The high
prevalence of web application vulnerabilities compounds the prob-
lem of their impact. Cross-site scripting (XSS) is the class of web
application vulnerabilities in which an attacker causes a victim’s
browser to execute JavaScript from the attacker with the privileges
of a trusted host. In 2006, 21.5% of all newly reported vulnerabil-
ities were XSS, making it the most frequently reported vulnerabil-
ity of the year [2, 8]. This paper proposes the first practical, static,
server-side approach to detecting XSS vulnerabilities that takes into
account the semantics of input validation routines.

1.1 Causes of XSS Vulnerabilities
Several factors contribute to the prevalence of XSS vulnerabil-

ities. First, the system requirements for XSS are minimal: XSS
afflicts web applications that display untrusted input, and most do.
Second, most web application programming languages provide an
unsafe default for passing untrusted input to the client. Typically,
printing the untrusted input directly to the output page is the most
straightforward way of displaying such data. Static taint analysis
addresses this second factor. It marks data values assigned from
untrusted sources as tainted and reports a vulnerability if the appli-
cation may display that data without first sanitizing it. The analysis
considers untrusted data sanitized if that data has passed through
one of a designated set of sanitizing functions. This paper addresses
a third factor: proper validation for untrusted input is difficult to get
right, primarily because of the many, often browser-specific, ways
of invoking the JavaScript interpreter.

The MySpace worm, which infected more systems quickly than
previous Internet worms (see Table 1), exploited a weakness in the
MySpace input filters. The MySpace input filters prohibited all oc-
currences of the strings “<script>” and “javascript;” however,
Internet Explorer concatenates strings broken by newlines and al-
lows JavaScript within cascading style sheet tags, so the worm in-
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Worm Infected systems after 24 hours

Code Red I 359,000
Code Red II 275,000
Slammer 55,000
Blaster 336,000
MySpace worm 1,000,000

Table 1: Infected systems after 24 hours of worm propagation.

troduced its script by means of a string like:

<div style="background:url(’java

script:. . .’)">.

As if to further illustrate the point about proper input filtering being
difficult to get right, several online services sell website visitor-
tracking code for sites that officially forbid JavaScript, such as
Xanga and MySpace. The sites that sell this code provide their ser-
vice by continually finding new XSS vulnerabilities, so that when-
ever their current exploit stops working, they can use another vul-
nerability to inject their code.

Browser-specific ways of invoking the JavaScript interpreter ex-
ist because browsers handle permissively pages that are not stan-
dards compliant. In the early days of the web, this design decision
on the part of the browser implementers seemed good because it
enabled browsers to make a “best effort” to display poorly written
pages. However, as the JavaScript language became more stan-
dardized and its use increased, this decision has exacerbated the
XSS problem.

1.2 Current Practice
Currently, XSS scanners rely on either testing or static taint anal-

ysis. Automated testing is ill-suited to finding errors in input vali-
dation code, because even flawed validation code catches most ma-
licious uses, and exploits must be crafted specifically for a certain
validation’s weakness in order to work. Taint analysis takes as input
a list of functions designated as sanitizers, but it does not perform
any analysis on them, so it will not catch errors caused by weak
input validation.

1.3 Our Approach
This paper proposes an approach to finding not only XSS vul-

nerabilities due to unchecked untrusted data but also XSS vulnera-
bilities due to insufficiently-checked untrusted data. The approach
has two parts: (1) an adapted string analysis to track untrusted sub-
string values, and (2) a check for untrusted scripts based on formal
language techniques.

Standard string analysis generates a formal language representa-
tion (e.g., a context free grammar) of the possible string values a
program may generate at a certain program point [1]. String-taint
analysis not only represents the set of string values a program may
generate, it also annotates the formal language representation with
labels that indicate which substrings come from untrusted sources.
Our string-taint analysis uses context free grammars to represent
sets of string values and models the semantics of string operations
using finite state transducers [18, 25].

The second phase of our approach enforces the policy that gen-
erated web pages include no untrusted scripts. In order to generate
the right low-level description of this high-level policy, we must
consider how web browsers’ layout engines parse web documents,
and under which circumstances they invoke the JavaScript engine.
In order to generate the policy description, we studied the Gecko

lib.inc.php
481 f u n c t i o n s t o p _ x s s ( $ d a t a ) {
482
524 /∗ Get a t t r i b u t e =" j a v a s c r i p t : f o o ( ) " t a g s .
525 ∗ c a t c h s p a c e s i n t h e r e g e x
526 ∗ / ( = | u r l \ ( ) ( " ? ) [ ^ > ] ∗ s c r i p t : /
527 ∗ /
528 $preg = ’/(=|(U\s*R\s*L\s*\())\s*’ .
529 ’("|\’)?[^>]*\s*’ .
530 ’S\s*C\s*R\s*I\s*P\s*T\s*:/i’ ;
531 $ d a t a = preg_rep la c e (
532 $preg , ’HordeCleaned ’ , $ d a t a ) ;
533
543 /∗ Get a l l on<foo >="bar ( ) " .
544 ∗ NEVER a l l o w t h e s e . ∗ /
545 $ d a t a = preg_rep la c e (
546 ’/([\s"\’]+on\w+)\s*=/i’ ,
547 ’HordeCleaned =’ , $ d a t a ) ;
548
550 /∗ Remove a l l s c r i p t s . ∗ /
551 $ d a t a = preg_rep la c e (
552 ’|<script[^>]*>.*?</ script >|is’ ,
553 ’<HordeCleaned_script />’ , $ d a t a ) ;
554
555 r e t u r n $ d a t a ;
556 }

projects_stats_pop.php
21 $use = ( i n t ) $_REQUEST [ ’use’ ] ;
22 $module = s t o p _ x s s ($_REQUEST [ ’module’ ] ) ;
23
62 i f ( $use ) {
63 echo ’<br>’ ;
71 } e l s e {
72 $ h i d d e n f i e l d s = "<input type=’hidden’ "
73 . "name=’module’ value=’$module ’/>\n" ;
74 echo ’
75 <form action="stats.php" method="get">
76 <div style="width:60%;float:right">
77 <input name="speichern" />
78 ’ . g e t _ b u t t o n s ( ) . ’
79 </div>
80 ’ . $ h i d d e n f i e l d s . ’
81 </form>’ ;
82 }

Figure 1: Vulnerable PHP code.

layout engine, which Firefox and Mozilla use, looked at the W3C
recommendation for scripts in HTML documents, and looked at
online documentation for how other browsers handle HTML docu-
ments. We represent the policy using regular languages and check
whether untrusted parts of the document can invoke the JavaScript
interpreter using language inclusion.

This paper makes the following main contributions:

• It proposes an approach for finding XSS vulnerabilities due
to weak input validation.

• It presents an algorithm based on the behavior of layout en-
gines that checks (languages of) generated HTML documents
for untrusted script.

• It evaluates the approach on several real-world PHP web ap-
plications and demonstrates that the tool scales to large web
applications and finds known and unknown errors caused by
weak input validation.
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$ d a t a 1 = $_REQUEST [ ’module’ ] ;
$ d a t a 2 = preg_rep l ac e (

’/([\s"\’]+on\w+)\s*=/i’ ,
’HordeCleaned =’ , $ d a t a 1 ) ;

$module = $ d a t a 2 ;

i f ( $use ) {
$ o u t p u t 1 = ’<br>’ ;

} e l s e {
$ h i d d e n f i e l d s = "<input value=’$module ’/>" ;
$ o u t p u t 2 = ’ </div> ’ . $ h i d d e n f i e l d s ;

}
$ o u t p u t 3 = φ ( $ou tpu t1 , $ o u t p u t 2 ) ;

Figure 2: Code in SSA form.

2. RUNNING EXAMPLE
Section 3 presents our analysis algorithm using the PHP code

in Figure 1 as input. This section explains the example code and
describes its vulnerability.

The program fragment in Figure 1 is pared down and adapted for
display from PHProjekt 5.2.0, a modular application for coordinat-
ing group activities and sharing information and documents via the
web. It is widely used and can be configured for 38 languages and
9 DBMSes. The untrusted data comes from the $_REQUEST array
on lines 21 and 22. Line 22 assigns untrusted data to the $module

variable after passing it through the stop_xss function.
The stop_xss function, which PHProjekt uses to perform input

validation, uses Perl-style regular expressions to remove danger-
ous substrings from the input. The complete function also checks
for alternate character encoding schemes, likely phishing attacks,
and other dangerous tags, but these checks are omitted here for
brevity. The primary ways to invoke the JavaScript interpreter are
through script URLs; event handlers, all of which begin with “on”;
and “<script>” tags. The function stop_xss removes these three
cases with the regular expression replacements on lines 531, 545,
and 551, respectively.

The W3C recommendation for HTML attributes specifies that
white space characters may separate attribute names from the fol-
lowing ‘=’ character. The regular expression on line 546 reflects
this specification: ‘\w’ represents word characters (word charac-
ters include alphanumeric characters, ‘_’, and ‘.’), and ‘\s’ repre-
sents white space characters. However, the Gecko layout engine’s
HTML parser permits arbitrary non-word characters between the
attribute name and the ‘=’ character. Consequently, if an input
string includes a substring such as “’ onload#=” followed by ar-
bitrary script, it will pass the filter on line 545 but will cause un-
trusted JavaScript to be executed when the output page is viewed in
Firefox.

3. ANALYSIS ALGORITHM
This section focusses on line 546 of the program in Figure 1 as

it presents the algorithm.

3.1 String-taint Analysis
The string-taint phase of our analysis comes from previous work [25]

and is based on Minamide’s string analysis algorithm [18]; we re-
view the main steps here to illustrate our approach. The first phase
of the string-taint analysis translates output statements (e.g., echo
statements) into assignments to an added output variable, and trans-
lates the program into static single assignment (SSA) form [3] in
order to encode data dependencies. Figure 2 illustrates this trans-
lation on the example code, omitting and simplifying several parts

REQUESTmoduleT → Σ∗

data1 → REQUESTmodule
data2 → preg_replace( /([\s"\’]+on\w+)\s*=/i,

HordeCleaned=, data1);
module → data2
output1 → <br>

hiddenfields → <input value=’module’/>
output2 → </div> hiddenfields
output3 → output1 | output2

Figure 3: Productions for extended CFG.

1

A/\A

’/’
2

\/ε

B/B

’/’
3

Figure 4: A finite state transducer representation of the strip-
slashes function; A ∈ Σ�{’}, B ∈ Σ�{\}.

of the program for the sake of presentation. The special statement
“φ ($output1, $output2)” is called a φ (Phi) function, which selects
either $output1 or $output2 depending on the control flow of the
preceding if statement.

Because the SSA form encodes data dependencies, the next phase
of the string-taint analysis drops control structures, translates as-
signment statements into grammar productions, and labels untrusted
data sources. This phase constructs an extended context free gram-
mar (CFG); it is extended in the sense the grammar productions’
right hand sides may contain string functions. Figure 3 shows
the extended CFG for our example, with output3 as the start sym-
bol. In Figure 3, REQUESTmodule is labeled with a taint annota-
tion indicating that substrings derived from that non-terminal are
untrusted. The only string function in our example grammar is
preg_replace, which takes three arguments: a pattern, a replace-
ment, and a subject. It searches for instances of the pattern in the
subject and replaces them with the replacement. In general the re-
placement may reference and include parts of the string that the
regular expression pattern matched, but in this example it does not.

In order to construct a CFG from the extended CFG, the last
phase of the string-taint analysis constructs the CFGs for the argu-
ments to the string operations and models the string operations’
semantics using finite state transducers (FSTs). FSTs are finite
state automata (FSAs) that produce output on transitions. Many
formal language algorithms for FSAs can be adapted to FSTs. To
introduce FSTs, we use stripslashes, which is a simpler ex-
ample than preg_replace. Figure 4 shows an FST that models
precisely the semantics of stripslashes, which removes from a
string slashes (‘\’) that escape quotes. The transition labeled “\/ε”
reads ‘\’ outputs ‘ε.’ On the input word “O\’Brian,” this FST
will output “O’Brian,” or equivalently, “O’Brian” is the image of
“O\’Brian” over this FST.

The image relations that an FST defines between words can be
lifted naturally to languages. The image of a context free language
represented by a CFG over an FST can be constructed using an
adaptation of the CFL-reachability algorithm [22] to construct the
intersection of a CFG and an FSA [9]. Our previous work provides
the details on the algorithm to construct this image as well as how
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REQUESTmoduleT → ♦
data1 → REQUESTmodule
data2 → data1;
module → data2
output1 → <br>

hiddenfields → <input value=’module’/>
output2 → </div> hiddenfields
output3 → output1 | output2

Figure 5: CFG with untrusted substrings summarized; see Sec-
tion 3.2.4 for an explanation of ‘♦.’

to propagate taint annotations from the input CFG to the output
CFG [25].

In the case of the extended CFG in Figure 3, the subject argument
to preg_replace has Σ∗ as its language, so the output language
of the preg_replace function is:

Σ∗ � L((\s|"|’)+(o|O)(n|N)\w+\s∗=).

We use regular expression notation to simplify the presentation of
this example.

3.2 Preventing Untrusted Script
As Section 1 states, we seek to enforce the policy that no un-

trusted input may invoke the browser’s JavaScript interpreter. This
is the standard policy that server-side security mechanisms attempt
to enforce, and the policy that untrusted input should not include
any HTML mark-up subsumes it. JavaScript’s highly dynamic na-
ture as a prototype language inhibits checking from the server side
whether untrusted JavaScript will stay within some safe boundaries.
We leave as future work the formalization of “safe” JavaScript.

3.2.1 Challenges
Enforcing this policy to prevent XSS is challenging, and in par-

ticular, it is more difficult than preventing SQL injection. SQL
injection, the second most reported vulnerability of 2006 (14%), is
another input validation-based, web application vulnerability, and
usually programmers attempt to enforce the policy that untrusted
input can only be literals in generated SQL queries. The biggest
challenge in preventing XSS is that web browsers support many
ways of invoking the JavaScript interpreter, some of those accord-
ing to the W3C recommendation, and some browser-specific. Web
application programmers must account for even the browser-specific
ways because they cannot control which browsers clients will use
to view their pages. Additionally, if a web application program-
mer wants to allow some HTML mark-up, then every character
has some legitimate use, so no single character can be escaped
to prevent XSS. In contrast, the lexical definition of SQL literals
and delimiters is relatively simple and standard, and web applica-
tion programmers need not worry about interfacing with arbitrary
DBMS’s. Because of the many ways of invoking the JavaScript
interpreter, statically checking sufficient input validation is more
expensive and requires more careful engineering than checking for
SQL injection vulnerabilities.

3.2.2 Constructing the Policy
In order to enumerate the ways an HTML document can invoke

a browser’s JavaScript interpreter, we examined three sources: the
W3C recommendation, the Firefox source code, and online tutori-
als and documents. Figure 7 shows parts of the browser architecture
in the context of the web document workflow that influence how
the JavaScript interpreter can be invoked. After the input passes

DOM Manager

HTML Parser

JavaScript Interpreter

Content Manager

W
eb

 c
lie

nt

Figure 7: Client architecture.

through the content manager, which handles downloads, caching,
and protocols, it goes to the HTML parser. From the W3C recom-
mendation, we gathered lexical rules for defining and separating
tokens, and from an examination of Firefox’s HTML parser, we
modified the initially gathered lexical rules to allow non-word char-
acters where previously only whitespace characters were allowed,
as described in Section 2.

The HTML parser sends tokens to the DOM manager, which,
among other tasks, constructs the DOM and calls the JavaScript in-
terpreter. The W3C recommendation specifies two ways of includ-
ing script in HTML: the “<script>” tag and event handlers. We
found that the Firefox DOM manager also calls the JavaScript in-
terpreter on the URL attribute of “iframe,” “meta,” and other tags.
However, all sources we examined show that only tokens within a
tag context (i.e., between “<” and “>”) can cause the DOM manager
to call the JavaScript interpreter.

Because we are interested in whether untrusted input can invoke
the JavaScript interpreter and not the string value of untrusted Java-
Script code, we construct our policy in terms of the language of
untrusted strings permitted or not permitted in a tag context. For
example, we describe the language of tags whose names invoke the
JavaScript interpreter using regular expressions such as:

[Ss][Cc][Rr][Ii][Pp][Tt]([^a-zA-Z0-9_.].*)?

The W3C recommendation includes eighteen intrinsic events (e.g.,
load) and 31 events in total. Handlers for intrinsic events can be
specified as attributes (e.g., onload), but handlers for other events,
such as DOM 2 events, can only be registered using “addEvent-
Listener” in a script. We therefore only check for handlers for in-
trinsic events. Firefox adds extra events (e.g., error) and supports
36 for which handlers can be defined as attributes, all of which be-
gin with “on.” In order to simplify the regular expressions needed
to identify these attributes, we state the policy not in terms of the
whole tag, but only from the beginning of the attribute name on-
wards. To describe the language of attribute names that invoke the
JavaScript interpreter (i.e., event handlers and other attributes, such
as src, that can introduce scripts), we therefore construct regular
expressions such as

[Oo][Nn][Ll][Oo][Aa][Dd][^a-zA-Z0-9_.]*=.*

Note that this description incorporates the lexical rules we gathered
in order to describe what may separate the attribute name from ‘=.’

3.2.3 Checking the Example
This section returns to our running example to show how we

check the generated grammar against the policy we constructed.
As Section 3.2.2 states, only tokens from within tags of an HTML
document can invoke the JavaScript interpreter. Our algorithm con-
sists of three main steps: (1) decode encoded characters within the
grammar; (2) extract the string values of tags where all or part of
the string is untrusted; (3) check those strings for script-inducing
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Figure 6: FST describing tags with untrusted data summarized by ♦ in an attribute value

substrings. Character encodings are not relevant to our example.
In general, however, an FST can decode encoded characters (e.g.,
translate “&#97;” into “a”).

3.2.4 Extracting Untrusted Tags
For the second step, we must determine in which of the following

syntactic contexts each untrusted substring can appear: character
data, tag names, attribute names, and attribute values. Depending
on which contexts each untrusted string can appear in, we check
the string for different script-introducing values. In order to iden-
tify untrusted strings’ contexts using formal language techniques,
we summarize languages of untrusted strings by replacing labeled
nonterminals’ derivations with “fresh” terminals, i.e., symbols not
in Σ. Figure 5 shows the example grammar, where ‘♦’ summarizes
the untrusted substrings derivable from REQUESTmoduleT .

Figure 6 shows a nondeterministic FST that we use to check
whether the untrusted substrings summarized by ‘♦’ may appear
in the context of single-quoted attribute values. In order to avoid
having a cluttered figure, we use a different FST notation for Fig-
ure 6: solid transitions output the same character they read (e.g., if
the transition reads ‘a,’ then it outputs ‘a’), and dotted transitions
output ε. The image of the CFG in Figure 5 over this FST is the
language of strings within a tag in the language of the original CFG
that have an untrusted substring in an attribute value. We construct
the CFG representation of this image, and use FSTs to remove all
trusted script-introducing substrings from the language. Finally we
replace ‘♦’ with the original derivations of REQUESTmoduleT so
that any script-introducing substrings in the language are untrusted.

3.2.5 Identifying Script-Introducing Substrings
In order to check the CFG for untrusted script-introducing strings,

we check whether it has a non-empty intersection with the regular
expressions generated earlier that describe our policy. In the case
of our running example, the intersection of the CFG with any of the
regular expressions for event handlers is non-empty, so we discover
a vulnerability.

4. EMPIRICAL EVALUATION
This section reports on our implementation and evaluation of our

approach.

4.1 Implementation
We implemented our analysis by extending Minamide’s PHP

string analyzer written in O’Caml. In particular, we added sup-
port for tracking untrusted information flow by annotating non-
terminals with a trust level and propagating them through assign-
ments, through functions, and across FST and FSA intersections.
We enhanced the tool’s support for resolving dynamic includes so
that we can give it a web page’s top-level file and the analyzer will
pull in included files as it encounters them. We added an option to

Subject Files Lines Per File Total
mean std dev max lines

Claroline 1144 148 248 5,207 169,232
FishCart 218 230 196 1,182 50,047
GecBBLite 11 29 30 95 323
PhPetition 17 159 75 281 2,701
PhPoll 40 144 112 512 5,757
Warp 44 554 520 2,276 24,365
Yapig 50 170 191 946 8,500

Table 2: Statistics on subjects’ files.

make the default value for uninitialized variables be “untrusted any
string” as opposed to null. We added support for several hundred
PHP functions. We also implemented our algorithm to check for
untrusted input that would invoke the JavaScript interpreter. The
implementation of this algorithm consists of approximately 1000
lines of O’Caml.

Our goal in tracking untrusted information flow is to track di-
rect information flow, not implicit information flows. In particular,
we do not seek to perform an analysis that is sound with respect
to covert channels. We choose this goal both because we assume
that web users and not web programmers may be malicious and
because of precedent, i.e., static taint analysis for input validation
vulnerabilities also has this goal.

4.2 Test Subjects
In evaluating our implementation, we sought to answer the fol-

lowing questions: How well does it scale on large, real-world web
applications? How well does it check manually written input vali-
dation code, and how common are manual input validation errors?

We selected various web applications as test subjects in order to
address each of these questions. In order to address the first ques-
tion, we selected several PHP web applications of varying sizes
whose names and sizes are listed in Table 2; Table 4 includes ver-
sion numbers as well. One of the web applications, Claroline 1.5.3,
is one of the largest open source, PHP web applications we have
found (169 Kloc), and this particular version has several known
vulnerabilities (CVE-2005-1374).

In order to evaluate the second question, we searched for PHP
functions with “xss” in their name on the assumption that these
functions likely represent manually written input validation specif-
ically designed to prevent XSS. The functions we analyzed come
from the following projects: VLBook, a light-weight guest book;
Sendcard, an e-card system; Drupal, a content management sys-
tem; LinPHA, a photo archive; Sugar Suite, a customer relation-
ship management system; BASE, an engine to search and process a
database of security events; FishCart, an online shopping cart and
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Per File Resource Usage
Additional Time (h:mm:ss) Memory (MB)

Files Included String Analysis Policy Check
mean std dev max mean std dev max sum mean std dev max sum mean std dev max

10.0 16.5 148 0:00:11 0:01:52 0:21:58 3:20:29 0:00:08 0:00:45 0:18:48 2:08:30 71 117 1030
3.0 2.8 8 0:00:01 0:00:01 0:00:10 0:01:14 0:00:01 0:00:03 0:00:17 0:02:18 41 13 161
2.3 2.0 5 0:00:01 0:00:01 0:00:01 0:00:02 0:00:01 0:00:01 0:00:02 0:00:03 30 6 41
5.5 4.1 15 0:00:03 0:00:05 0:00:15 0:00:39 0:00:12 0:00:17 0:00:50 0:02:26 54 23 101
1.0 1.2 5 0:00:01 0:00:01 0:00:01 0:00:02 0:00:01 0:00:03 0:00:12 0:00:25 34 19 135
2.0 1.4 3 0:04:40 0:21:14 1:55:28 2:19:54 0:01:50 0:08:04 0:44:04 0:55:06 64 106 740
6.1 9.9 41 0:00:14 0:00:43 0:04:26 0:09:06 0:07:08 0:13:48 0:46:53 4:45:27 124 188 645

Table 3: Analysis results for test subjects. The subjects are listed in the same order as in Tables 2 and 4.

Direct Indirect
Subject GPC Uninit

t f t f

Claroline 1.5.3 32 43 38 25 42
FishCart 3.1 2 2 30 12 2
GecBBLite 0.1 1 1 0 0 7
PhPetition 0.3.1b 0 0 7 8 7
PhPoll 0.96 beta 5 6 0 0 0
Warp CMS 1.2.1 1 1 22 19 18
Yapig 0.95b 15 13 9 1 14

Table 4: Reported bugs.

catalog management system; PHPlist, a simple mailing list system;
and PHProjekt, a groupware suite.

4.3 Evaluation Results
This section presents the results of our empirical evaluation to

address the questions listed above.

4.3.1 Results on Programs
As stated in Section 4.1, we can analyze all PHP pages by giv-

ing the analyzer the top-level files. However, we found it easier to
run the analyzer on each file (with dynamic includes still being re-
solved as before) even though this would involve some duplication
of work. Running the analyzer on each file skews the average time
and memory usage down (because many of the files only define
values and are intended for inclusion in other files) and skews the
total up. Table 3 shows the resource usage per file. In most cases
the time for performing the string-taint analysis dominated the to-
tal time. The cases that took the longest for the string-taint analysis
had string operations with cyclic dependencies. The cases that took
the longest for the policy checking had many labeled nonterminals
in the output grammar; each had to be checked individually. The
included files column shows the average number of included files
the analyzer parsed and analyzed on a given input file.

Table 4 shows the breakdown of bug reports from our experi-
ments. Vulnerabilities are “direct” if an untrusted user can provide
the data directly, whereas vulnerabilities are “indirect” if the data
comes from a source such as a file or a database where untrusted
data may have entered, but users cannot provide the value directly.
“GPC” vulnerabilities come from GET, POST, or COOKIE vari-
ables, which the user can set. “Uninit” vulnerabilities come from
uninitialized variables being used for output. If “export globals”
is set, then each key in the associative GET, POST, and COOKIE

arrays becomes the name of a variable, and its initial value is the
value it maps to in the array. Therefore, if “export globals” is set
and an uninitialized variable’s values is displayed, a user can pro-
vide a GET parameter with that variable’s name and the server will
include the untrusted data into the generated page. For both GPC
and uninit vulnerabilities, ‘t’ and ‘f’ designate true and false vul-
nerabilities, respectively. We do not attempt to distinguish true and
false vulnerabilities from indirect sources because we cannot deter-
mine whether or not it is possible for untrusted data to enter a given
source.

Figure 8 shows one of the previously unreported vulnerabilities
that our analysis discovered in Claroline; it is not due to weak in-
put validation, but because the untrusted data passes function and
file boundaries and is passed through an array, it would be easy to
miss in a manual inspection. To illustrate the benefit of automated
analysis, our analysis found 32 true GPC vulnerabilities, whereas
CVE-2005-1374 lists only 10, although it does indicate that its list
is not exhaustive. Most of the false positives our tool produced
come from either spurious paths, or untrusted input being used in a
conditional expression and the “taintedness” being propagated into
the condition’s branches. We could reduce the number of false pos-
itives by modifying the tool to output reports from untrusted con-
ditionals as a different class of warnings.

In addition to the vulnerabilities listed in Table 4, Claroline has
77 vulnerabilities that do not fit naturally into any of the categories
in the table. Claroline has a debugging mode that can be turned
on and off by the administrator. When it is on, it displays all SQL
queries before they are sent to the database, and that is the source of
these 77. They are neither clearly true vulnerabilities, since Claro-
line would not normally run in debugging mode, and when it does,
it would be under close control, nor are they false positives, because
under specific circumstances XSS is possible with them. Note that
these do not necessarily represent SQL injection vulnerabilities be-
cause an escaping function that properly sanitizes input for inclu-
sion in SQL queries may not be adequate for preventing XSS.

Our tool failed to analyze some of the web applications we tried
it on. It failed to analyze e107 0.75 (132,863 lines) because it failed
to resolve certain alias relationships between variables whose val-
ues are used for dynamic features, including dynamic file inclu-
sions. In the future we could address this by using a more conser-
vative alias analysis. Our tool exceeded its memory limit of 4.5GB
when attempting to analyze Phorum 5.1.16a (30,871 lines), because
Phorum uses preg_replace tens of times consecutively in several
cycles and with variables in all arguments. We expect that by re-
designing the string analysis to retain only the precision it needs
to check our policy, we could substantially reduce its memory re-
quirement in such cases.
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Project name Time (h:mm:ss) Memory (MB) Vulnerability
String Analysis Policy Check Reported Present

PHPlist 2.10.2 0:00:01 0:00:01 36 yes yes
PHProjekt 5.2.0 0:00:36 0:00:39 167 yes yes
Sendcard 3.2.2 0:00:15 1:01:11 2822 yes yes
VLBook 1.21 0:00:01 0:00:27 232 yes yes
Drupal 4.2.0 — — — failed yes

BASE 1.2.5 0:00:01 0:00:01 33 no no
FishCart 3.1 0:00:01 0:00:01 39 no no
SugarSuite 4.2.1 0:00:01 0:00:01 36 no no
LinPHA 1.3.0 — — — failed no

Table 5: Analysis results for manual input validation functions. “failed” = “failed to analyze.”

user_access_details.php
43 swi tch ( $_GET[ ’cmd’ ] )
44 {
45 . . .
57 case ’doc’ :
58 $ t o o l T i t l e [ ’subTitle’ ] =
59 $langDocument . $_GET[ ’data’ ] ;
60 . . .
69 }
70 c l a r o _ d i s p _ t o o l _ t i t l e ( $ t o o l T i t l e ) ;

claro_main.lib.php
435 f u n c t i o n c l a r o _ d i s p _ t o o l _ t i t l e (
436 $ t i t l e E l e m e n t , $ h e l p U r l = f a l s e )
437 {
438 . . .
474 i f ( $ t i t l e E l e m e n t [ ’subTitle’ ] )
475 {
476 echo ’<br><small >’ .
477 $ t i t l e E l e m e n t [ ’subTitle’ ] . ’</small >’ ;
478 }
479 echo ’</h3>’ ;
480 }

Figure 8: A vulnerability in Claroline 1.5.3.

4.3.2 Manual Validation
We had two goals in checking manually written input validation

code: we wanted to see how our tool would perform in terms of
time and memory usage and precision (can the tool do the job it is
supposed to do?), and we wanted to get a sense of how prevalent
insufficient input validation errors are (is the tool’s job necessary?).
Each of the nine test subjects we selected for this section had one
function that performed all, or nearly all, of the application’s input
validation. We identified these functions, wrote small test files that
call them, and sent those files to the analyzer.

Table 5 reports on how the tool performed on each of the nine
subjects. SendCard stands out as being much more expensive to
analyze than the rest. It uses several parameterized regular expres-
sion replacements (i.e., the replacement includes a reference to a
substring that the parameter matched) that cause the string analy-
sis to generate a large and complex CFG to represent the possible
strings it may generate. Some of the other subjects use regular ex-
pression replacements, but they are not parameterized. Our tool
failed to analyze two of the files because they use PHP features that
the tool does not support, and no simple modification to the files

would retain their semantics and be analyzable by the tool. Except
for the case of SendCard, the analyzer runs relatively efficiently
on these subjects and produced precise results, so it appears to be
practical.

Table 6 describes the weakness in the vulnerable filters and ex-
plains the effects of those that are not vulnerable. With the excep-
tion of the vulnerability in PHProjekt, these vulnerabilities were
unknown to us, and, we believe, previously unreported. We are in
the process of confirming them with the authors of the respective
projects. Notably, all five of the nine subjects that allow any HTML
mark-up (e.g., the <b> tag) from untrusted input have vulnerabili-
ties. The only ones without vulnerabilities prevent all untrusted
mark-up. This suggests that writing web applications correctly is a
difficult software engineering problem and that principled checking
is necessary in real-world web applications.

4.4 Current Limitations
We discuss here some of the current limitations of our analysis.
Three main kinds of XSS exist: stored, reflected, and DOM-

based; our analysis currently does not detect DOM-based XSS.
Stored XSS occurs when the server stores untrusted data and later
displays it; this kind of XSS commonly afflicts forums and online
bulletin boards. Reflected XSS occurs when a server echos back
untrusted input; this kind of XSS usually shows up in error mes-
sages. Unlike stored and reflected XSS, DOM-based XSS reads
malicious data from the DOM, and the malicious data need not ever
appear on the server. Detecting DOM-based XSS requires an anal-
ysis of the generated web page’s semantics, not just its syntax. We
expect that a reasonably precise approximation could be added on
top of our framework, but currently our analysis does not include
that check.

Our analysis checks web applications against the policy that no
untrusted data should invoke the JavaScript interpreter, and we rep-
resent this policy as a black-list rather than a white-list. Omis-
sions in black-list policies usually manifest themselves as difficult-
to-detect security vulnerabilities, whereas omissions in white-list
policies usually appear as disruptions of functionality, which show
up rather quickly. We believe that our policy representation is cor-
rect for Gecko-based browsers, but we do not have a formal proof
of its correctness with respect to the Gecko source code. Although
a white-list policy could prove effective when designed for specific
web applications that expect an easy-to-represent language of in-
puts, one main factor inhibits the use of a white-list policy in the
general case. A regular language representation of all input that is
valid HTML and does not invoke the JavaScript interpreter would
be huge and likely impractical for language inclusion/intersection
checks. Additionally, a white-list policy would always report errors
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Project name Allows some Has XSS Vulnerability description
HTML mark-up Vulnerability

PHPlist 2.10.2

yes yes

Filter only removes “script” tag
PHProjekt 5.2.0 Event handler filter only matches handlers with arbitrary white space be-

tween the handler name and the ‘=’
Sendcard 3.2.2 Event handler filter only matches handlers with no characters between the

handler name and the ‘=’
VLBook 1.21 Event handler filter only matches handlers preceded with a space (‘ ’)
Drupal 4.2.0 Event handler filter only matches handlers with arbitrary white space be-

tween the handler name and the ‘=’

BASE 1.2.5

no no

Filter wraps htmlspecialchars, prevents untrusted HTML mark-up
FishCart 3.1 Filter removes special characters, prevents untrusted HTML mark-up
SugarSuite 4.2.1 Filter encodes special characters, prevents untrusted HTML mark-up
LinPHA 1.3.0 Filter permits only alphabetic characters

Table 6: Explanation of (absense of) vulnerabilities for manual input validation functions.

in manually written input validation routines that enforce black-
list policies, as the manually written code that we have seen does.
However, even a weak black-list policy based solely on the W3C
recommendation will help to uncover more vulnerabilities than a
standard taint analysis will.

Our string analysis-based tool cannot handle arbitrarily complex
and dynamic code. For example, because it does not track infor-
mation flow across web page visits, it loses precision when the
web application performs operations and calls functions based on
the values of session variables. The tool also cannot verify input
validation routines based on manually written HTML parsers and
manipulators. Finally, the tool does not support some of PHP’s
features, such as array arguments in string replacement functions.

5. RELATED WORK
We classify related work into server-side and client-side tech-

niques.

5.1 Server-Side Validation
Previous work server-side techniques to address web application

vulnerabilities generally emphasizes static taint analysis or string
analysis.

5.1.1 Static Taint Analysis
Most XSS vulnerabilities come from absence of input valida-

tion rather than insufficient input validation. Static taint tracking
is designed to detect this kind of vulnerability. Because static taint
analysis does not address string values, it can usually be applied to
finding XSS vulnerabilities as well as finding SQL injection vulner-
abilities, even if an implementation was designed for only one kind
of vulnerability. Huang et al. presented one of the first taint analy-
ses for web applications and applied it to SQL injection [11]. They
used a CQual-like [4, 5] type system to propagate taint informa-
tion through PHP programs. Livshits and Lam [17] used a precise
points-to analysis for Java [26] and queries specified in PQL [16]
to find paths in Java programs that allow “raw” input to flow into
HTML output, file paths, and SQL queries. Both of these tools
are sound with respect to the policy they enforce and the language
features they support, and both find many vulnerabilities. However,
both consider all values returned from designated filtering functions
to be safe. Because the policy they use specifies nothing about the
context of the user input or the input’s value in that context, both
techniques may miss real vulnerabilities. Additionally, Huang’s
type system does not support some of PHP’s more dynamic fea-

tures, in part because it does not track string values and supporting
these features would likely result in excessively many false posi-
tives.

Jovanovic, Kruegel, and Kirda designed Pixy to propagate lim-
ited string value information in order to handle some of PHP’s more
dynamic features [13, 14]. They also address some of the character-
istics of scripting languages with their precise and finely-tuned alias
analysis. Xie and Aiken designed an SQL injection vulnerability
analysis that gains scalability and efficiency in exchange for sound-
ness by using block- and function-summaries [27]. Their analysis
requires some interaction with the user—the user must provide the
filenames when the analysis encounters a dynamic include state-
ment, and the user must tell the analysis whether each regular ex-
pression encountered in a filtering function is “safe.” Asking the
user about regular expression filters may be acceptable for SQL
injection vulnerabilities where the regular expressions enforce rel-
atively simple lexical rules, but this will not be acceptable for the
sequences of complex regular expressions that programmers use
to prevent XSS. By analyzing the possible string values according
to a formal specification using formal language techniques, we are
able to make a stronger and more reliable guarantee that a given
program is free of XSS vulnerabilities.

5.1.2 String Analysis
The other major category of server-side techniques related to our

work is static string analysis. However, existing work on string
analysis fails to consider the source of the substrings in the gener-
ated output. The study of static string analysis grew out of the study
of text processing programs. An early work to use formal languages
(viz. regular languages) to represent string values is XDuce [10], a
language designed for XML transformations. Tabuchi et al. de-
signed regular expression types for strings in a functional language
with a type system that could handle certain programming con-
structs with greater precision than had been done before [23].

Christensen et al. introduced the study of static string analysis for
imperative (and real-world) languages by showing the usefulness
of string analysis for analyzing reflective code in Java programs
and checking for errors in dynamically generated SQL queries [1].
They designed an analysis for Java that uses finite state automata
(FSA) as its target language representation; they chose FSA be-
cause efficient algorithms exist to manipulate FSA. They also ap-
plied techniques from computational linguistics to generate good
FSA approximations of CFGs [19]. Their analysis, however, does
not track the source of data, and because it must determinize the
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FSA between each operation, it is less efficient than other string
analyzes and not practical for finding XSS vulnerabilities. Gould et
al. used this analysis to type check dynamically generated database
queries, but made approximations that would cause them to miss
SQL injection vulnerabilities [6].

Minamide borrowed techniques from Christensen et al. to design
a string analysis for PHP that does not approximate CFGs to FSA,
so it can be more efficient and more accurate [18]. He also utilized
techniques from computational linguistics (viz. language transduc-
ers) [20] to improve the precision of his analysis and model the
effects of string operations, which are used frequently in scripting
languages. He suggested using this analysis to check for XSS vul-
nerabilities, but his proposed technique checks the whole document
for the presence of the “<script>” tag. Because web applications
often include their own scripts, and because many other ways of
invoking the JavaScript interpreter exist, this approach is not prac-
tical for finding XSS vulnerabilities.

5.2 Client-Side Mitigation
We organize our discussion of client-side approaches into those

that enforce policies on the local behavior of JavaScript code and
those that regulate outbound traffic based on information gained
during the JavaScript’s execution.

5.2.1 Local Behavior Enforcement
Hallaraker and Vigna use logging and auditing integrated into the

JavaScript interpreter to enforce any policy specified with JavaScript
code [7]. Yu et al. describe formally how to enforce arbitrary poli-
cies using interposition in a JavaScript-like language that is capable
of code generation [28]. Both of these approaches impose low over-
head because they integrate the enforcement mechanism into the
JavaScript engine. However, they have no way to distinguish legiti-
mate JavaScript from malicious JavaScript, and they leave open the
question of which policy to enforce. BROWSERSHIELD prevents
known browser vulnerabilities from being exploited by receiving
a vulnerability description from a central server and interposing
JavaScript wrappers to enforce the given policy [21]. BROWSER-
SHIELD has the advantage that it prevents real exploits, but it does
not address the more general XSS problem, and because its en-
forcement mechanism consists of JavaScript wrappers to the Java-
Script code, it may impose significant overhead.

BEEP (Browser-Enforced Embedded Policies) overcomes the prob-
lem of distinguishing trusted from untrusted JavaScript by provid-
ing a mechanism for the client to enforce either a black-list or
white-list policy that the server sends specifying which scripts are
trusted [12]. This coarse-grained policy language is similar to script
signing, where servers can sign the scripts that they intend to be
executed and request the clients execute only those. Deployment
poses a practical limitation for BEEP, because both the client and
the server must use it in order for it to work.

5.2.2 Outbound Traffic Regulation
NOXES regulates activity that occurs over the network, but it

does not address local behavior of JavaScript code [15]. Its default
rule prohibits dynamically constructed links from being followed,
because these are the primary mechanism attackers use to com-
municate sensitive information. It enforces this policy by adding
JavaScript code underneath the received web document.

Vogt et al. propose a client-side, information flow-based pol-
icy to mitigate the effects of XSS [24]. Their approach involves
marking the client’s confidential data as tainted, tracking tainted
data through the client’s browser, and only allowing tainted data
to be sent to sites that have permission to access that data. This

approach augments the same-origin policy that browsers already
enforce. The same origin policy only permits servers to access in-
formation on a user’s system that the server “owns” (e.g., the cookie
for that site); common examples of XSS exploits use injected code
to send the data that a server owns elsewhere, and this policy pre-
vents that.

This client-side mitigation complements server-side analysis, in
the sense that server-side analysis protects many clients of one
server, whereas Vogt et al.’s approach protects one client from many
servers. However, even applying their approach universally does
not suffice to solve the XSS problem completely. First, their ap-
proach addresses only one class of XSS attack; it does not miti-
gate the damage of other XSS-based attacks, such as port-scanning
(where the sensitive information does not appear in the form of
data), browser vulnerability exploitation, web page defacement,
and browser resource consumption. Second, as web applications
move closer to the desktop, identifying confidential data becomes a
bigger and more error-prone task. For example, the Google Desk-
top indexes a user’s local system and runs a web server on it in order
to provide efficient search capabilities. It had an XSS vulnerabil-
ity that, when coupled with an XSS vulnerability in Google that
exposes the Google Desktop key, exposes the user’s private data
to remote attackers. Preventing this attack by tainting confidential
data at the client-side would require designating confidential data
at as fine a granularity as the DOM element level and as broad a
scope as the user’s whole system.

6. CONCLUSION
This paper presents a static analysis for finding XSS vulnerabil-

ities that analyzes the root cause of XSS: weak input validation.
Our analysis checks whether untrusted input to the server can in-
voke a client’s JavaScript interpreter. We made a careful exami-
nation of the W3C recommendation, the Firefox source code, and
other online source to express this policy in formal language terms.
We have demonstrated that our approach can scale to large code
bases and can detect known and unknown XSS vulnerabilities in
real-world web applications with manually written input validation
routines.

In the future, we would like to develop an analysis for web browsers
to discover the set of strings that can cause their JavaScript inter-
preter to be invoked. Our own policy does not cover some exploits
specific to browsers other than Firefox. Because of the complexity
of layout engine code, we expect that such an analysis will require
some interaction with the user.
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