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Why does logic matter?

Two seeming irrelevant areas have proven to be closely
connected.

Indeed, logic matters more to computer science than to
mathematics although logic emerged from mathematics.
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Curry-Howard correspondence

I Relationship between models of computation (computer
programs) and proof systems.

I A proof is a program, the formula it proves is a type for the
program.

I An underlying principle connecting typed λ-calculus and proof
theory.

I Programs : (inputs : assumptions) ⇒ (outputs : theorems)
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Origin

I (1934) Haskell B. Curry: the types of the combinators could
be seen as axiom-schemes for intuitionistic implicational logic.

I (1969) William A. Howard: the natural deduction system can
be directly interpreted in the simply typed λ-calculus.

I (1990) Timothy Griffin: extension of the correspondence to
classical logic

I (1992) Michel Parigot: λµ-calculus is invented in order to be
able to describe expressions corresponding theorems in classical
logic.
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Frege’s Begriffsschrift (concept notation), 1879
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Constructive understanding of A→ B

I (A→ B) vs. (¬A ∨ B)

I How about
(A→ A) vs. (¬A ∨ A)

where A is undecidable or not decided yet?
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Constructive understanding of A→ B (Cont.)

I A proof of A→ B is a construction that converts a proof of A
into a proof of B .

I A proof of A→ B is a function (program) that converts a
proof of A into a proof of B .
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Simply typed lambda calculus (λ→)

I Types:
I P,Q... are types.
I With A,B types, A→ B is a type.

I Well typed terms: Γ = x1 : A1, ..., xn : An

Γ ` xi : Ai

Γ, x : A ` t : B

Γ ` λxA.t : A → B
Γ ` t : A → B Γ ` u : A

Γ ` t u : B

I β-reduction of redexes:

(λxA.t) u →β t[x := u]
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IPC(→) vs. λ→

Let Γ := A1, ...,An

Γ ` Ai
(Ax)

Γ,A ` B
Γ ` A → B

(Imp)
Γ ` A → B Γ ` A

Γ ` B
(Cut)

I Γ ` A if and only if ∃t (Γ ` t : A).
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Curry-Howard correspondence

λ→ IPC(→)

term variable assumption

term construction (proof )

type variable propositional variable

type formula

type constructor connective

inhabitation provability

typable term construction for a proposition

redex cut-rule

reduction normalization

value normal construction
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Curry-Howard correspondence (Cont.)

Logic side Programming side

implication function type

conjunction product type

disjunction sum type

universal quantification dependent product type

existential quantification dependent sum type

true formula unit type

false formula bottom type

12 / 22



Calculus of Constructions

I Dependent types

I Polymorphism

I Adaption of Martin-Löf’s constructive meta-theory to a
concrete type system

I Reflection of the Curry-Howard correspondence
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CIC: extension with inductive types

I CC with various notions of type definitions provided in
conventional programming languages.

I Similar to the recursive type definitions used in most functional
programming languages.

I More precise and expressive by combination of recursive types
and dependent products

I Each inductive type corresponds to a computation structure,
based on pattern matching and recursion.

I The basis theory for the proof assistant Coq.

14 / 22



Normalization vs. cut-elimination

I Cut elimination corresponds to normalization and vice versa.

I Why is it important to have these properties?

I Subformula property ⇒ the possibility of carrying out proof
search based on resolution.

I Decidability of provability (in many propositional logic
systems) ⇒ Propositional logic is decidable ⇒ decidability of
inhabitation ⇒ existence decidability of a program

I Consistency of a system.
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Program extraction from proofs

I How to prove the correctness of a program?

I Curry-Howard correspondence provides tools to produce
certified programs.

I In case of (λ→), we first write a formula within a appropriate
language that can describe the specification of a program,
then prove the formula withing a theorem prover like Coq,
then extract the program.

I Not necessarily efficient programs, but program extraction has
become an important research area, or developing
programming languages with polymorphic and dependent types
such as Coq, Agda (extension of Haskell with dependent
types), Epigram, etc.
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Program extraction from proofs (Cont.)

I How to prove the cut-elimination?

I How to write a program producing normal proof terms?

I Both are main topics when establishing a theory or a type
system.
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From semantics to rules

Given a proof t for a sentence A, we would like to construct a
cut-free proof t ′ with the same result A.

t =⇒ [[t]] =⇒ t ′

such that t ∼= t ′.

Γ ` A S
=⇒ Γ 
 A C

=⇒ Γ ` A

S : soundness, C : cut-free completeness

I Everything is formalized in a theorem prover such as Coq.
I Combination of S and C leads to a automated cut-elimination

(normalization) program.
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From semantics to rules (Cont.)

I U. Berger and H. Schwichtenberg, An inverse of the evaluation
functional for typed λ-calculus. (1991)

I C. Coquand, From semantics to rules: A machine assisted
analysis. (1993)

I H. Herbelin and G. Lee, Forcing-based cut-elimination for
Gentzen-style intuitionistic sequent calculus. (2009)

I D. Ilik, G. Lee, and H. Herbelin, Kripke models for classical
logic. (2009)
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Kripke semantics

I A formal semantics for classical logic systems created in the
late 1950s and early 1960s by Saul Kripke

I First made for modal logic, and later adapted to intuitionistic
logic and other non-classical systems.

I Extension to classical systems using double negation or
modifying Krivine’s realization method.

I In classical systems, the Curry-Howard correspondence and
Kripke semantics can also be used to express the duality
between the two evaluation strategies known as call-by-name
and call-by-value. (Cf. Curien and Herbelin, 2000)
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Comment: classification of formal methods

The whole process follows the following classification of formal
methods:

I Formal specification:
- description of what systems should do
- based on a formal language syntax

I Formal verification:
- proving or disproving the correctness of intended algorithms

I Automated theorem prover:
- proving of mathematical theorems by a computer program
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Consequences and future work

I Very simple proof of cut-elimination (normalization)

I Direct relationship between syntax and semantics

I Mechanization of proofs ⇒ contribution for a more easy
formalization technique.

I Extension of forcing-based cut-elimination to more powerful
theories.

I More efficient program extraction is necessary.
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