
Symbolic Model Checking
Property Specification Language*

Ji Wang

National Laboratory for Parallel and Distributed Processing

National University of Defense Technology

*Joint Work with

Wanwei Liu, Huowang Chen, Xiaodong Ma and Zhaofei Wang

Agenda

 Motivations

 Brief Overview of Symbolic Model Checking of LTL

 From PSL to APSL

 Tableau based Model Checking of APSL

 BDD based Encoding of APSL Tableaux

 Tool and Experiments

 Conclusion

1�

Model Checking

 Model checking is an automatic technique to verify if
a system satisfies its design specification.

 Why model checking?

–  Complexity of modern hardware/software.

–  Impractical for manually verification and proving.

 How to run model checking?

–  Model, abstraction of systems, described as (finite)

transition systems, Kripke structures

–  Specification, property to be verified

–  Checking!

2�

Specification Language

 Specifications are written with various temporal
logics.

 PSL (Property Specification Language) has become an
industrial standard (IEEE 1850).

–  Evolved from some industrial used language, such as VHDL

& Verilog.

–  Has full expressiveness to describe all the omega-regular

properties.

3�

Properties such as
 “p holds at every even moment”

cannot be expressed by any LTL formula.

Verification of PSL

 Approaches

–  Bustan, Fisman and Havlicek developed an automata-based

approach for model checking PSL.

–  Tuerk, Schneider and Gordon presented PSL model
checking using HOL and SMV.

–  Pnueli and Zaks developed a model checking approach,
based on testers.

 Tools

–  The tool RuleBase of IBM

–  ZeroIn of Mentor

4�

Motivation�

 How to efficiently model check PSL?

 Symbolic Model Checking PSL

–  A BDD-based symbolic approach for PSL model checking

–  Achieve the goal without doing too much adaptation to

the existing popular verification tools

5�

Basic Idea

 Property Specification Language.

PSL = FL + OBE

CTL An extension of LTL

6�

Basic Idea�

 Clarke et al presented an adapted LTL model
checking framework, which converts the LTL MC
problem to that of CTL

Model M LTL formula ϕ

Tableau T¬ϕ Transition system M ||T¬ϕ

M ||T¬ϕ ╞ EG true?
Affirmative answer

Yes

No

Counterexample

7�

Contributions�

 A variant of PSL, namely APSL is presented, which
has precisely the same expressiveness.

 The tableau based symbolic model checking
algorithm of LTL is extended to that of APSL.

 Extend NuSMV tool, and make it support APSL.

Model M AFL formula ϕ

Tableau T¬ϕ Transition system M ||T¬ϕ

M ||T¬ϕ ╞ EG true?
Affirmative answer

Yes

No

Counterexample

8�

Agenda

 Motivations

 Brief Overview of Symbolic Model Checking of LTL

 From PSL to APSL

 Tableau based Model Checking of APSL

 BDD based Encoding of APSL Tableaux

 Tool and Experiments

 Conclusion

9�

Models

 A model is a state-labeled transition system (or,
Kripke structure)

M = 〈S, ρ, I, L, Ω〉

where:

–  S is a (finite) set of states.

–  ρ ⊆S ×S, is the transition relation.

–  I⊆S, is a set of initial states.

–  L: S →2AP, is the labeling function.

–  Ω⊆2S, is a set of fairness constraints.

10�

Computations�

p q

p, q
r

The linear perspective of a model

s1

s2

s3

s4

p p p p, q q r r …

Ω={{s2}, {s4}}

p p p,q p, q r r r …

11�

Computations�

p q

p, q
r

The branching perspective of a model

s1

s2

s3

s4

Ω={{s2}, {s4}}

p

p p, q

p, q q r p p, q

………
12�

Linear Temporal Logic�

 LTL

ϕ :: = p proposition
 | ¬ϕ
 | ϕ ∧ϕ

 | Xϕ next
 | ϕ Uϕ until

13�

LTL Semantics�

 LTL Semantics

–  π, i╞ p iff p ∈π(i).
–  π, i╞ ¬ϕ iff π, i╞ ϕ not holds.
–  π, i╞ ϕ1∧ϕ2 iff π, i╞ ϕ1 and π, i╞ ϕ2.
–  π, i╞ Xϕ iff π, i+1╞ ϕ.
–  π, i╞ ϕ1Uϕ2 iff there is some j ≥i, s.t. π, j╞ ϕ2 and for

each i≤k<j s.t. π, k╞ ϕ1.
 Model checking problem of LTL

–  M╞ ϕ iff all fair derived paths of M satisfy ϕ.

14�

Computation Tree Logic�

 CTL

 ϕ :: = p
 | ¬ϕ
 | ϕ ∧ϕ

 | AXϕ
 | A(ϕ Uϕ)
 | E(ϕ Uϕ)

Semantics of CTL formulae
is defined on computation
trees.

The CTL model checking
problem M╞ ϕ is to verify
that if all computation trees
unwounded from M satisfy
ϕ.

15�

CTL Model Checking�

 Framework of CTL model Checking (explicit)

Model M CTL formula ϕ

Sat set of ϕ upon M, [ϕ]M

I ⊆ [ϕ]M ?

Affirmative answer Counterexample

Yes No

16�

CTL Symbolic Model Checking�

  Idea of symbolic model checking

–  Using n bit variables to represent 2n states.

p q

p, q
r

s1

s2

s3

s4

We can use 2 bit variables v0 and v1 to encode the states.

17�

CTL Symbolic Model Checking�

p q

p, q
r

s1

s2

s3

s4

00
01

10 11

 Each subset of the state set corresponds to a Boolean function
 over v0 and v1.
 For example, the state set {s1, s2}, in which p is evaluated to true,
 can be represented as ¬v1.

18�

CTL Symbolic Model Checking�

p q

p, q
r

s1

s2

s3

s4

00
01

10 11

Each transition can be characterized as a Boolean over v0, v1, v ′0 and
v′1. e.g., the transition corresponding to the red edge can be written as
v0 ∧ ¬v1 ∧ v′0 ∧ v′1.
Use the disjunction of such formulae as the encoding of the transition
relation.

19�

CTL Symbolic Model Checking�

  Initial states, fairness constraints and the labeling (for each
proposition) can be encoded into a Boolean function.

  What we need to storage is a set of Boolean formulae,
instead of explicit states and transitions.

  With these formulae, we can compute, in a bottom-up
manner, the Sat set of each subformula.

  This computing process is manipulated based on BDDs
(Binary Decision Diagrams), which can be implemented in an
efficient way.

20�

Symbolic Model Checking of LTL�

Model M LTL formula ϕ

Tableau T¬ϕ Transition system M ||T¬ϕ

M ||T¬ϕ ╞ EG true?
Affirmative answer

Yes

No

Counterexample

21�

Agenda

 Motivations

 Brief Overview of Symbolic Model Checking of LTL

 From PSL to APSL

 Tableau based Model Checking of APSL

 BDD based Encoding of APSL Tableaux

 Tool and Experiments

 Conclusion

22�

PSL

PSL = FL + OBE

CTL An extension of LTL

23�

FL Syntax�

 ϕ :: = b
 | ¬ϕ | ϕ ∧ϕ
 | Xϕ | ϕ Uϕ
 | ϕ abort b abort
 | r T ϕ trigger

Sequential Extended Regular Expressions
(SERE)

24�

SERE�

 r :: = b Boolean expression
 | r; r concatenation
 | r:r fusion

 | r || r choice
 | r && r and

 | r* Kleen closure
 | r@c clock sampling

25�

Examples�

Concatenation: r1; r2
r1 r2

Fusion: r1: r2
r1

r2

26�

Examples�

Clock Sampling: r@c

r

27�

Semantics of FL

 Semantics of FL formulae

–  Formulae of b, ¬ϕ, ϕ1∧ϕ2 are defined as usual

–  Formulae of Xϕ and ϕ1Uϕ2 are defined as same as in LTL

–  π, i╞ (ϕ abort b) iff either π, i╞ ϕ or there is some j≥i,
and some π′, s.t. π[i,j];π′╞ ϕ and π, j+1╞b

–  π, i╞ r Tϕ iff there is some j≥i, s.t. π[i,j]∈L(r), and π, j╞
ϕ

28�

r Tϕ

L(r)

ϕ

Symbolic model checking PSL?

 Symbolic model checking PSL?

–  The major effort of PSL model checking must put on
that for FL formulae.

–  Explore the idea of LTL symbolic model checking.

29�

Elementary Formulas

 For each formula ϕ, we can inductively construct
the
set of elementary formulae of ϕ, denoted El(ϕ)
as follows:

–  El(b) = {p∈AP | p occurs in b};
–  El(¬ψ) = El(ψ);
–  El(ψ1∧ψ2) = El(ψ1)∪El(ψ2);
–  El(Xψ) = {Xψ}∪El(ψ);
–  El(ψ1Uψ2) = {X(ψ1Uψ2)} ∪ El(ψ1) ∪ El(ψ2)

 An element of El(ϕ) is either an atomic proposition
or a formula of the form Xψ

30�

Sat functions

 For each subformula ψ of ϕ, define the function Sat,
which maps ψ to a set of subsets of El(ϕ).

–  Sat (p) = {W⊆El(ϕ) | p∈W};

–  Sat (¬ψ) = 2El(ϕ)\Sat(ψ);

–  Sat (ψ1∧ψ2) = Sat(ψ1) ∩ Sat(ψ2);

–  Sat (Xψ) = {W⊆El(ϕ) | Xψ ∈W};

–  Sat (ψ1Uψ2) =
Sat(ψ2)∪(Sat(ψ1)∩Sat(X(ψ1Uψ2))).

31�

Tableau�

 The tableau of ϕ, denoted Tϕ is the transition system
〈Sϕ , ρϕ , Iϕ , Lϕ , Ωϕ 〉, where:

–  Sϕ consists of subsets of El(ϕ).

–  (W,W′)∈ρϕ iff for each Xψ ∈El(ϕ), W∈Sat(Xψ) if and only

if W′∈Sat(ψ).

–  Iϕ = Sat(ϕ).

–  Lϕ(W) = W ∩ AP.
–  For each subformula ψ1Uψ2 of ϕ, there is a fairness

constraint Sat(¬(ψ1Uψ2))∪Sat(ψ2) in Ωϕ.

 For each π ∈(2AP)ω, π╞ ϕ iff π ∈L(Tϕ)

32�

Tableau of FL?

For FL formula, the difficulty is
that the transition structure is not
explicit.
So, when defining the Sat function for
formula of r T b, it is hard to write an
explicit formula.

 Replace SEREs with NFAs

33�

APSL�

 A variant of PSL, namely APSL.

APSL = AFL +OBE

CTL A variant of FL

34�

AFL Syntax�

 ϕ :: = b
 | ¬ϕ | ϕ ∧ϕ
 | Xϕ | ϕ Uϕ
 | A abort! b strongly abort
 | A T ϕ automaton trigger

35�

Semantics of AFL�

 The semantics

–  π, i╞ A abort! b iff there is some w ∈PreL(A) and

some j ≥i, s.t. π[i,j] = w and π, j+1╞ b.
–  π, i╞ ATϕ iff there is some j ≥i, s.t. π[i,j] ∈L(A) and π,

j╞ ϕ.
 AFL and FL have precisely the same expressiveness.

 Study symbolic model checking problem for AFL.

36�

Agenda

 Motivations

 Brief Overview of Symbolic Model Checking of LTL

 From PSL to APSL

 Tableau based Model Checking of APSL

 BDD based Encoding of APSL Tableaux

 Tool and Experiments

 Conclusion

37�

Elementary Formulae of AFL�

 Elementary formula set of AFL formula

–  For the formulae of b, ¬ψ, ψ1∧ψ2, Xψ, ψ1Uψ2, their

elementary formula sets are defined same as before.

–  El(A abort! b) = El(b)∪{X(Aq abort! b) | q is a state of A}.

–  El(A Tψ) = El(ψ) ∪{X(Aq Tψ) | q is a state of A}.

Given an NFA A = 〈Σ, Q,δ, Q0,F〉, we
denote by Aq the NFA 〈Σ, Q,δ, {q},F〉.

38�

Sat function of AFL formulae�

 Sat function of abort!

Sat(Aq abort! b)

=

Sat(b)∪{W ⊆ El(ϕ) | ∃r∈δ (q,W∩AP), s.t. X(Ar abort! b)∈ W}

π, i╞ Aq abort! b
iff
either π, i╞ b, or π, i╞ X(Ar abort! b) for some r∈δ(q,π(i))

39�

 Sat function of T

Sat(Aq Tψ)
=
 {W ∈ Sat(ψ) | δ (q,W∩AP) ∩ F ≠ ∅} ∪
 {W ⊆ El(ϕ) | ∃r∈δ (q,W∩AP), s.t. X(Ar T ψ)∈ W}

π, i╞ AqTψ
iff
either π, i╞ ψ and δ (q, π(i))∩F ≠ ∅
or π, i╞ X(ArTψ) for some r ∈δ (q,π(i))

Sat function of AFL formulae�

40�

Tableaux for AFL formulae

 Given an AFL formula ϕ , suppose that (A1,ψ1), …,
(Am,ψm) are all its trigger pairs, and Ai’s state set is
Qi . The tableau of ϕ is a special transition system

Tϕ = 〈Sϕ , ρϕ , Iϕ , Lϕ , Ωϕ 〉

–  Sϕ consists of tuples 〈W,(P1,…,Pm)〉, where W⊆El(ϕ) and

Pj⊆Qj.

–  (〈W, (P1,…,Pm)〉, 〈W′, (P′1,…,P′m)〉)∈ ρϕ iff

•  For each Xψ ∈ El(ϕ), W ∈ Sat(Xψ) iff W′ ∈ Sat(ψ);

•  For each 1≤j≤m, ((W,Pj),(W′,P′j)) ∈ ρ(Aj, ψj) .

–  Iϕ= {〈W, (P1,…,Pm) 〉 | W ∈ Sat(ϕ)}.

–  Lϕ(〈W,(P1,…,Pm)〉) = W ∩ AP.

41�

Trigger Pair / Transition

Assuming A = 〈2AP,Q , δ , Q0 ,F 〉, the trigger pair (A,ψ)
of ϕ derives a trigger transition relation ρ(A,ψ) ⊆ (2El(ϕ)

× 2Q)2 such that (W1,Q1,W2, Q2)∈ ρ(A,ψ) iff

  If Q1 = ∅, then Q2 = {q | W2∈ Sat(AqTψ)}.

  If Q1 ≠ ∅, then for each q ∈ Q1,

–  either W1∈Sat(ψ) and δ (q, W1∩AP) ∩ F≠∅
–  or there is some q′∈ Q2, s.t. q′∈ δ (q, W1∩AP)

Given an AFL formula ϕ, we say that (A, ψ) is a
trigger pair in ϕ, if there is some q, such that AqTψ
is a subformula of ϕ.

42�

Trigger Transition Relation�

  For each trigger pair (A, ψ) and each state q of A, and
each s ∈ Sat (Aq Tψ), a fair path starting from s must
satisfy Aq

 Tψ

43�

Fairness Constraints

 Ωϕ consists of three parts:

–  For each subformula ψ1Uψ2, create a fairness constraint

{〈W, (P1,…,Pm) 〉 |

 W ∈ Sat(ψ2) or W ∉ Sat(ψ1Uψ2)}.
–  For each subformula Aq abort! b, create a fairness

constraint
 {〈W, (P1,…,Pm) 〉 |

 W ∈ Sat(b) or W ∉ ∪r ∈Q Sat(Ar abort! b)}.
–  For each trigger pair (Ai,ψi), create a fairness

constraint
 {〈W, (P1,…,Pm) 〉 | Pi = ∅ }.

44�

AFL Model Checking

 Theorem (Language Property of AFL tableaux):

 AFL model checking problem is converted to that of
CTL.

For each π ∈ (2AP)ω, π╞ ϕ iff π ∈ L(Tϕ)

M╞ ϕ iff (M||Tϕ) does not satisfy EG true

45�

Agenda

 Motivations

 Brief Overview of Symbolic Model Checking of LTL

 From PSL to APSL

 Tableau based Model Checking of APSL

 BDD based Encoding of APSL Tableaux

 Tool and Experiments

 Conclusion

46�

BDD Encoding

 With the BDD based technique, product of two
transition systems can be naturally implemented.

 BDD encoding of the original model can be acquired
from the users’ input.

 How to obtain the encoding of an AFL formula’s
tableau.

47�

BDD Encoding

 Given an AFL formula ϕ with trigger pairs (A1,ψ1),
…,(Am,ψm) and the state set of Ai is Qi.

 Recall that a state in the tableau is a tuple 〈W,(P1, …
Pm)〉, where W ⊆ El(ϕ) and Pj ⊆ Qj. Then:

–  For each ψ ∈ El(ϕ), create a Boolean variable uψ .

–  For each 1≤i≤m and each q ∈ Qi, create a Boolean
variable v(i,q).

 For each subformula ψ of ϕ, we may build a Boolean
formula fψ, which characterizes Sat(ψ).

48�

BDD Encoding

 The symbolic encoding of transition relation is the
conjunction of the following issues:

–  For each Xψ ∈ El(ϕ), add a conjuct uXψ ⇔ fψ.

–  For each 1≤i≤m, employ the following two conjuncts

 and

where fΓ is the abbreviation of .

∧

q∈Qi

(v(i,q) ⇒ (fψ ∧
∨

Γ⊆AP
Fi∩δi(q,Γ)#=∅

fΓ) ∨ (
∨

Γ⊆AP

(fΓ ∧
∨

q′∈δi(q,Γ)

v′(i,q′))))

If Q1 = ∅, then Q2 = {q | W2∈Sat(AqTψ)}

49�

BDD Encoding

 For each subformula ψ1Uψ2,we add a fairness
constraint encoding

¬f ψ1Uψ2∨f ψ2.
 For each subformula Aq abort! b with A = 〈Σ, Q,δ,

Q0,F〉, we add the fairness constraint encoding
 .

  For each trigger pair (Ai,ψi), we create the
fairness constraint encoding

∧q∈Qi¬v(i,q).
50�

Agenda

 Motivations

 Brief Overview of Symbolic Model Checking of LTL

 From PSL to APSL

 Tableau based Model Checking of APSL

 BDD based Encoding of APSL Tableaux

 Tool and Experiments

 Conclusion

51�

Tool Support

 From NuSMV to ENuSMV

NuSMV is a symbolic model checking tool by CMU/
ict-IRST, and it supports both CTL and LTL model
checking.

•  The extended version of SMV is adapted

 from NuSMV Ver 2.4.3.

•  ENuSMV Ver 1.0 support ETL model checking,

 and Ver 1.1 support APSL.

•  Available at http:// enusmv.sourceforge.net

52�

Automata Constructs

  Defining Automata constructs in ENuSMV

q1

q2

a1

a2

CONNECTIVE A(a1,a2)
STATES:

 > q1, q2<
TRANSITIONS(q1)
case

 a1: {q1,q2};
 a2: q2;

esac;

a1

53�

Philosopher Dining

  Feasibility: each philosopher can possibly have a
meal.

  Liveness: it is possible for a philosopher to eat
infinitely many times.

  Machine Specification

–  CPU: Intel Core Duo2 (2.66GHz)

–  Memory-size: 2G

54�

Philosopher Dining �

Feasibility

#philosophers

states
 #time (sec.)

CTL
 AFL
 CTL
 LTL
 AFL

6
 1135
 2270
 0.020
 0.046
 0.046

7
 3545
 7090
 0.037
 0.122
 0.124

8
 11395
 22790
 0.070
 0.310
 0.311

55�

Philosopher Dining �

Liveness

#philosopher

states
 #time (sec.)

CTL
 AFL
 CTL
 LTL
 AFL

6
 1135
 4412
 0.021
 0.040
 0.046

7
 3545
 14180
 0.0367
 0.073
 0.074

8
 11395
 45580
 0.070
 0.150
 0.149

56�

Verification of �
Non-star-free Properties

 Consider the model of “accumulative carry circuit ”,
which is a synchronous circuit composed a set of
modulo 2 counters.

 These counters are connected in a series manner —
the first counter’s input is set to 1, and the (i+1)-th
counter’s input is connected to the i-th counter’s
output.

57�

Accumulative Carry Circuit

MOUDLE counter(carry_in)
VAR

 value: boolean;
 pre_value: boolean;

ASSIGN
 init(value):=0;
 init(pre_value) :=0;
 next(pre_value) :=value;
 next(value) := (value +carry_in) mod 2;

DEFINE
 carry_out := (pre_value & carray_in);

58�

Accumulative Carry Circuit

bit_0: counter(1);
… …
bit_i+1: counter(bit_i.output);
… …
bit_n: counter(bit_n-1.output);

59�

Accumulative Carry Circuit

 Consider the following properties:

–  Periodicity: bit_0 carries out at each odd moment.

– Monitoring: once the waveform matches the

pattern true;(bit_0.carry_out)*, then the signal
bit_1.carry_out would raise in the next two steps.

 None of the above properties is star-free.

 Cannot be verified with the previous NuSMV.

60�

Accumulative Carry Circuit �

Periodicity
 Monitoring

#bits
 # states
 #time
 #bits� # states� #time�

7
 66560
 0.011
 7
 8320
 0.009

8
 132096
 0.012
 8
 16512
 0.011

9
 263168
 0.019
 9
 32896
 0.018

10
 525312
 0.024
 10
 65664
 0.021

61�

Other Experiments

 To test the scalability, we have done DME
(Distributed Mutual Exclusive) circuit experiment.
Results show that ENuSMV can handle models with
more than 5×1021 reachable states.

 The experiment on security policy of SE-Linux shows
that ENuSMV can handle a model larger than
120,000 lines.

 Notably, for the same property, AFL model checking
sometimes has a better performance than that of
LTL, especially when the connective nesting depth is
large.

62�

Agenda

 Motivations

 Brief Overview of Symbolic Model Checking of LTL

 From PSL to APSL

 Tableau based Model Checking of APSL

 BDD based Encoding of APSL Tableaux

 Tool and Experiments

 Conclusion

63�

Conclusion

 We have presented a variant of PSL, namely APSL,
which has precisely the same expressive power as
omega-regular expression.

 We extended the BDD-based symbolic model
checking algorithm to that of APSL.

 A symbolic model checker supporting APSL is
designed and implemented based on NuSMV.

64�

Thank you.

Questions and Comments?

65�

