Symbolic Model Checking
Property Specification Language™

Ji Wang
National Laboratory for Parallel and Distributed Processing
National University of Defense Technology

*Joint Work with
Wanwei Liu, Huowang Chen, Xiaodong Ma and Zhaofei Wang

<+ Motivations

<+ Brief Overview of Symbolic Model Checking of LTL
<» From PSL to APSL

<+ Tableau based Model Checking of APSL

<+ BDD based Encoding of APSL Tableaux

< Tool and Experiments

+»» Conclusion

Model Checking

<» Model checking is an automatic technique to verify if
a system satisfies its design specification.

< Why model checking!?
— Complexity of modern hardware/software.

— Impractical for manually verification and proving.

<» How to run model checking?

— Model, abstraction of systems, described as (finite)
transition systems, Kripke structures

— Specification, property to be verified

— Checking!

Specification Langua*»_

<+ Specifications are written with various temporal
logics.

<+ PSL (Property Specification Language) has become an
industrial standard (IEEE 1850).

— Evolved from some industrial used language, such as VHDL
& Verilog.

— Has full expressiveness to describe all the omega-regular
properties.

Properties such as
“p holds at every even moment”
cannot be expressed by any LTL formula.

Verification of PSL

<+ Approaches

— Bustan, Fisman and Havlicek developed an automata-based
approach for model checking PSL.

— Tuerk, Schneider and Gordon presented PSL model
checking using HOL and SMV.

— Pnueli and Zaks developed a model checking approach,
based on testers.

% Tools
— The tool RuleBase of IBM

— Zeroln of Mentor

Motivation

“» How to efficiently model check PSL?

<+ Symbolic Model Checking PSL

— A BDD-based symbolic approach for PSL model checking

— Achieve the goal without doing too much adaptation to
the existing popular verification tools

Basic Idea

<+ Property Specification Language.

PSL= FL + OBE

AN

An extension of LTL

N\

Basic Idea

< Clarke et al presented an adapted LTL model
checking framework, which converts the LTL MC
problem to that of CTL

Model M LTWuIa @

N /]

Table\au/T{

A

Transitionﬁys\tem MI|T_,

(!) No Affirmative answer
MIIT., EEG true? <

Counterexample
Yes

'

Contributions

<+ A variant of PSL, namely APSL is presented, which
has precisely the same expressiveness.

<+ The tableau based symbolic model checking
algorithm of LTL is extended to that of APSL.

Model M AFL/tOJ{nuIa @

N /]

Table\au/T{

A

'

Transition%em MI|T_,

(!) No Affirmative answer
MIIT. EEG true? <

Counterexample
Yes

s Extend NuSMYV tool, and make it support APSL.

+*» Motivations

» Brief Overview of Symbolic Model Checking of LTL
<» From PSL to APSL

<+ Tableau based Model Checking of APSL

<+ BDD based Encoding of APSL Tableaux

< Tool and Experiments

+»» Conclusion

< A model is a state-labeled transition system (or,
Kripke structure)
M=(S, p | L Q)
where:
— Sis a (finite) set of states.
— p CS xS, is the transition relation.
— ICS, is a set of initial states.

— L: S =2 is the labeling function.
— QC25 is a set of fairness constraints.

10

Computations

The linear perspective of a model

4 Q={{s,}, {S4}}

11

Computations

The branching perspective of a model

Q={{S,}, {S4}}

Linear Temporal Logi.é‘-,

< LTL

Q=P proposition
Q@
¢ N\@
X next
U until

13

LTL Semantics

< LTL Semantics
—m, i Fpiff p Exli).
—m,i F-giffn, i F ¢ notholds.

- miF o Aeiffr,i @ andm,iF @,
- m,i FXg iffm, i+l F @

~m i F @,Ug,iff there is some j =i, s.t. , j F ¢, and for
each i<k<js.t.m k F ¢,.

< Model checking problem of LTL
— M | g iff all fair derived paths of M satisfy .

14

Computation Tree Logic

% CTL
Semantics of CTL formulae
@ I=p is defined on computation
trees.
| ~@
| @ Ng
| AXg The CTL model checking
| A(p Ug) problem M = ¢ is to verify
that if all computation trees
| E(p Ug) -
(o unwounded from M satisfy
@.

15

CTL Model Checking

<» Framework of CTL model Checking (explicit)

Model M CTL formula ¢

- Satsetof pupon M, [@],

Y

I Slply?
Yes _l No

Y

Affirmative answer Counterexample

16

% ldea of symbolic model checking

— Using n bit variables to represent 2" states.

We can use 2 bit variables v, and v, to encode the states.

Each subset of the state set corresponds to a Boolean function

over v, and v,.
For example, the state set {s,, s,}, in which p is evaluated to true,

can be represented as -v;.

-~ .. E—————
18

CTL Symbolic Model Che

Each transition can be characterized as a Boolean over v, v, v',and
V',. e.g., the transition corresponding to the red edge can be written as
vo A v AV AV,

Use the disjunction of such formulae as the encoding of the transition
relation.

19

CTL Symbolic Model Che

< Initial states, fairness constraints and the labeling (for each
proposition) can be encoded into a Boolean function.

<» What we need to storage is a set of Boolean formulae,
instead of explicit states and transitions.

< With these formulae, we can compute, in a bottom-up
manner, the Sat set of each subformula.

< This computing process is manipulated based on BDDs
(Binary Decision Diagrams), which can be implemented in an
efficient way.

20

Symbolic Model Checking of

Model M LTWU|8 @

N va

Table\au/T{

A

Transition st\tem MI|T_,

(!) No Affirmative answer
MIIT. EEG true? <

Counterexample
Yes

@

21

<+ Motivations

<+ Brief Overview of Symbolic Model Checking of LTL
<» From PSL to APSL

<+ Tableau based Model Checking of APSL

<+ BDD based Encoding of APSL Tableaux

< Tool and Experiments

+»» Conclusion

22

PSL= FL + OBE

AN

An extension of LTL

N\

23

FL Syntax

p:.=b
¢ | ¢/ g
Xg | Uy
@ abort b abort
ri @ trigger
X—

Sequential Extended Regular Expressions
(SERE)

24

R
~

-
rl|r
r && r

| r@c

Boolean expression
concatenation
fusion

choice
and

Kleen closure
clock sampling

25

Examples

Concatenation: r,; r,
I I

A
% 3 [A

Fusion: r,:r,
I, I

N A

% ' A

26

Examples

Clock Sampling: r@c

27

Semantics of FL

% Semantics of FL formulae

— Formulae of b, =@, ¢, /\ @, are defined as usual
— Formulae of X@ and ¢, U@, are defined as same as in LTL

— 1, i F (@ abort b) iff either &, i = @ or there is some j=i,
and some 7, s.t. w[ij];n' F @and &, j+1 Fb

— m, i Fr Toiff there is some j=i, s.t. n[i/]JEL(r), and 7, j |

28

Symbolic model checking

<+ Symbolic model checking PSL?

— The major effort of PSL model checking must put on
that for FL formulae.

— Explore the idea of LTL symbolic model checking.

29

Elementary Formulas

» For each formula ¢, we can inductively construct
the set of elementary formulae of ¢, denoted El(¢)
as follows:

— EI(b) = {p€EAP | p occurs 1n b};

- El(~vy) = El(y);

— El(y, Ny = El(y,) U El(y,);

- El(Xy) = { Xy} UEI(y);

— El(y,Uyy) = {(X(yp,Uyy)} U El(yy) U El(y,)

< An element of El(¢) is either an atomic proposition
or a formula of the form Xy

30

Sat functions

< For each subformula 1 of ¢, define the function Sat,
which maps 1y to a set of subsets of E/(g).

- Sat (p) = {WCEI(¢) | PEW};
— Sat (=) = 2E@\Sat(y);

— Sat (y, N y,) = Sat(y,) (1 Sat(yp,);
— Sat (X)) = {WCEI(p) | Xy EW};

~ Sat (y,Uypy) =
Sat(y) U (Sat(y)NSat(X(1,Uw))).

31

< The tableau of ¢, denoted T, is the transition system

(Sps Py 15 Lys), where:

— §, consists of subsets of El(g).
(W W')Ep,, iff for each Xy EEI(¢), WESat(Xy) if and only
if WESat(1)).

— 1, = Sat(g).

- L(W) =W AP.

— For each subformula y,Uy, of ¢, there is a fairness
constraint Sat(-(y,Uy,))U Sat(y,) in Q.

For each 7 €(24P), & | @ iff w EL(T,)

32

Tableau of FL?

For FL formula, the difficulty is

that the transition structure is not
explicit.

So, when defining the Saf function for
formula of r T b, it is hard to write an

explicit formula.

Replace SEREs with NFAs

33

APSL '

<+ A variant of PSL, namely APSL.

APSL = AFL +OBE

// \\
A variant of FL -

34

AFL Syntax

—p | ¢ N
X |eUgp
A abort! b

Al @

strongly abort
automaton trigger

35

Semantics of AFL

*» The semantics

— m, i F A abort! b iff there is some w EPrelL(A) and
some j =i, s.t. afij] = wand xm, j+1 F b.

—m, i F ATgiff there is some j =i, s.t. n[i,j]] EL(A) and =,
JF e
<+ AFL and FL have precisely the same expressiveness.

» Study symbolic model checking problem for AFL.

36

<+ Motivations

<+ Brief Overview of Symbolic Model Checking of LTL
<» From PSL to APSL

<+ Tableau based Model Checking of APSL

<+ BDD based Encoding of APSL Tableaux

< Tool and Experiments

+»» Conclusion

37

Elementary Formulae of A

Given an NFAA = (3, Q,0, Q,,F), we
denote by A% the NFA (2, Q,6, {q},F).

<+ Elementary formula set of AFL formula

— For the formulae of b, =y, Y, N\ y,, Xy, y,Uy,, their
elementary formula sets are defined same as before.

— EI(A abort! b) = El(b) U {X (A9 abort! b) | g is a state of A}.
— EI(A Ty) = El(y) U{X(AI Ty) | qis a state of A}.

38

Sat function of AFL for

% Sat function of abort!

Sat(A9 abort! b)

Sat(b) U{W C El(p) | Arcd (g, WNAP), s.t. X(A" abort! b)& W}

w, i F A9 abort! b
iff
either , i = b, or m, i = X(Ar abort! b) for some red(q,(i))

39

Sat function of AFL form

s Sat function of T

Sat(Ad Ty)

{(We Sat(y) | 6 (qWNAP)N F = &} U
{(WC El(p) | Ared (g, WNAP), s.t. X(A' T yp)& W}

m i ATy

iff

either , i F ywand 6 (q, n(i)))F = &
orm, i = X(ATy) for some r €8 (q,n(i))

40

Tableaux for AFL formula

< Given an AFL formula ¢, suppose that (A,,y,), ...,
(A,,y.) are all its trigger pairs, and A’s state set is
Q.. The tableau of ¢ is a special transition system
T,= <S<;0’ P> lgr Ly Q¢>
— §, consists of tuples (W,(P,,...,P.)), where WCEI(¢) and
PCQ,
J J

— (W, (Pye P (W, (P PLVE P iff
* For each Xy € El(¢), W € Sat(Xy) iff W’ € Sat(y);
* For each lsjsm, (W.,P),(W'P%)) € 0y ;-

— 1,={(W, (Pp,...,P,) | W E Sat(¢)}.

— L(W,(Py,---,P,)Y) = W AP.

41

Trigger Pair /

Given an AFL formula ¢, we say that (A, v) is a

trigger pair in @, if there is some q, such that ATy
IS a subformula of .

Assuming A = (2*7.Q, 0, Q,,F), the trigger pair (A,1))
of @ derives a trigger transition relation o, ,, © (259
x 29)% such that (W,Q,W,, Q)€ p., iff

+If Q, = G, then Q, = {q | W,E Sat(AIT y)}.

*If Q, = O, then for each g € Q,,
— either W ,ESat(y) and 6 (g, W, 4P) N F=D
— or there is some q'€ Q,, s.t. g€ 0 (q, W, N AP)

42

Trigger Transition Relatio

< For each trigger pair (A, y) and each state g of A, and
each s € Sat (A? Ty), a fair path starting from s must
satisfy A9 Ty

43

Fairness Constraints

“ 2, consists of three parts:

— For each subformula y,Uv,, create a fairness constraint

(W, (Pp,....P)) |
W € Sat(y,) or W ¢ Sat(y,Uy,)}.

— For each subformula A? abort! b, create a fairness
constraint

W, (P oPr)) |
W € Sat(b) or W& U, Sat(A" abort! b)}.

— For each trigger pair (A, y;), create a fairness
constraint

W, (Py,...Pr)) | =D).

44

AFL Model Checking

<» Theorem (Language Property of AFL tableaux):

For each 7 € (24P)®, w = ¢ iff m€ L(T,)

<» AFL model checking problem is converted to that of
CTL.

M | @ iff (M||T) does not satisfy EG true

45

<+ Motivations

<+ Brief Overview of Symbolic Model Checking of LTL
<» From PSL to APSL

<+ Tableau based Model Checking of APSL

» BDD based Encoding of APSL Tableaux

< Tool and Experiments

+»» Conclusion

46

BDD Encoding

< With the BDD based technique, product of two
transition systems can be naturally implemented.

<+ BDD encoding of the original model can be acquired
from the users’ input.

<» How to obtain the encoding of an AFL formula’s
tableau.

47

BDD Encoding

< Given an AFL formula @ with trigger pairs (A,,y,),
..»(A,,¥) and the state set of A. is Q.

< Recall that a state in the tableau is a tuple (W,(P,, ...
P.)), where W C El(¢) and P,C Q, Then:
— For each y € El(¢), create a Boolean variable u,,.

— For each 1=i=m and each q € Q, create a Boolean
variable v; ..

< For each subformula 3 of ¢, we may build a Boolean
formula f,, which characterizes Sat(y)).

48

BDD Encoding

<+ The symbolic encoding of transition relation is the
conjunction of the following issues:
— For each Xy € El(¢), add a conjuct u,, < f,,
— For each 1=i=m, employ the following two conjuncts

(A ﬁ,U(":’Q)) i /\ (’Uzi,CI) <:> ff,‘llebz)

qgeQ; q€Q;

If Q, =, then Q, = {q | W,ESat(AITy)}

49

BDD Encoding

< For each subformula y,Uy,,we add a fairness
constraint encoding

_'ft/}IUz/ijfz/ﬁ'
< For each subformula A9 abort! b with A = (3, Q,,
Q,,F), we add the fairness constraint encoding

fo V /\ ~f A4’ abortts
q'€Q
< For each trigger pair (A, y,), we create the
fairness constraint encoding

/\

9€0i " V(ig)"

50

<+ Motivations

<+ Brief Overview of Symbolic Model Checking of LTL
<» From PSL to APSL

<+ Tableau based Model Checking of APSL

<+ BDD based Encoding of APSL Tableaux

<+ Tool and Experiments

+»» Conclusion

51

Tool Support

% From NuSMV to ENuSMV

NuSMV is a symbolic model checking tool by CMU/
ict-IRST, and it supports both CTL and LTL model

checking.

* The extended version of SMV is adapted

from NuSMV Ver 2.4.3.
* ENuSMV Ver |.0 support ETL model checking,

and Ver |.l support APSL.
* Available at http:// enusmv.sourceforge.net

52

Automata Constructs

< Defining Automata constructs in ENuSMV

CONNECTIVE A(aq,a,)

STATES:
611 > q1’ q2<
TRANSITIONS(q,)

case
aq : {q'l ,qZ};

dy. 4y,
esac,

Ay dq

53

Philosopher Dining

<+ Feasibility: each philosopher can possibly have a
meal.

» Liveness: it is possible for a philosopher to eat
infinitely many times.

<+ Machine Specification
— CPU: Intel Core Duo2 (2.66GHz)

— Memory-size: 2G

54

Philosopher Dining

Feasibility
states #time (sec.)
#philosophers | CTL | AFL CTL LTL AFL
6 | 135 2270 0.020 0.046 0.046
7 3545 7090 0.037 0.122 0.124
8 11395 | 22790 0.070 0.310 0.311

55

Philosopher Dining

Liveness
states #Htime (sec.)
#philosopher
CTL AFL CTL LTL AFL
6 | 135 4412 0.021 0.040 0.046
7 3545 14180 | 0.0367 0.073 0.074
8 1395 | 45580 0.070 0.150 0.149

56

Verification of

Non-star-free Properties™

<+ Consider the model of “accumulative carry circuit ”,

which is a synchronous circuit composed a set of
modulo 2 counters.

% These counters are connected in a series manner —
the first counter’s input is set to 1, and the (i+1)-th

counter’s input is connected to the i-th counter’s
output.

57

Accumulative Carry Circ

MOUDLE counter(carry_in)
VAR
value: boolean;
pre_value: boolean;
ASSIGN
init(value):=0;
init(pre_value) :=0;
next(pre_value) :=value;
next(value) := (value +carry_in) mod 2;
DEFINE
carry_out := (pre_value & carray_in);

58

Accumulative Carry Circ

bit_0: counter(1);

bit_n: counter(bit_n-1.output);

59

Accumulative Carry Circ

<+ Consider the following properties:
— Periodicity: bit_0 carries out at each odd moment.

— Monitoring: once the waveform matches the
pattern true;(bit_0.carry out)’, then the signal
bit_|.carry out would raise in the next two steps.

<* None of the above properties is star-free.

<+ Cannot be verified with the previous NuSMV.

60

Accumulative Carry Circt

Periodicity Monitoring
#bits # states | #Htime #bits # states | #Htime
7 66560 0.011 7 8320 0.009
8 132096 0.012 8 16512 0.011
9 263168 0.019 9 32896 0.018
10 525312 0.024 10 65664 0.021

61

Other Experiments

<+ To test the scalability, we have done DME
(Distributed Mutual Exclusive) circuit experiment.
Results show that ENuSMV can handle models with
more than 5x 102! reachable states.

<+ The experiment on security policy of SE-Linux shows
that ENuSMV can handle a model larger than
120,000 lines.

< Notably, for the same property, AFL model checking
sometimes has a better performance than that of
LTL, especially when the connective nesting depth is
large.

62

<+ Motivations

<+ Brief Overview of Symbolic Model Checking of LTL
<» From PSL to APSL

<+ Tableau based Model Checking of APSL

<+ BDD based Encoding of APSL Tableaux

< Tool and Experiments

% Conclusion

63

Conclusion

<* We have presented a variant of PSL, namely APSL,
which has precisely the same expressive power as
omega-regular expression.

“*» We extended the BDD-based symbolic model
checking algorithm to that of APSL.

<+ A symbolic model checker supporting APSL is
designed and implemented based on NuSMV.

64

Thank you.

Questions and Comments?

65

