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Model Checking

 Model checking is an automatic technique to verify if 
a system satisfies its design specification.

 Why model checking?
–  Complexity of modern hardware/software.
–  Impractical for manually verification and proving.

 How to run model checking?
–  Model, abstraction of systems, described as (finite) 

transition systems, Kripke structures
–  Specification, property to be verified

–  Checking!
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Specification Language

 Specifications are written with various temporal 
logics.

 PSL (Property Specification Language) has become an 
industrial standard (IEEE 1850). 
–  Evolved from some industrial used language, such as VHDL 

& Verilog.
–  Has full expressiveness to describe all the omega-regular 

properties.
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Properties such as 
 “p holds at every even moment” 

cannot be expressed by any LTL formula. 



Verification of PSL

 Approaches
–  Bustan, Fisman and Havlicek developed an automata-based 

approach for model checking PSL.

–  Tuerk, Schneider and Gordon presented PSL model 
checking using HOL and SMV. 

–  Pnueli and Zaks developed a model checking approach, 
based on testers. 

 Tools
–  The tool RuleBase of IBM

–  ZeroIn of Mentor
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Motivation�

 How to efficiently model check PSL?

 Symbolic Model Checking PSL
–  A BDD-based symbolic approach for PSL model checking
–  Achieve the goal without doing too much adaptation to 

the existing popular verification tools
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Basic Idea

 Property Specification Language.

PSL =  FL + OBE 

CTL An extension of LTL 
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Basic Idea�

 Clarke et al presented an adapted LTL model 
checking framework, which converts the LTL MC 
problem to that of CTL

Model M LTL formula ϕ  

Tableau T¬ϕ Transition system M ||T¬ϕ 

M ||T¬ϕ ╞ EG true? 
Affirmative answer 

Yes 

No 

Counterexample 

7�



Contributions�

 A variant of PSL, namely APSL is presented, which 
has precisely the same expressiveness. 

 The tableau based symbolic model checking 
algorithm of LTL is extended to that of APSL. 

 Extend NuSMV tool, and make it support APSL.

Model M AFL formula ϕ  

Tableau T¬ϕ Transition system M ||T¬ϕ 

M ||T¬ϕ ╞ EG true? 
Affirmative answer 

Yes 

No 

Counterexample 
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Models

 A model is a state-labeled transition system (or, 
Kripke structure) 

M = 〈S, ρ, I, L, Ω〉
where:
–   S is a (finite) set of states.

–   ρ ⊆S ×S, is the transition relation.
–  I⊆S, is a set of initial states.

–  L: S →2AP, is the labeling function.
–  Ω⊆2S, is a set of fairness constraints.  
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Computations�

p q 

p, q 
r 

The linear perspective of a model 

s1 

s2 

s3 

s4 

p p p p, q q r r …

Ω={{s2}, {s4}} 

p p p,q p, q r r r …
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Computations�

p q 

p, q 
r 

The branching perspective of a model 

s1 

s2 

s3 

s4 

Ω={{s2}, {s4}} 

p 

p p, q 

p, q q r p p, q 

……… 
12�



Linear Temporal Logic�

 LTL

ϕ  :: = p         proposition  
         |  ¬ϕ   
         |   ϕ ∧ϕ  

 |  Xϕ  next   
 | ϕ Uϕ  until 
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LTL Semantics�

 LTL Semantics
–  π, i╞ p iff p ∈π(i).  
–  π, i╞ ¬ϕ iff π, i╞ ϕ not holds. 
–  π, i╞ ϕ1∧ϕ2 iff π, i╞ ϕ1 and π, i╞ ϕ2. 
–  π, i╞ Xϕ  iff π, i+1╞ ϕ.  
–  π, i╞ ϕ1Uϕ2 iff there is some j ≥i, s.t. π, j╞ ϕ2 and for 

each i≤k<j s.t. π, k╞ ϕ1.  
 Model checking problem of LTL 

–  M╞ ϕ iff all fair derived paths of M satisfy ϕ. 
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Computation Tree Logic�

 CTL

 ϕ  :: = p     
         |  ¬ϕ   
         |   ϕ ∧ϕ  

     |  AXϕ     
  | A(ϕ Uϕ)   
  | E(ϕ Uϕ)  

Semantics of CTL formulae 
is defined on computation 
trees. 

The CTL model checking 
problem M╞ ϕ is to verify 
that if all computation trees 
unwounded from M satisfy 
ϕ. 
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CTL Model Checking�

 Framework of CTL model Checking (explicit)

Model M CTL formula ϕ  

Sat set of ϕ upon M, [ϕ ]M  

I  ⊆ [ϕ ]M ? 

Affirmative answer Counterexample 

Yes No 
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CTL Symbolic Model Checking�

  Idea of symbolic model checking
–  Using n bit variables to represent 2n states.

p q 

p, q 
r 

s1 

s2 

s3 

s4 

We can use 2 bit variables v0 and v1 to encode the states. 
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CTL Symbolic Model Checking�

p q 

p, q 
r 

s1 

s2 

s3 

s4 

00 
01 

10 11 

     Each subset of the state set corresponds to a Boolean function  
     over v0 and v1.  
     For example, the state set {s1, s2}, in which p is evaluated to true,  
     can be  represented as  ¬v1. 
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CTL Symbolic Model Checking�

p q 

p, q 
r 

s1 

s2 

s3 

s4 

00 
01 

10 11 

Each transition can be characterized as a Boolean over v0, v1, v ′0 and  
v′1. e.g., the transition corresponding to the red edge can be written as  
v0 ∧ ¬v1 ∧ v′0 ∧ v′1.  
Use the disjunction of such formulae as the encoding of the transition  
relation. 
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CTL Symbolic Model Checking�

  Initial states, fairness constraints and the labeling (for each 
proposition) can be encoded into a Boolean function.

  What we need to storage is a set of Boolean formulae, 
instead of explicit states and transitions.

  With these formulae, we can compute, in a bottom-up 
manner, the Sat set of each subformula.

  This computing process is manipulated based on BDDs 
(Binary Decision Diagrams), which can be implemented in an 
efficient way. 
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Symbolic Model Checking of LTL�

Model M LTL formula ϕ  

Tableau T¬ϕ Transition system M ||T¬ϕ 

M ||T¬ϕ ╞ EG true? 
Affirmative answer 

Yes 

No 

Counterexample 
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PSL

PSL =  FL + OBE 

CTL An extension of LTL 
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FL Syntax�

 ϕ :: = b      
 |  ¬ϕ     |   ϕ ∧ϕ      
 |  Xϕ      |  ϕ Uϕ   
 | ϕ abort b   abort 
 | r T ϕ     trigger   

Sequential Extended Regular Expressions 
(SERE)  
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SERE�

 r  :: = b           Boolean expression 
  | r; r      concatenation  
  | r:r       fusion   

        |  r || r         choice 
        |  r && r      and 

  |   r*     Kleen closure 
  |  r@c   clock sampling 
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Examples�

Concatenation: r1; r2  
r1 r2 

Fusion:  r1: r2  
r1 

r2 
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Examples�

Clock Sampling: r@c  

r 
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Semantics of FL

 Semantics of FL formulae
–  Formulae of b,  ¬ϕ, ϕ1∧ϕ2 are defined as usual
–  Formulae of Xϕ and ϕ1Uϕ2 are defined as same as in LTL 

–  π, i╞ (ϕ abort b) iff either π, i╞ ϕ or there is some j≥i, 
and some π′, s.t.  π[i,j];π′╞ ϕ and π, j+1╞b 

–  π, i╞ r Tϕ iff there is some j≥i, s.t. π[i,j]∈L(r), and π, j╞ 
ϕ 
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r Tϕ 

L(r)

ϕ 



Symbolic model checking PSL?

 Symbolic model checking PSL?

–  The major effort of PSL  model checking must put on 
that for FL formulae.

–  Explore the idea of LTL symbolic model checking.
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Elementary Formulas

 For each formula ϕ, we can inductively construct 
theset of elementary formulae of ϕ, denoted El(ϕ) 
as follows:
–  El(b) = {p∈AP | p occurs in b}; 
–  El(¬ψ) = El(ψ); 
–  El(ψ1∧ψ2) = El(ψ1)∪El(ψ2); 
–  El(Xψ) = {Xψ}∪El(ψ); 
–  El(ψ1Uψ2) = {X(ψ1Uψ2)} ∪ El(ψ1) ∪ El(ψ2) 

 An element of El(ϕ) is either an atomic proposition 
or a formula of the form Xψ
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Sat functions

 For each subformula ψ of ϕ, define the function Sat, 
which maps ψ to a set of subsets of El(ϕ). 

–   Sat (p) = {W⊆El(ϕ) | p∈W};
–   Sat (¬ψ) = 2El(ϕ)\Sat(ψ);
–  Sat (ψ1∧ψ2) = Sat(ψ1) ∩ Sat(ψ2);
–  Sat (Xψ) = {W⊆El(ϕ) | Xψ ∈W};

–  Sat (ψ1Uψ2) = 
Sat(ψ2)∪(Sat(ψ1)∩Sat(X(ψ1Uψ2))). 
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Tableau�

 The tableau of ϕ, denoted Tϕ is the transition system  
〈Sϕ , ρϕ , Iϕ , Lϕ , Ωϕ 〉, where:
–  Sϕ consists of subsets of El(ϕ).
–  (W,W′)∈ρϕ iff for each Xψ ∈El(ϕ), W∈Sat(Xψ) if and only 

if W′∈Sat(ψ).
–   Iϕ = Sat(ϕ).
–  Lϕ(W) = W ∩ AP. 
–  For each subformula ψ1Uψ2 of ϕ, there is  a fairness 

constraint Sat(¬(ψ1Uψ2 ))∪Sat(ψ2)  in Ωϕ. 

        For each π ∈(2AP)ω, π╞ ϕ iff π ∈L(Tϕ) 
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Tableau of FL?

For FL formula, the difficulty is 
that the transition structure is not  
explicit. 
So, when defining the Sat function for  
formula of r T b, it is hard to write an  
explicit formula. 

          Replace SEREs with NFAs 
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APSL�

 A variant of PSL, namely APSL.

APSL = AFL +OBE 

CTL A variant of FL 
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AFL Syntax�

 ϕ :: = b      
 |  ¬ϕ  |   ϕ ∧ϕ      
 |  Xϕ  | ϕ Uϕ   
 | A abort! b   strongly abort 
 | A T ϕ     automaton trigger   
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Semantics of AFL�

 The semantics
–  π, i╞ A abort! b iff there is some w ∈PreL(A) and 

some j ≥i, s.t. π[i,j] = w and π, j+1╞ b. 
–  π, i╞ ATϕ iff there is some j ≥i, s.t. π[i,j] ∈L(A) and π, 

j╞ ϕ. 
 AFL and FL have precisely the same expressiveness.

 Study symbolic model checking problem for AFL.
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Elementary Formulae of AFL�

 Elementary formula set of AFL formula
–  For the formulae of b, ¬ψ, ψ1∧ψ2, Xψ, ψ1Uψ2, their 

elementary formula sets are defined same as before.

–  El(A abort! b) = El(b)∪{X(Aq abort! b) | q is a state of A}.

–  El(A Tψ) = El(ψ) ∪{X(Aq Tψ) | q is a state of A}.

Given an NFA A =  〈Σ, Q,δ, Q0,F〉, we  
denote by Aq the NFA  〈Σ, Q,δ, {q},F〉. 
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Sat function of AFL formulae�

 Sat function of abort!

Sat(Aq abort! b) 
=

Sat(b)∪{W ⊆ El(ϕ) |  ∃r∈δ (q,W∩AP), s.t. X(Ar abort! b)∈ W} 

π, i╞ Aq abort! b  
iff  
either π, i╞ b, or π, i╞ X(Ar abort! b) for some r∈δ(q,π(i)) 
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 Sat function of T

Sat(Aq Tψ)  
= 
 {W ∈ Sat(ψ) | δ (q,W∩AP) ∩ F  ≠ ∅} ∪ 
 {W ⊆ El(ϕ) |  ∃r∈δ (q,W∩AP), s.t. X(Ar T ψ)∈ W} 

π, i╞ AqTψ  
iff  
either π, i╞ ψ and δ (q, π(i))∩F  ≠ ∅ 
or π, i╞ X(ArTψ) for some r ∈δ (q,π(i)) 

Sat function of AFL formulae�
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Tableaux for AFL formulae

 Given an AFL formula ϕ , suppose that (A1,ψ1),  …, 
(Am,ψm) are all its trigger pairs, and Ai’s state set  is 
Qi . The tableau of ϕ  is a special transition system 

Tϕ = 〈Sϕ , ρϕ , Iϕ , Lϕ , Ωϕ 〉 
–  Sϕ consists of tuples 〈W,(P1,…,Pm)〉, where W⊆El(ϕ) and 

Pj⊆Qj.
–  (〈W, (P1,…,Pm)〉, 〈W′, (P′1,…,P′m)〉)∈ ρϕ iff

•  For each Xψ ∈ El(ϕ), W ∈ Sat(Xψ ) iff W′ ∈ Sat(ψ ); 

•  For each 1≤j≤m, ((W,Pj),(W′,P′j )) ∈ ρ(Aj, ψj) .

–  Iϕ= {〈W, (P1,…,Pm) 〉 | W ∈ Sat(ϕ)}.
–  Lϕ(〈W,(P1,…,Pm)〉) = W ∩ AP.
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Trigger Pair / Transition

Assuming A = 〈2AP,Q , δ , Q0 ,F 〉, the trigger pair (A,ψ) 
of ϕ derives a trigger transition relation ρ(A,ψ) ⊆ (2El(ϕ) 

× 2Q)2 such that (W1,Q1,W2, Q2)∈ ρ(A,ψ) iff

  If Q1 = ∅, then Q2 = {q | W2∈ Sat(AqTψ)}.
  If Q1 ≠ ∅, then for each q ∈ Q1, 

–  either W1∈Sat(ψ) and δ (q, W1∩AP) ∩ F≠∅ 
–  or there is some q′∈ Q2, s.t. q′∈ δ (q, W1∩AP) 

Given an AFL formula ϕ, we say that (A, ψ) is a  
trigger pair in ϕ, if there is some q, such that AqTψ 
is a subformula of ϕ.  
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Trigger Transition Relation�

  For each trigger pair (A, ψ) and each state q of A, and 
each s ∈ Sat (Aq Tψ ), a fair path starting from s must 
satisfy Aq

 Tψ 
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Fairness Constraints

 Ωϕ consists of three parts: 
–  For each subformula ψ1Uψ2, create a fairness constraint 

{〈W, (P1,…,Pm) 〉 | 

               W ∈ Sat(ψ2) or W ∉ Sat(ψ1Uψ2)}. 
–  For each subformula Aq abort! b, create a fairness 

constraint  
    {〈W, (P1,…,Pm) 〉 | 

               W ∈ Sat(b) or W ∉ ∪r ∈Q Sat(Ar abort! b )}. 
–  For each trigger pair (Ai,ψi), create a fairness 

constraint  
    {〈W, (P1,…,Pm) 〉 | Pi = ∅ }. 
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AFL Model Checking

 Theorem (Language Property of AFL tableaux):

 AFL model checking problem is converted to that of 
CTL.

For each π ∈ (2AP)ω, π╞ ϕ iff π ∈ L(Tϕ) 

M╞ ϕ iff (M||Tϕ) does not satisfy EG true 
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BDD Encoding

 With the BDD based technique, product of two 
transition systems can be naturally implemented.

 BDD encoding of the original model can be acquired 
from the users’ input.

 How to obtain the encoding of an AFL formula’s 
tableau.
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BDD Encoding

 Given an AFL formula ϕ with trigger pairs (A1,ψ1), 
…,(Am,ψm) and the state set of Ai is Qi.

 Recall that a state in the tableau is a tuple 〈W,(P1, …
Pm)〉, where W ⊆ El(ϕ) and Pj ⊆ Qj. Then:
–  For each ψ ∈ El(ϕ), create a Boolean variable uψ .

–  For each 1≤i≤m and each q ∈ Qi, create a  Boolean 
variable v(i,q). 

 For each subformula ψ of ϕ, we may build a Boolean 
formula fψ, which characterizes Sat(ψ). 
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BDD Encoding

 The symbolic encoding of transition relation is the 
conjunction of the following issues:
–  For each Xψ ∈ El(ϕ), add a conjuct uXψ ⇔ fψ.

–  For each 1≤i≤m, employ the following two conjuncts

 and

where fΓ is the abbreviation of                                           .   

∧

q∈Qi

(v(i,q) ⇒ (fψ ∧
∨

Γ⊆AP
Fi∩δi(q,Γ)#=∅

fΓ) ∨ (
∨

Γ⊆AP

(fΓ ∧
∨

q′∈δi(q,Γ)

v′(i,q′))))
If Q1 = ∅, then Q2 = {q | W2∈Sat(AqTψ)}
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BDD Encoding

 For each subformula ψ1Uψ2,we add a fairness 
constraint encoding 

¬f ψ1Uψ2∨f ψ2. 
 For each subformula Aq abort! b with A =  〈Σ, Q,δ, 

Q0,F〉, we add the fairness constraint encoding 
     . 

   For each trigger pair (Ai,ψi), we create the 
fairness constraint encoding  

∧q∈Qi¬v(i,q). 
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Tool Support

 From NuSMV to ENuSMV

NuSMV is a symbolic model checking tool by CMU/
ict-IRST, and it supports both CTL and LTL model 
checking.

•  The extended version of SMV is adapted 
  from NuSMV Ver 2.4.3.
•  ENuSMV Ver 1.0 support ETL model checking,
  and Ver 1.1 support APSL.
•  Available at http:// enusmv.sourceforge.net
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Automata Constructs

  Defining Automata constructs in ENuSMV

q1 

q2 

a1 

a2 

CONNECTIVE A(a1,a2) 
STATES: 

 > q1, q2< 
TRANSITIONS(q1) 
case 

 a1: {q1,q2}; 
 a2: q2; 

esac; 

a1 
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Philosopher Dining 

  Feasibility: each philosopher can possibly have a 
meal.

  Liveness: it is possible for a philosopher to eat 
infinitely many times. 

   Machine Specification
–  CPU: Intel Core Duo2 (2.66GHz)

–  Memory-size: 2G 
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Philosopher Dining �

Feasibility

#philosophers 

# states #time (sec.)

CTL AFL CTL LTL AFL

6 1135 2270 0.020 0.046 0.046

7 3545 7090 0.037 0.122 0.124

8 11395 22790 0.070 0.310 0.311
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Philosopher Dining �

Liveness

#philosopher 

# states #time (sec.)

CTL AFL CTL LTL AFL

6 1135 4412 0.021 0.040 0.046

7 3545 14180 0.0367 0.073 0.074

8 11395 45580 0.070 0.150 0.149
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Verification of �
Non-star-free Properties

 Consider the model of “accumulative carry circuit ”, 
which is a synchronous circuit composed a set of 
modulo 2 counters.

 These counters are connected in a series manner — 
the first counter’s input is set to 1, and the (i+1)-th 
counter’s input is connected to the i-th counter’s 
output.
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Accumulative Carry Circuit 

MOUDLE counter(carry_in) 
VAR 

 value: boolean;    
 pre_value: boolean; 

ASSIGN 
 init(value):=0;   
 init(pre_value) :=0; 
 next(pre_value) :=value;   
 next(value) := (value +carry_in) mod 2; 

DEFINE 
 carry_out := (pre_value & carray_in);   
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Accumulative Carry Circuit 

bit_0: counter(1); 
… … 
bit_i+1: counter(bit_i.output); 
… … 
bit_n: counter(bit_n-1.output); 
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Accumulative Carry Circuit 

 Consider the following properties:

–  Periodicity: bit_0 carries out at each odd moment.
– Monitoring: once the waveform matches the 

pattern true;(bit_0.carry_out)*, then the signal 
bit_1.carry_out would raise in the next two steps.

 None of the above properties is star-free. 

 Cannot be verified with the previous NuSMV. 
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Accumulative Carry Circuit �

Periodicity Monitoring

#bits # states #time #bits� # states� #time�

7 66560 0.011 7 8320 0.009

8 132096 0.012 8 16512 0.011

9 263168 0.019 9 32896 0.018

10 525312 0.024 10 65664 0.021
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Other Experiments

 To test the scalability, we have done DME 
(Distributed Mutual Exclusive) circuit experiment. 
Results show that ENuSMV can handle models with 
more than 5×1021 reachable states.

 The experiment on security policy of SE-Linux shows 
that ENuSMV can handle a model larger than 
120,000 lines. 

 Notably, for the same property, AFL model checking 
sometimes has a better performance than that of 
LTL, especially when the connective nesting depth is 
large.
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Conclusion

 We have presented a variant of PSL, namely APSL, 
which has precisely the same expressive power as 
omega-regular expression.

 We extended the BDD-based symbolic model 
checking algorithm to that of APSL.

 A symbolic model checker supporting APSL is 
designed and implemented based on NuSMV.
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Thank you. 
Questions and Comments?
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