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Model Checking


 Model checking is an automatic technique to verify if 
a system satisfies its design specification.


 Why model checking?

–  Complexity of modern hardware/software.

–  Impractical for manually verification and proving.


 How to run model checking?

–  Model, abstraction of systems, described as (finite) 

transition systems, Kripke structures

–  Specification, property to be verified


–  Checking!
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Specification Language


 Specifications are written with various temporal 
logics.


 PSL (Property Specification Language) has become an 
industrial standard (IEEE 1850). 

–  Evolved from some industrial used language, such as VHDL 

& Verilog.

–  Has full expressiveness to describe all the omega-regular 

properties.
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Properties such as 
 “p holds at every even moment” 

cannot be expressed by any LTL formula. 



Verification of PSL


 Approaches

–  Bustan, Fisman and Havlicek developed an automata-based 

approach for model checking PSL.


–  Tuerk, Schneider and Gordon presented PSL model 
checking using HOL and SMV. 


–  Pnueli and Zaks developed a model checking approach, 
based on testers. 


 Tools

–  The tool RuleBase of IBM


–  ZeroIn of Mentor
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Motivation�

 How to efficiently model check PSL?


 Symbolic Model Checking PSL

–  A BDD-based symbolic approach for PSL model checking

–  Achieve the goal without doing too much adaptation to 

the existing popular verification tools
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Basic Idea


 Property Specification Language.


PSL =  FL + OBE 

CTL An extension of LTL 
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Basic Idea�

 Clarke et al presented an adapted LTL model 
checking framework, which converts the LTL MC 
problem to that of CTL


Model M LTL formula ϕ  

Tableau T¬ϕ Transition system M ||T¬ϕ 

M ||T¬ϕ ╞ EG true? 
Affirmative answer 

Yes 

No 

Counterexample 
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Contributions�

 A variant of PSL, namely APSL is presented, which 
has precisely the same expressiveness. 


 The tableau based symbolic model checking 
algorithm of LTL is extended to that of APSL. 


 Extend NuSMV tool, and make it support APSL.


Model M AFL formula ϕ  

Tableau T¬ϕ Transition system M ||T¬ϕ 

M ||T¬ϕ ╞ EG true? 
Affirmative answer 

Yes 

No 

Counterexample 
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Models


 A model is a state-labeled transition system (or, 
Kripke structure) 


M = 〈S, ρ, I, L, Ω〉

where:

–   S is a (finite) set of states.


–   ρ ⊆S ×S, is the transition relation.

–  I⊆S, is a set of initial states.


–  L: S →2AP, is the labeling function.

–  Ω⊆2S, is a set of fairness constraints.  
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Computations�

p q 

p, q 
r 

The linear perspective of a model 

s1 

s2 

s3 

s4 

p p p p, q q r r …


Ω={{s2}, {s4}} 

p p p,q p, q r r r …
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Computations�

p q 

p, q 
r 

The branching perspective of a model 

s1 

s2 

s3 

s4 

Ω={{s2}, {s4}} 

p 

p p, q 

p, q q r p p, q 

……… 
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Linear Temporal Logic�

 LTL


ϕ  :: = p         proposition  
         |  ¬ϕ   
         |   ϕ ∧ϕ  

 |  Xϕ  next   
 | ϕ Uϕ  until 
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LTL Semantics�

 LTL Semantics

–  π, i╞ p iff p ∈π(i).  
–  π, i╞ ¬ϕ iff π, i╞ ϕ not holds. 
–  π, i╞ ϕ1∧ϕ2 iff π, i╞ ϕ1 and π, i╞ ϕ2. 
–  π, i╞ Xϕ  iff π, i+1╞ ϕ.  
–  π, i╞ ϕ1Uϕ2 iff there is some j ≥i, s.t. π, j╞ ϕ2 and for 

each i≤k<j s.t. π, k╞ ϕ1.  
 Model checking problem of LTL 

–  M╞ ϕ iff all fair derived paths of M satisfy ϕ. 
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Computation Tree Logic�

 CTL


 ϕ  :: = p     
         |  ¬ϕ   
         |   ϕ ∧ϕ  

     |  AXϕ     
  | A(ϕ Uϕ)   
  | E(ϕ Uϕ)  

Semantics of CTL formulae 
is defined on computation 
trees. 

The CTL model checking 
problem M╞ ϕ is to verify 
that if all computation trees 
unwounded from M satisfy 
ϕ. 
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CTL Model Checking�

 Framework of CTL model Checking (explicit)


Model M CTL formula ϕ  

Sat set of ϕ upon M, [ϕ ]M  

I  ⊆ [ϕ ]M ? 

Affirmative answer Counterexample 

Yes No 
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CTL Symbolic Model Checking�

  Idea of symbolic model checking

–  Using n bit variables to represent 2n states.


p q 

p, q 
r 

s1 

s2 

s3 

s4 

We can use 2 bit variables v0 and v1 to encode the states. 
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CTL Symbolic Model Checking�

p q 

p, q 
r 

s1 

s2 

s3 

s4 

00 
01 

10 11 

     Each subset of the state set corresponds to a Boolean function  
     over v0 and v1.  
     For example, the state set {s1, s2}, in which p is evaluated to true,  
     can be  represented as  ¬v1. 
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CTL Symbolic Model Checking�

p q 

p, q 
r 

s1 

s2 

s3 

s4 

00 
01 

10 11 

Each transition can be characterized as a Boolean over v0, v1, v ′0 and  
v′1. e.g., the transition corresponding to the red edge can be written as  
v0 ∧ ¬v1 ∧ v′0 ∧ v′1.  
Use the disjunction of such formulae as the encoding of the transition  
relation. 
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CTL Symbolic Model Checking�

  Initial states, fairness constraints and the labeling (for each 
proposition) can be encoded into a Boolean function.


  What we need to storage is a set of Boolean formulae, 
instead of explicit states and transitions.


  With these formulae, we can compute, in a bottom-up 
manner, the Sat set of each subformula.


  This computing process is manipulated based on BDDs 
(Binary Decision Diagrams), which can be implemented in an 
efficient way. 
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Symbolic Model Checking of LTL�

Model M LTL formula ϕ  

Tableau T¬ϕ Transition system M ||T¬ϕ 

M ||T¬ϕ ╞ EG true? 
Affirmative answer 

Yes 

No 

Counterexample 
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PSL


PSL =  FL + OBE 

CTL An extension of LTL 
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FL Syntax�

 ϕ :: = b      
 |  ¬ϕ     |   ϕ ∧ϕ      
 |  Xϕ      |  ϕ Uϕ   
 | ϕ abort b   abort 
 | r T ϕ     trigger   

Sequential Extended Regular Expressions 
(SERE)  
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SERE�

 r  :: = b           Boolean expression 
  | r; r      concatenation  
  | r:r       fusion   

        |  r || r         choice 
        |  r && r      and 

  |   r*     Kleen closure 
  |  r@c   clock sampling 
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Examples�

Concatenation: r1; r2  
r1 r2 

Fusion:  r1: r2  
r1 

r2 
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Examples�

Clock Sampling: r@c  

r 
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Semantics of FL


 Semantics of FL formulae

–  Formulae of b,  ¬ϕ, ϕ1∧ϕ2 are defined as usual

–  Formulae of Xϕ and ϕ1Uϕ2 are defined as same as in LTL 


–  π, i╞ (ϕ abort b) iff either π, i╞ ϕ or there is some j≥i, 
and some π′, s.t.  π[i,j];π′╞ ϕ and π, j+1╞b 


–  π, i╞ r Tϕ iff there is some j≥i, s.t. π[i,j]∈L(r), and π, j╞ 
ϕ 
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r Tϕ 


L(r)


ϕ 



Symbolic model checking PSL?


 Symbolic model checking PSL?


–  The major effort of PSL  model checking must put on 
that for FL formulae.


–  Explore the idea of LTL symbolic model checking.
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Elementary Formulas


 For each formula ϕ, we can inductively construct 
the
set of elementary formulae of ϕ, denoted El(ϕ) 
as follows:

–  El(b) = {p∈AP | p occurs in b}; 
–  El(¬ψ) = El(ψ); 
–  El(ψ1∧ψ2) = El(ψ1)∪El(ψ2); 
–  El(Xψ) = {Xψ}∪El(ψ); 
–  El(ψ1Uψ2) = {X(ψ1Uψ2)} ∪ El(ψ1) ∪ El(ψ2) 

 An element of El(ϕ) is either an atomic proposition 
or a formula of the form Xψ
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Sat functions


 For each subformula ψ of ϕ, define the function Sat, 
which maps ψ to a set of subsets of El(ϕ). 


–   Sat (p) = {W⊆El(ϕ) | p∈W};

–   Sat (¬ψ) = 2El(ϕ)\Sat(ψ);

–  Sat (ψ1∧ψ2) = Sat(ψ1) ∩ Sat(ψ2);

–  Sat (Xψ) = {W⊆El(ϕ) | Xψ ∈W};


–  Sat (ψ1Uψ2) = 
Sat(ψ2)∪(Sat(ψ1)∩Sat(X(ψ1Uψ2))). 
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Tableau�

 The tableau of ϕ, denoted Tϕ is the transition system  
〈Sϕ , ρϕ , Iϕ , Lϕ , Ωϕ 〉, where:

–  Sϕ consists of subsets of El(ϕ).

–  (W,W′)∈ρϕ iff for each Xψ ∈El(ϕ), W∈Sat(Xψ) if and only 

if W′∈Sat(ψ).

–   Iϕ = Sat(ϕ).

–  Lϕ(W) = W ∩ AP. 
–  For each subformula ψ1Uψ2 of ϕ, there is  a fairness 

constraint Sat(¬(ψ1Uψ2 ))∪Sat(ψ2)  in Ωϕ. 

        For each π ∈(2AP)ω, π╞ ϕ iff π ∈L(Tϕ) 

32�



Tableau of FL?


For FL formula, the difficulty is 
that the transition structure is not  
explicit. 
So, when defining the Sat function for  
formula of r T b, it is hard to write an  
explicit formula. 

          Replace SEREs with NFAs 
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APSL�

 A variant of PSL, namely APSL.


APSL = AFL +OBE 

CTL A variant of FL 
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AFL Syntax�

 ϕ :: = b      
 |  ¬ϕ  |   ϕ ∧ϕ      
 |  Xϕ  | ϕ Uϕ   
 | A abort! b   strongly abort 
 | A T ϕ     automaton trigger   
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Semantics of AFL�

 The semantics

–  π, i╞ A abort! b iff there is some w ∈PreL(A) and 

some j ≥i, s.t. π[i,j] = w and π, j+1╞ b. 
–  π, i╞ ATϕ iff there is some j ≥i, s.t. π[i,j] ∈L(A) and π, 

j╞ ϕ. 
 AFL and FL have precisely the same expressiveness.


 Study symbolic model checking problem for AFL.
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Elementary Formulae of AFL�

 Elementary formula set of AFL formula

–  For the formulae of b, ¬ψ, ψ1∧ψ2, Xψ, ψ1Uψ2, their 

elementary formula sets are defined same as before.


–  El(A abort! b) = El(b)∪{X(Aq abort! b) | q is a state of A}.


–  El(A Tψ) = El(ψ) ∪{X(Aq Tψ) | q is a state of A}.


Given an NFA A =  〈Σ, Q,δ, Q0,F〉, we  
denote by Aq the NFA  〈Σ, Q,δ, {q},F〉. 
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Sat function of AFL formulae�

 Sat function of abort!


Sat(Aq abort! b) 

=


Sat(b)∪{W ⊆ El(ϕ) |  ∃r∈δ (q,W∩AP), s.t. X(Ar abort! b)∈ W} 

π, i╞ Aq abort! b  
iff  
either π, i╞ b, or π, i╞ X(Ar abort! b) for some r∈δ(q,π(i)) 
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 Sat function of T


Sat(Aq Tψ)  
= 
 {W ∈ Sat(ψ) | δ (q,W∩AP) ∩ F  ≠ ∅} ∪ 
 {W ⊆ El(ϕ) |  ∃r∈δ (q,W∩AP), s.t. X(Ar T ψ)∈ W} 

π, i╞ AqTψ  
iff  
either π, i╞ ψ and δ (q, π(i))∩F  ≠ ∅ 
or π, i╞ X(ArTψ) for some r ∈δ (q,π(i)) 

Sat function of AFL formulae�
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Tableaux for AFL formulae


 Given an AFL formula ϕ , suppose that (A1,ψ1),  …, 
(Am,ψm) are all its trigger pairs, and Ai’s state set  is 
Qi . The tableau of ϕ  is a special transition system 


Tϕ = 〈Sϕ , ρϕ , Iϕ , Lϕ , Ωϕ 〉 

–  Sϕ consists of tuples 〈W,(P1,…,Pm)〉, where W⊆El(ϕ) and 

Pj⊆Qj.

–  (〈W, (P1,…,Pm)〉, 〈W′, (P′1,…,P′m)〉)∈ ρϕ iff


•  For each Xψ ∈ El(ϕ), W ∈ Sat(Xψ ) iff W′ ∈ Sat(ψ ); 


•  For each 1≤j≤m, ((W,Pj),(W′,P′j )) ∈ ρ(Aj, ψj) .


–  Iϕ= {〈W, (P1,…,Pm) 〉 | W ∈ Sat(ϕ)}.

–  Lϕ(〈W,(P1,…,Pm)〉) = W ∩ AP.
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Trigger Pair / Transition



Assuming A = 〈2AP,Q , δ , Q0 ,F 〉, the trigger pair (A,ψ) 
of ϕ derives a trigger transition relation ρ(A,ψ) ⊆ (2El(ϕ) 

× 2Q)2 such that (W1,Q1,W2, Q2)∈ ρ(A,ψ) iff


  If Q1 = ∅, then Q2 = {q | W2∈ Sat(AqTψ)}.

  If Q1 ≠ ∅, then for each q ∈ Q1, 


–  either W1∈Sat(ψ) and δ (q, W1∩AP) ∩ F≠∅ 
–  or there is some q′∈ Q2, s.t. q′∈ δ (q, W1∩AP) 


Given an AFL formula ϕ, we say that (A, ψ) is a  
trigger pair in ϕ, if there is some q, such that AqTψ 
is a subformula of ϕ.  
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Trigger Transition Relation�

  For each trigger pair (A, ψ) and each state q of A, and 
each s ∈ Sat (Aq Tψ ), a fair path starting from s must 
satisfy Aq

 Tψ 
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Fairness Constraints


 Ωϕ consists of three parts: 


–  For each subformula ψ1Uψ2, create a fairness constraint 

{〈W, (P1,…,Pm) 〉 | 


               W ∈ Sat(ψ2) or W ∉ Sat(ψ1Uψ2)}. 
–  For each subformula Aq abort! b, create a fairness 

constraint  
    {〈W, (P1,…,Pm) 〉 | 


               W ∈ Sat(b) or W ∉ ∪r ∈Q Sat(Ar abort! b )}. 
–  For each trigger pair (Ai,ψi), create a fairness 

constraint  
    {〈W, (P1,…,Pm) 〉 | Pi = ∅ }. 
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AFL Model Checking


 Theorem (Language Property of AFL tableaux):


 AFL model checking problem is converted to that of 
CTL.


For each π ∈ (2AP)ω, π╞ ϕ iff π ∈ L(Tϕ) 

M╞ ϕ iff (M||Tϕ) does not satisfy EG true 
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BDD Encoding


 With the BDD based technique, product of two 
transition systems can be naturally implemented.


 BDD encoding of the original model can be acquired 
from the users’ input.


 How to obtain the encoding of an AFL formula’s 
tableau.
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BDD Encoding


 Given an AFL formula ϕ with trigger pairs (A1,ψ1), 
…,(Am,ψm) and the state set of Ai is Qi.


 Recall that a state in the tableau is a tuple 〈W,(P1, …
Pm)〉, where W ⊆ El(ϕ) and Pj ⊆ Qj. Then:

–  For each ψ ∈ El(ϕ), create a Boolean variable uψ .


–  For each 1≤i≤m and each q ∈ Qi, create a  Boolean 
variable v(i,q). 

 For each subformula ψ of ϕ, we may build a Boolean 
formula fψ, which characterizes Sat(ψ). 
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BDD Encoding


 The symbolic encoding of transition relation is the 
conjunction of the following issues:

–  For each Xψ ∈ El(ϕ), add a conjuct uXψ ⇔ fψ.


–  For each 1≤i≤m, employ the following two conjuncts


 and


where fΓ is the abbreviation of                                           .   

∧

q∈Qi

(v(i,q) ⇒ (fψ ∧
∨

Γ⊆AP
Fi∩δi(q,Γ)#=∅

fΓ) ∨ (
∨

Γ⊆AP

(fΓ ∧
∨

q′∈δi(q,Γ)

v′(i,q′))))

If Q1 = ∅, then Q2 = {q | W2∈Sat(AqTψ)}
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BDD Encoding


 For each subformula ψ1Uψ2,we add a fairness 
constraint encoding 


¬f ψ1Uψ2∨f ψ2. 
 For each subformula Aq abort! b with A =  〈Σ, Q,δ, 

Q0,F〉, we add the fairness constraint encoding 
     . 

   For each trigger pair (Ai,ψi), we create the 
fairness constraint encoding  

∧q∈Qi¬v(i,q). 
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Tool Support


 From NuSMV to ENuSMV



NuSMV is a symbolic model checking tool by CMU/
ict-IRST, and it supports both CTL and LTL model 
checking.


•  The extended version of SMV is adapted 

  from NuSMV Ver 2.4.3.

•  ENuSMV Ver 1.0 support ETL model checking,

  and Ver 1.1 support APSL.

•  Available at http:// enusmv.sourceforge.net
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Automata Constructs


  Defining Automata constructs in ENuSMV


q1 

q2 

a1 

a2 

CONNECTIVE A(a1,a2) 
STATES: 

 > q1, q2< 
TRANSITIONS(q1) 
case 

 a1: {q1,q2}; 
 a2: q2; 

esac; 

a1 
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Philosopher Dining 


  Feasibility: each philosopher can possibly have a 
meal.


  Liveness: it is possible for a philosopher to eat 
infinitely many times. 


   Machine Specification

–  CPU: Intel Core Duo2 (2.66GHz)


–  Memory-size: 2G 
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Philosopher Dining �

Feasibility


#philosophers 


# states
 #time (sec.)


CTL
 AFL
 CTL
 LTL
 AFL


6
 1135
 2270
 0.020
 0.046
 0.046


7
 3545
 7090
 0.037
 0.122
 0.124


8
 11395
 22790
 0.070
 0.310
 0.311
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Philosopher Dining �

Liveness


#philosopher 


# states
 #time (sec.)


CTL
 AFL
 CTL
 LTL
 AFL


6
 1135
 4412
 0.021
 0.040
 0.046


7
 3545
 14180
 0.0367
 0.073
 0.074


8
 11395
 45580
 0.070
 0.150
 0.149
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Verification of �
Non-star-free Properties


 Consider the model of “accumulative carry circuit ”, 
which is a synchronous circuit composed a set of 
modulo 2 counters.


 These counters are connected in a series manner — 
the first counter’s input is set to 1, and the (i+1)-th 
counter’s input is connected to the i-th counter’s 
output.
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Accumulative Carry Circuit 


MOUDLE counter(carry_in) 
VAR 

 value: boolean;    
 pre_value: boolean; 

ASSIGN 
 init(value):=0;   
 init(pre_value) :=0; 
 next(pre_value) :=value;   
 next(value) := (value +carry_in) mod 2; 

DEFINE 
 carry_out := (pre_value & carray_in);   
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Accumulative Carry Circuit 


bit_0: counter(1); 
… … 
bit_i+1: counter(bit_i.output); 
… … 
bit_n: counter(bit_n-1.output); 
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Accumulative Carry Circuit 


 Consider the following properties:


–  Periodicity: bit_0 carries out at each odd moment.

– Monitoring: once the waveform matches the 

pattern true;(bit_0.carry_out)*, then the signal 
bit_1.carry_out would raise in the next two steps.


 None of the above properties is star-free. 


 Cannot be verified with the previous NuSMV. 
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Accumulative Carry Circuit �

Periodicity
 Monitoring


#bits
 # states
 #time
 #bits� # states� #time�

7
 66560
 0.011
 7
 8320
 0.009


8
 132096
 0.012
 8
 16512
 0.011


9
 263168
 0.019
 9
 32896
 0.018


10
 525312
 0.024
 10
 65664
 0.021
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Other Experiments


 To test the scalability, we have done DME 
(Distributed Mutual Exclusive) circuit experiment. 
Results show that ENuSMV can handle models with 
more than 5×1021 reachable states.


 The experiment on security policy of SE-Linux shows 
that ENuSMV can handle a model larger than 
120,000 lines. 


 Notably, for the same property, AFL model checking 
sometimes has a better performance than that of 
LTL, especially when the connective nesting depth is 
large.
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Conclusion


 We have presented a variant of PSL, namely APSL, 
which has precisely the same expressive power as 
omega-regular expression.


 We extended the BDD-based symbolic model 
checking algorithm to that of APSL.


 A symbolic model checker supporting APSL is 
designed and implemented based on NuSMV.
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Thank you. 

Questions and Comments?
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