Assume-Guarantee Reasoning – Overview

Bow-Yaw Wang

Institute of Information Science
Academia Sinica, Taiwan

July 6, 2009
Assume-guarantee reasoning can alleviate the state explosion problem in model checking.

There are two major issues:
- How to devise proper assumptions?
- How to develop new proof rules?

Interestingly, these two issues may be related to program analysis.

Hopefully, we can combine static analysis and model checking in new perspectives.
Outline

1. Assume-Guarantee Reasoning

2. Algorithmic Learning Theory

3. Our Related Works
 - Learning Regular ω-Languages
 - Learning Minimal Separating Finite Automata
 - Intuitionistic Interpretation

4. Conclusions
Let M denote a system (a program, protocol, or even circuit).
Let P denote a property (mutual exclusion, starvation freedom).
$M \models P$ (informally) means “the system M satisfies the property P.”
In early days, various formalizations of the \models relation were proposed.
Automata-theoretic framework was introduced in the 80’s by Moshe Vardi.
- It is widely used in model checking community now.
Let M be a finite automaton specifying a system.
 ▶ System behaviors are strings accepted by M.
Let P be a finite automaton specifying a property.
 ▶ Intended behaviors are strings accepted by P.
Let A be a finite automaton. Define

\[L(A) = \{ \alpha : \alpha \text{ is accepted by } A \} \].

Then \(M \models P \) can be formalized as \(L(M) \subseteq L(P) \).
Many model checking problems can be reduced to formal language problems.

For instance, suppose M_P is Peterson’s algorithm.

To check whether M_P satisfies mutual exclusion, consider the following automaton P_{ME}:

![Automaton](image)

$\neg(pc_0 = pc_1 = CS)$

Finite automata can be constructed from a logic formula.

- For instance, $G(pc_0 \neq CS \lor pc_1 \neq CS)$.

We can also consider a composition $M_0 \| M_1$ of systems M_0 and M_1. For instance, consider $M_0 \| M_1$ to have all behaviors shared by M_0 and M_1.

Thus, $L(M_0 \| M_1) = L(M_0) \cap L(M_1)$.

Concise specifications of systems and properties are possible. For instance, M_{P_0} and M_{P_1} specify the processes in Peterson’s algorithm.

We can check if $M_{P_0} \| M_{P_1} \models P_{ME}$.

However, the number of states grows exponentially in the number of processes. This is called the state explosion problem.
Compositional reasoning aims to solve verification problems by divide and conquer.

Consider the following proof rule:

\[
\frac{M_0 \models P}{M_0 \parallel M_1 \models P}
\]

- Informally, if we can prove \(M_0 \) satisfies \(P \), then \(M_0 \parallel M_1 \) satisfies \(P \).

It is easy to see that the rule is sound. But it is useless in practice.

- Each process in Peterson’s algorithm does not satisfy mutual exclusion alone.

- Contexts must be considered in compositional reasoning.
In assume-guarantee reasoning, contextual assumptions are provided by users. Consider
\[M_0 \parallel A \models P \quad M_1 \models A \]
\[M_0 \parallel M_1 \models P \]

Informally, if we can find an assumption \(A \) such that (1) \(M_0 \parallel A \) satisfies \(P \); and (2) \(M_1 \) satisfies \(A \), then \(M_0 \parallel M_1 \) satisfies \(P \).

Intuitively, assumptions are abstractions of contexts.

With proper abstractions, problems are divided into simpler subproblems.
However, there are two issues in assume-guarantee reasoning:

1. **How to come up with “proper assumption?”**
 - Finding assumptions requires insights to system designs.
 - Try to find an assumption to prove Peterson’s algorithm.
 - Is there a way to generate assumptions automatically?
 * Yes! I will cover this exciting idea here.

2. **How to find new proof rules?**
 - Some proof rules are rather perplexing. Consider
 \[
 \frac{M_0 \parallel P_1 \models P_0 \quad P_0 \parallel M_1 \models P_1}{C}
 \]
 \[
 M_0 \parallel M_1 \models P_0 \parallel P_1
 \]
 - Is there a way to verify these proof rules automatically?
 * Yes! If you are interested, please talk to me.
However, there are two issues in assume-guarantee reasoning:

1. **How to come up with “proper assumption?”**
 - Finding assumptions requires insights to system designs.
 - Try to find an assumption to prove Peterson’s algorithm.
 - Is there a way to generate assumptions automatically?
 - Yes! I will cover this exciting idea here.

2. **How to find new proof rules?**
 - Some proof rules are rather perplexing. Consider
 $$M_0 \parallel P_1 \models P_0 \quad P_0 \parallel M_1 \models P_1$$
 $$\frac{M_0 \parallel M_1 \models P_0 \parallel P_1}{C}$$
 - Is there a way to verify these proof rules automatically?
 - Yes! If you are interested, please talk to me.
Issues in Assume-Guarantee Reasoning

However, there are two issues in assume-guarantee reasoning:

1. **How to come up with “proper assumption?”**
 - Finding assumptions requires insights to system designs.
 - Try to find an assumption to prove Peterson’s algorithm.
 - Is there a way to generate assumptions automatically?
 - Yes! I will cover this exciting idea here.

2. **How to find new proof rules?**
 - Some proof rules are rather perplexing. Consider:
 \[
 \frac{M_0 || P_1 \models P_0 \quad P_0 || M_1 \models P_1}{M_0 || M_1 \models P_0 || P_1} \quad C
 \]
 - Is there a way to verify these proof rules automatically?
 - Yes! If you are interested, please talk to me.
However, there are two issues in assume-guarantee reasoning:

1. How to come up with “proper assumption?”
 - Finding assumptions requires insights to system designs.
 - Try to find an assumption to prove Peterson’s algorithm.
 - Is there a way to generate assumptions automatically?
 - Yes! I will cover this exciting idea here.

2. How to find new proof rules?
 - Some proof rules are rather perplexing. Consider
 \[
 \frac{M_0 \parallel P_1 \models P_0 \quad P_0 \parallel M_1 \models P_1}{\therefore M_0 \parallel M_1 \models P_0 \parallel P_1}
 \]
 - Is there a way to verify these proof rules automatically?
 - Yes! If you are interested, please talk to me.
Issues in Assume-Guarantee Reasoning

However, there are two issues in assume-guarantee reasoning:

1. **How to come up with “proper assumption?”**
 - Finding assumptions requires insights to system designs.
 - Try to find an assumption to prove Peterson’s algorithm.
 - Is there a way to generate assumptions automatically?
 - Yes! I will cover this exciting idea here.

2. **How to find new proof rules?**
 - Some proof rules are rather perplexing. Consider
 \[
 \frac{M_0 \parallel P_1 \models P_0 \quad P_0 \parallel M_1 \models P_1}{\models M_0 \parallel M_1 \models P_0 \parallel P_1}
 \]
 - Is there a way to verify these proof rules automatically?
 - Yes! If you are interested, please talk to me.
Let \(U \) be the universe.

Let \(L \subseteq U \) be an unknown set.

With the help of a “teacher,” a learning algorithm aims to find a finite representation \(R \) such that \(R \) represents \(L \).

For instance, consider \(U \) to be the set of finite strings and \(L \) a regular language. Suppose a teacher gives \((\alpha_i, c_i)\) such that

\[
\alpha_i \in L \quad \text{if } c_i = \text{true} \\
\alpha_i \not\in L \quad \text{if } c_i = \text{false}.
\]

A learning algorithm aims to compute a finite automaton representing \(L \) by observing \((\alpha_i, c_i)\) for \(i = 0, \ldots, N \).
Advices are Important

- Learning algorithms depend on types of teachers heavily.
 - In the previous slide, a learning algorithm cannot be correct if the teacher always gives the same advice (say, \((\epsilon, \text{true})\)).

- It is necessary to formulate problems carefully in algorithm learning theory.
 - Improper formulations can lead to infeasible solutions or even make the problem unsolvable.
In 80’s, Angluin introduced the L* algorithm for learning an unknown regular language L.

The L* algorithm can make two types of queries:

1. **Membership**: is the string α in L?
 - The teacher answers “yes” or “no.”

2. **Conjecture**: is the finite automaton C accepting L?
 - If $L(C) = L$, the teacher answers “yes.”
 - If $L(C) \neq L$, the teacher gives a counter example in $(L(C) \setminus L) \cup (L \setminus L(C))$.

Given such a teach, L* generates the minimal finite automaton M such that $L(M) = L$ with a polynomial number of queries (in the size of M).
Why does Machine Learning Matter?

- Notice that a teacher in the L* algorithm does not need any insight to the unknown language.
- Consider the language $L = 1^*(1*01*01^*)1^*$.
- By examining the regular expression, we realize that L contains all finite strings with an even number of 0’s.
 - To see this, certain insights are needed.
- However, checking $\alpha \in L$ or $L(C) = L$ can be mechanized.
 - By translating the regular expression to a finite automaton.
- If we can simulate a teacher in assume-guarantee reasoning, the L* can learn proper assumptions for us!
Consider again the proof rule:

\[
\frac{M_0 \parallel A \models P \quad M_1 \models A}{M_0 \parallel M_1 \models P}
\]

For membership query \(\alpha \in L(A) \), we check if \(\alpha \in L(P) \cup \overline{L(M_0)} \).

For conjecture query \(L(C) ?= L(A) \), we check if \(M_0 \parallel C \models P \) and \(M_1 \models C \).

- If yes, \(C \) is a proper assumption;
- If no, check whether the counter example is in \(L(M_0 \parallel M_1) \setminus L(P) \).
 * If yes, \(P \) is falsified by the counter example;
 * If no, returns the counter example to \(L^* \) to refine \(C \).

Eventually, either

1. the assumption \(A \) such that \(L(A) = L(P) \cup \overline{L(M_0)} \) is generated; or
2. a counter example is found.
In principle, the unknown language is the weakest assumption $L(P) \cup L(M_0)$.

- Membership queries are resolved accordingly.

However, we may find a proper assumption before reaching the weakest assumption.

- Any assumption A such that $L(M_1) \subseteq L(A) \subseteq L(P) \cup L(M_0)$ will do.

The idea is not to generate assumptions intrinsically but externally.

- It is impossible to “guess” contextual assumptions.
- It is nevertheless possible to “refine” them incrementally.
Since the introduction of machine learning to assumption generation in 2003, several papers have been published in this area. We are interested in the following problems:

1. Extending the framework to regular ω-languages;
2. Finding better assumptions;
3. Deriving more proof rules automatically.
For liveness properties (“good things will happen”), it is more natural to use infinite strings (called ω-strings).

One can discuss ω-strings accepted by a finite automaton.

- The problem is to define accepting conditions since there is no final state in an infinite run.

A finite automaton thus accepts set of ω-strings (called an ω-language).

In 60’s, Büchi showed that the class of ω-languages accepted by finite automata coincides with the class of regular ω-languages.

In model checking community, regular ω-languages are used very often.
In order to extend assume-guarantee reasoning through learning to liveness properties, we need a learning algorithm for regular \(\omega \)-languages.

However, \(L^* \) depends on the Myhill-Nerode theorem.

- It is also used to prove the existence of minimal deterministic finite automaton for regular languages.

But there is no similar theorem for finite automata over \(\omega \)-strings.

- Most intriguingly, deterministic and non-deterministic finite automata may have different expressive power over \(\omega \)-strings.
Our idea is to represent regular ω-languages by regular languages. For any ω-language L, define

$$L_\# = \{u\#v : uv^\omega \in L\}.$$

If L is a regular ω-language, then $L_\#$ is a regular language. For any unknown regular ω-language L, we use L^* to learn $L_\#$. When the finite automaton $M_\#$ such that $L(M) = L_\#$ is generated, we convert $M_\#$ to a finite automaton M accepting L. This is a joint work with Azadeh Farzon, Yu-Fang Chen, Edmund M. Clarke, and Yih-Kuen Tsay.
Recall the proof rule:

\[
\frac{M_0 \parallel A \models P \quad M_1 \models A}{M_0 \parallel M_1 \models P}
\]

Any assumption \(A\) such that

\[
L(M_1) \subseteq L(A) \subseteq L(P) \cup \overline{L(M_0)}
\]

suffices.

In practice, we would like \(A\) to have as few states as possible.

- Otherwise, checking \(M_0 \parallel A \models P\) may be more expensive than checking \(M_0 \parallel M_1 \models P\).
- Particularly, generating the weakest assumption does not necessarily alleviate the state explosion problem.
Let J and K be regular languages.

Consider a finite automaton S such that

\[J \subseteq L(S) \text{ and } L(S) \cap K = \emptyset. \]

This is called a separating automaton for J and K.

The minimal separating automaton for J and K is a separating automaton with the least number of states.

Intuitively, J contains all the good behaviors and K contains all the bad behaviors.

A separating automaton has all good behaviors and misses all bad behaviors.

Finding the minimal separating automaton is a known problem in circuit synthesis.
Now consider $J = L(M_1)$ and $K = L(P) \cap L(M_0)$.

A separating automaton A for J and K satisfies

$$L(M_1) \subseteq L(A) \quad \text{and} \quad L(A) \cap (L(P) \cap L(M_0)) = \emptyset.$$

Note that $L(A) \cap (L(P) \cap L(M_0)) = \emptyset$ iff $L(A) \subseteq (L(P) \cap L(M_0))$ iff $L(A) \subseteq L(P) \cup L(M_0)$.

Hence a minimal separating automaton for J and K is a minimal assumption.

This is a joint work with Yu-Fang Chen Azadeh Farzan, Edmund M. Clarke, and Yih-Kuen Tsay.
So far, we assume that the proof rule is fixed. We only consider the following rule:

\[
\frac{M_0 \parallel A \vdash P \quad M_1 \vdash A}{M_0 \parallel M_1 \vdash P}
\]

Of course, it is not hard to establish the soundness of this rule.

- Assume \(L(M_0) \cap L(A) \subseteq L(P)\) and \(L(M_1) \subseteq L(A)\). We have \(L(M_0) \cap L(M_1) \subseteq L(M_0) \cap L(A) \subseteq L(P)\).

But there are other rules such as

\[
\frac{M_0 \parallel A_0 \vdash P \quad M_1 \parallel A_1 \vdash P \quad \overline{A_0} \parallel \overline{A_1} \vdash P}{M_0 \parallel M_1 \vdash P}
\]

And circular rules such as

\[
\frac{M_0 \parallel P_1 \vdash P_0 \quad P_0 \parallel M_1 \vdash P_1}{M_0 \parallel M_1 \vdash P_0 \parallel P_1}
\]
By identifying classes of languages as models of classical or intuitionistic logic, we can establish these rules automatically.

If you are interested, we can discuss it offline.

Coq < Goal forall M0 M1 A P : Prop,
Coq < (M0 \ A -> P) \ (M1 -> A) ->
Coq < (M0 \ M1 -> P) .
1 subgoal

=================================
forall M0 M1 A P : Prop, (M0 \ A -> P) \ (M1 -> A) -> M0 \ M1 -> P

Unnamed_thm < tauto .
Proof completed.
Conclusions

- For decades, the research community tried to devise contextual assumptions by inspecting intrinsic properties.
- These attempts fail because it is so hard to “guess” designers’ intention.
- Algorithmic learning theory however does not posit to attain intelligence.
- Instead, it reformulates the problem such that mechanical solutions are possible.
- It is indeed useful in finding contextual assumptions.
 ▶ Few people would believe it is possible a few years ago.
Can machine learning be applied to invariant generation?
 ▶ If invariants are in propositional logic, it may be possible.
 ★ There is an algorithm for learning Boolean formulae.
 ▶ For invariants in separation logic, it is unclear.
 ★ What about the fragment of symbolic heaps $\Pi|\Sigma$?

Interpolations have been used rather often recently.
 ▶ An interpolant I of A and B is a formula such that (1) $A \Rightarrow I$; and (2) $I \land B$ is a contradiction. Moreover, $\text{var}(I) \subseteq \text{var}(A) \cap \text{var}(B)$.
 ▶ Techniques for abstraction refinement have been developed.
 ▶ Is there an interpolation theorem for (fragments of) separation logic?
Thank you!