
Model Checking for
Practical C software Analysis

– Experience Reports

Moonzoo Kim
Provable Software Lab. CS Dept. KAIST

Http://pswlab.kaist.ac.kr

Prelude

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Model Checking for Practical C software
Analysis – Experience Reports 22

MathematicalMathematical
softwaresoftware

Embedded Embedded
softwaresoftware

Financial Financial
softwaresoftware

Web Web
softwaresoftware

EndEnd--useruser
softwaresoftware

Professional Cook

SISI
softwaresoftware

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Model Checking for Practical C software
Analysis – Experience Reports

33

Knife
Master

Summary of the Talk

Low Level
Device Driver

Block
Management

Sector
Translation

Demand
Paging

Manager

OS
Adapt-
ation

Module

Unified
Storage
Platform

Flash
Translation

Layer

File
System

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Model Checking for Practical C software
Analysis – Experience Reports

• The series of empirical studies on verification of
Samsung OneNAND™ flash memory FTL through
various off-the-shelf techniques
– Symbolic MC, Explicit MC, SAT-based MC, Exhaustive

testing, randomized testing and concolic testing
44

OneNAND® Flash Memory Devices

Device Driver

Contents
• Overview on Multi-sector Read Operation (MSR)

– Flash Translation Layer (FTL) scheme
– MSR algorithm

• Model Checking MSR
– Reports on the following three aspects

• Target system modeling

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Model Checking for Practical C software
Analysis – Experience Reports

• Target system modeling
• Environment modeling
• Performance analysis on the verification

• Three different types of model checkers are used
– BDD based symbolic model checking (NuSMV)
– Explicit model checking (Spin)
– C-bounded model checking (CBMC)

• Exhaustive testing and concolic testing is applied as well

55

Spin 08
paper

ICST 08
paper

SBMF 09 “Grand Challenge in
Verified Software” invited paper

ASE 08
paper

PART I: MSR Overview
• FTL basics
• Example of logical data distribution on physical unit
• Exponential increase of possible distributions
• MSR structure

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Model Checking for Practical C software
Analysis – Experience Reports 66

Logical to Physical Sector Mapping

1:N mapping from a LUN to PUNs

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Model Checking for Practical C software
Analysis – Experience Reports 77

Sector mapping

Sector Allocation Map (SAM)

• In flash memory, logical
data are distributed over
physical sectors.

Examples of Possible Data Distribution

1 0
1 1
2

3

E
AB F

C
D

3 3
0 2

3
1

Sector 0

Sector 1

Sector 2

Sector 3

PU0~PU4

(a) A distribution of

B
D

F
AC E

PU0~PU4SAM0~SAM4 SAM0~SAM4

(b) Another distribution of (c) A distribution of

1 0
1 1
2

3

B
F E A

D
C

PU0~PU4SAM0~SAM4

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Model Checking for Practical C software
Analysis – Experience Reports

• Assumptions
– there are 5 physical units
– each unit has 4 sectors
– each sector is 1 byte long

88

(a) A distribution of
“ABCDEF”

(b) Another distribution of
“ABCDEF”

(c) A distribution of
“FEDCBA”

Exponential Increase of Distribution Cases

1.00E+13

1.00E+14
Possible cases

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Model Checking for Practical C software
Analysis – Experience Reports 99

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

1.00E+12

5 10 15 20

of

 p
os

si
bl

e
ca

se
s

A number of physical units

5
6
7
8

Loop Structure of MSR
01:curLU = LU0;
02:while(numScts > 0) {
03: readScts = # of sectors to read in the current LU
04: while(readScts > 0) {
05: curPU = LU->firstPU;
06: while(curPU != NULL) {
07: while(...) {

Loop1: iterates over LUs

Loop2: iterates until the current LU is read completely

Loop3: iterates over PUs linked to the current LU

Loop4: identify consecutive PS’s in the current PU

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Model Checking for Practical C software
Analysis – Experience Reports 1010

07: while(...) {
08: conScts = # of consecutive PS’s to read in curPU
09: offset = the starting offset of these consecutive PS’s in curPU
10: }
11: BML_READ(curPU, offset, conScts);
12: readScts = readScts - conScts;
13: curPU = curPU->next;
14: }
15: }
16: curLU = curLU->next;
17:}

Loop4: identify consecutive PS’s in the current PU

PART II: Model Checking Exp.
• Verification of MSR by using NuSMV, Spin, and CBMC

– NuSMV: BDD-based symbolic model checker
– Spin: Explicit model checker
– CBMC: C-bounded model checker

• The requirement property is to check

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Model Checking for Practical C software
Analysis – Experience Reports

– after_MSR -> (∀i. logical_sectors[i] == buf[i])
• We compared these three model checkers empirically

1111

Verification by NuSMV
• NuSMV was the first choice as a verification tool, since

1. BDD-based symbolic model checkers have been
known to handle large state spaces

2. MSR operates with a semi-random environment (i.e. all
possible configurations of PUs and SAMs analyzed)

3. Data structure of MSR can be abstracted in a simple

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Model Checking for Practical C software
Analysis – Experience Reports

3. Data structure of MSR can be abstracted in a simple
array form with assignments and equality checking
operations only

4. MSR is a single-threaded software

1212

Target Model Creation in NuSMV
• We had to introduce control points variables, since

– C is control-flow based
– NuSMV modeling language is dataflow-based

• Linked list is replaced by an array operation.
– Array index variables should be statically expanded, since NuSMV

does not support index variables
• As a result, the final NuSMV model is more than 1000 lines long

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Model Checking for Practical C software
Analysis – Experience Reports 1313

Modeling in NuSMV (2/2)
•• Environment modelEnvironment model creation

– The environment of MSR (i.e., PUs and SAMs configurations) can be
described by invariant rules. Some of them are

1. One PU is mapped to at most one LU
2. Valid correspondence between SAMs and PUs:

If the i th LS is written in the k th sector of the j th PU, then the i th
offset of the j th SAM is valid and indicates the k’th PS ,

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Model Checking for Practical C software
Analysis – Experience Reports 1414

offset of the j th SAM is valid and indicates the k’th PS ,
Ex> 3rd LS (‘C’) is in the 3rd sector of the 2nd PU, then SAM1[2] ==2

i=3 k=3 j=2
3. For one LS, there exists only one PS that contains the value of the LS:

The PS number of the i th LS must be written in only one of the (i mod
4) th offsets of the SAM tables for the PUs mapped to the
corresponding LU.

1 0
1 1
2

3

E
AB F

C
D

Sector 0

Sector 1

Sector 2

Sector 3

PU0~PU4SAM0~SAM4

Verification Performance of NuSMV

100

1000

10000

100000

S
ec

on
ds 5

6

7

0

100

200

300

400

500

600

M
ag

ab
yt

es 5
6
7

A length
of data

A length
of data

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Model Checking for Practical C software
Analysis – Experience Reports

• Verification was performed on the machine equipped with
Xeon5160 (3Ghz, 32Gbyte Memory), 64 bit Fedora Linux 7, NuSMV
2.4.3

• The requirement property was proved correct for all the
experiments (i.e., MSR is correct in this small model)
• For 7 sectors long data that are distributed over 7 PUs consumes

more than 11 hours while consuming 550 mb memory
1515

100
5 6 7 8

A number of physical units

0
5 6 7 8

A number of physical units

(a) Time consumption (b) Memory consumption

Performance Analysis

• The MSR model (5 LS’s and 5 PUs) has 365 BDD variables
for its symbolic representation
– At least 240 BDD variables are required for PUs and SAMs

• 5 (# of PUs) x 4 (sectors/PU) x 2 (current/next) x 3 (bits)
• The same MSR model generated 1.2 million BDD nodes.

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Model Checking for Practical C software
Analysis – Experience Reports

• The same MSR model generated 1.2 million BDD nodes.
• Dynamic reordering takes more than 90% of total

verification time
– Time is the bottleneck in this NuSMV verification task

1616

Modeling by Spin
• A target model

– Translated from the MSR C code through Modex which is an
automated C-to-Promela translator with embedded C statements

• Modex translates MSR into the same 4 level-nested loop control
structure

• An environment model
– PUs and SAMs, which takes most of memory, are tracked, but not

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Model Checking for Practical C software
Analysis – Experience Reports

– PUs and SAMs, which takes most of memory, are tracked, but not
stored in the state vector through a data abstraction technique
• c_track keyword and Unmatched parameter
• Based on the observation that SAMs and PUs are sparse
• Only a unique signature of the current state of PUs and SAMs is

stored succinctly
– <(0,1),(1,1),(1,2),(2,3),(3,0),(4,1)>
is the signature of the following
PUs and SAMs configuration

1717

1 0
1 1
2

3

E
AB F

C
D

Sector 0

Sector 1

Sector 2

Sector 3

PU0~PU4SAM0~SAM4

Verification Performance of Spin

1

10

100

1000

10000

S
ec

on
ds

5(abs)
6(abs)
7(abs)
8(abs)
5
6
7
8

A length
of data

100

1000

10000

100000

M
eg

ab
yt

es

5(abs)
6(abs)
7(abs)
8(abs)
5
6
7
8

A length
of data

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Model Checking for Practical C software
Analysis – Experience Reports

• The requirement property was satisfied
• The data abstraction technique shows significant performance

improvement upto 78% of memory reduction and 35% time
reduction (for 5 logical sectors data)

1818

1
5 6 7 8 9 10

A number of physical units

8
100

5 6 7 8 9 10
A number of physical units

8

(a) Time consumption (b) Memory consumption

Modeling by CBMC
• CBMC does not require an explicit target model creation
• An environment for MSR was specified using assume

statements and the environment model was similar to the
environment model in NuSMV

• For the loop bounds, we can get valid upper bounds from
the loop structure and the environment setting

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Model Checking for Practical C software
Analysis – Experience Reports

the loop structure and the environment setting
– The outermost loop: L times (L is a # of LUs)
– The 2nd outermost loop: 4 times (one LU contains 4 LS’s)
– The 3rd outermost loop: M times

(M is a # of PUs)
– The innermost loop: 4 times

(one PU contains 4 PS’s)

1919

1 0
1 1
2

3

E
AB F

C
D

Sector 0

Sector 1

Sector 2

Sector 3

PU0~PU4SAM0~SAM4
L=2, M=5

Verification Performance of CBMC

100.0

1000.0

10000.0

S
ec

on
ds 5

6

7

8

A length
of data

100

1000

M
eg

ab
yt

es 5

6

7

8

A length
of data

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Model Checking for Practical C software
Analysis – Experience Reports

• Exponential increase in both time and memory. However, the
slope is much lower than those of NuSMV and Spin, which makes
CBMC perform better for large problems

• A problem of 10 PUs and 8 LS’s has 8.6x105 variables and 2.9 x 106

clauses.

2020

10.0
5 6 7 8 9 10

A number of physical units

8

10
5 6 7 8 9 10

A number of physical units
(a) Time consumption (b) Memory consumption

Performance Comparison

10000

100000

Se
co

nd
s

Time complexity LS = 6

10000

100000

M
eg

ab
yt

es

Space complexity LS = 6

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Model Checking for Practical C software
Analysis – Experience Reports 2121

10

100

1000

5 6 7 8 9 10

Se
co

nd
s

A number of physical units

Spin
NuSMV
CBMC

10

100

1000

5 6 7 8 9 10
M

eg
ab

yt
es

A number of physical units

Spin
NuSMV
CBMC

Comparison of Model Checking Techniques

• Application of Model Checking to Industrial SW Project
– Current off-the-shelf model checkers showed their

effectiveness to debug a part of industrial software, if a
target portion is carefully selected

– Although model checker worked on a small scale problem,
it still contributes due to its exhaustive exploration which is

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Model Checking for Practical C software
Analysis – Experience Reports 2222

it still contributes due to its exhaustive exploration which is
complementary to the testing result

• Comparison among the Three Model Checkers
Modeling
Difficulty

Memory
Usage

Verification
Speed

NuSMV Most difficult Good Slow
Spin Medium difficult Poor Fast

CBMC Easiest Best Fastest

Part III: Experiments on Testing MSR

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Model Checking for Practical C software
Analysis – Experience Reports 2323

Exhaustive Testing
• Exhaustive testing on a small flash

– We developed a testing environment and an abstracted version of
MSR(), called S_MSR()

– The reuse of formal environment models reduces the testbed setup
time

– Exhaustive testing is roughly 6 times faster than CBMC

100,000

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Model Checking for Practical C software
Analysis – Experience Reports 2424

0

1

10

100

1,000

10,000

100,000

5 10 15 20

Se
co

nd
s

A number of physical units

6

A length of
data to read
(in sectors)

Randomized Testing
• Randomized testing on a large flash

– Model checking and exhaustive testing cannot handle a large flash
• We cannot find a bug on a large flash

– We performed randomized testing on 1011 randomly chosen cases
with 6 sectors long data distributed over 1000 PUs

• This takes 8 hours 20 minutes
– This test cover only cases among all possible cases11109.3

1
´

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Model Checking for Practical C software
Analysis – Experience Reports 2525

– This test cover only cases among all possible cases
– 1GB flash has more than 219 (a half million) physical units

• 219 units * 4 sector/unit * 512 bytes/sector
=> Randomized testing cannot provide sufficient coverage ever

11109.3
1
´

Concolic (CONCrete + symbOLIC) Testing

• Automated Scalable Unit Testing of real-world C Programs
– Execute unit under test on automatically generated test inputs so

that all possible execution paths are explored
• Explicit path model checking

• In a nutshell
– Use concrete execution over a concrete input to guide symbolic

execution

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Model Checking for Practical C software
Analysis – Experience Reports

execution
• A symbolic path formula is obtained at the end of an execution

– One branch condition of the path formula is negated to generate the
next execution path

– The next execution path formula is solved by SMT solver to
generate concrete input values, and so on

– No false positives or scalability issue like in model checking

2626

Constraint-based Environment Model
• We have to specify symbolic

variables and put constrain
them
– If assigned input value

does not satisfy the
constraints (i.e. invalid test
case generated), a current

for (i=0; i<NUM_PUN; i++){ for (j=0; j<SECT_PER_U; j++){
CREST_unsigned_char(pun[i].sect[j]);
CREST_unsigned_char(SAM[i].offset[j]); } }

for (i=0; i<NUM_LS_USED; i++){
for (j=0; j<NUM_PUN; j++){

for (k=0; k<SECT_PER_U; k++){
if (pun[j].sect[k] == 'a'+i){

if (i < SECT_PER_U && j < NUM_PUN_LUN0 ||
SECT_PER_U <= i && j >= NUM_PUN_LUN0){
valid[i] = 1;

}else{ goto OUT; }

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Model Checking for Practical C software
Analysis – Experience Reports

case generated), a current
iteration terminates
immediately without testing
MSR (goto out);

2727

}else{ goto OUT; }
}else continue;
if (!(!('a' + i == pun[j].sect[k]) ||

(SAM[j].offset[((i>=SECT_PER_U)?
(i-SECT_PER_U):i)]==k)

)){ goto OUT; }

for (p=0; p < NUM_PUN; p++){
if(p != j) {

if (!(!('a' + i == pun[j].sect[k]) ||
!((i < SECT_PER_U && p < NUM_PUN_LUN0) ||

(SECT_PER_U <= i && p >=NUM_PUN_LUN0))
|| (SAM[p].offset[((i>=SECT_PER_U)?

(i-SECT_PER_U):i)]== 0xFF)
)){ goto OUT; } } } } }}

6.00.E+06

8.00.E+06

1.00.E+07

1.20.E+07

1.40.E+07

1.60.E+07

of

 T
es

t C
as

es

Result with Constraint-based Model (1/2)

0.00.E+00

2.00.E+06

4.00.E+06

4 PUs w/
5 LSes

4 PUs w/
6 LSes

5 PUs w/
5 LSes

5 PUs w/
6 LSes

of

 T
es

t C
as

es

(a) Total number of test cases generated (b) Ratio of valid test cases/all test cases

60%
70%
80%
90%

100%

Ex
ec

ut
io

n
Ti

m
e

R
at

io
 (%

)

Concolic
exe1000

10000

100000
5 LS CREST Constraint

5 LS CBMC

6 LS CREST Constraint

6 LS CBMC

Result with Constraint-based Model (2/2)

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Model Checking for Practical C software
Analysis – Experience Reports

0%
10%
20%
30%
40%
50%
60%

4 PUs w/
5 LSes

4 PUs w/
6 LSes

5 PUs w/
5 LSes

5 PUs w/
6 LSes

Ex
ec

ut
io

n
Ti

m
e

R
at

io
 (%

)

exe

Yices

System
exe

(a) Total analysis time (b) Time ratio of analysis steps

1

10

100

1000

4 PUs 5 PUs 6 PUs 7 PUs 8 PUs

Ti
m

e(
s)

Explicit Environment Model
• Explicit

environment
model create
invalid test
cases much
less than the

01:for (i=0; i< NUM_LS; i++){
02: unsigned char idxPU, idxSect;
03: CREST_unsigned_char(idxPU);
04: CREST_unsigned_char(idxSect);
05: ...
06: //The switch statements encode the following two
statements:
07: // PU[idxPu].sect[idxSect]= LS[i];

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Model Checking for Practical C software
Analysis – Experience Reports

less than the
constraint-
based model

• CREST has a
limitation on
array index
variable

3030

07: // PU[idxPu].sect[idxSect]= LS[i];
08: // SAM[idxPu].sect[i]= idxSect;
09: switch(idxPU){
10: case 0: switch(idxSect) {
11: case 0: PU[0].sect[0] = LS[i];
12: SAM[0].offset[i] = idxSect; break;
13: case 1: PU[idxPU].sect[1] = LS[i];
14: SAM[0].offset[i] = idxSect; break;
15: ... }
16: break;
17: case 1: switch(idxSect) {

5.00.E+05

1.00.E+06

1.50.E+06

2.00.E+06

2.50.E+06

3.00.E+06

of

 T
es

t C
as

es

10%

20%

30%

40%

50%

60%

70%

Va
lid

 T
es

t C
as

e
R

at
io

(%
)

Result with Explicit Model (1/2)

0.00.E+00

5.00.E+05

4 PUs w/
5 LSes

4 PUs w/
6 LSes

5 PUs w/
5 LSes

5 PUs w/
6 LSes

0%

10%

4 PUs w/ 5
LSes

4 PUs w/ 6
LSes

5 PUs w/ 5
LSes

5 PUs w/ 6
LSes

Va
lid

 T
es

t C
as

e
R

at
io

(a) Total number of test cases generated (b) Ratio of valid test cases/all test cases

60%
70%
80%
90%

100%

Ex
ec

ut
io

n
Ti

m
e

R
at

io
 (%

)

Concolic
exe

10000

100000
5 LS CREST Explicit

5 LS CBMC

6 LS CREST Explicit

6 LS CBMC

Result with Explicit Model (2/2)

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Model Checking for Practical C software
Analysis – Experience Reports

(a) Total analysis time (b) Time ratio of analysis steps

0%
10%
20%
30%
40%
50%
60%

4 PUs w/
5 LSes

4 PUs w/
6 LSes

5 PUs w/
5 LSes

5 PUs w/
6 LSes

Ex
ec

ut
io

n
Ti

m
e

R
at

io
 (%

)

exe

Yices

System
exe

1

10

100

1000

4 PUs 5 PUs 6 PUs 7 PUs 8 PUs

Ti
m

e(
s)

6 LS CBMC

Overall Observations
• There are multiple useful off-the-shelf analysis tool to

improve the reliability of target C programs in practice
– Knowing characteristics of them and underlying

mechanisms is essential for successful analysis
• Systematic heuristics techniques for searching “XXX”

space are important

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Model Checking for Practical C software
Analysis – Experience Reports

space are important
– Good tradeoff between completeness and effectiveness

• Abstract environment modeling is very important for in-
depth target system analysis
– This area still largely relies on human expertise

3333

Lessons Learned
• Necessity of Benchmarks for the purpose of SW

analysis
– To encourage comparative studies of various analysis

methods
• Importance of target application selection

– Several restrictions from industrial partner

Moonzoo Kim et al
Provable SW Lab. CS Dept.

Model Checking for Practical C software
Analysis – Experience Reports

– Several restrictions from industrial partner
– Open source target application

• SMT techniques have large rooms for improvement
– Pos: You can join the competition now !!!
– Cons: You may better to use other analysis engine, at

least in a few years

3434

