
/ 16Hong,Shin @ PSWLAB

Concurrency Bug Detection through Improved Pattern Matching

Using Semantic Information

Hong,Shin

Provable Software Laboratory

CS Dept. KAIST

2009-07-14 1Concurrency Bug Detection by Bug Pattern Matching

/ 16Hong,Shin @ PSWLAB

Overview

2009-07-14 Concurrency Bug Detection by Bug Pattern Matching 2

Linux file system code

Reported bug survey

Common bug patterns

Automated debugging technique

Level of

Abstraction

Linux file system verification

Concurrency Bug

Classification

Syntactic Bug Patterns

Semantic Bug Patterns

Change Log & Code

Review

• Goal: Code-based automatic concurrency bug detection for large size

concurrent programs

• Idea: Automatically detect common concurrency bugs using

both syntactic and semantic code pattern matching

/ 16Hong,Shin @ PSWLAB

Introduction

• Pattern-based analysis
– Pros:

• No state explosion problem

• Early detection is possible(High coverage, Architecture-specific codes)

• No manual abstract model construction

– Cons:

• Pattern descriptions

• False alarm

2009-07-14 Concurrency Bug Detection by Bug Pattern Matching 3

Accuracy
of bug report

Scalability

Testing
Model

Checking

Pattern-
based

analysis

/ 16Hong,Shin @ PSWLAB

Concurrency Bug Classification 1/2

2009-07-14 Concurrency Bug Detection by Bug Pattern Matching 4

Bug02 (reported in Linux change log 2.6.6 /fs/dcache.c)

- Symptom: Data race (inconsistent data structure)

The statistics information of the number of unused dentry might be smaller

than actual number.

- Cause: Inconsistency

- Fault: Violate synchronization idioms

The programmer assumed that “dentry->d_count” is protected by “dcache_lock”.

But this assumption is incorrect. “dentry->d_count” is not protected by any lock.

“denty->d_count” must be protected by atomic_inc_and_test().

- Synchronization mechanism: Atomic instruction

- Lock granularity: Inode

• Example – Bug02

/ 16Hong,Shin @ PSWLAB

Concurrency Bug Classification 2/2

2009-07-14 Concurrency Bug Detection by Bug Pattern Matching 5

Cause
Symptom

Performance improvement Inconsistency Incompleteness

Data race
(Machine exception)

Bug09, Bug04,
Bug19

Bug11, Bug15

Data race
(Inconsistent

data structure)

Bug01, Bug02
Bug16, Bug18

Bug13, Bug14, Bug21,
Bug22, Bug07

Deadlock Bug24,Bug25 Bug23

Livelock Bug03

• Symptom / Cause

Lock
granularity

Sync.
Mechanism

Kernel File system File Inode

Instruction Bug02 Bug18, Bug11

Barrier Bug14

Thread creation/join Bug13

Mutex Bug03, Bug15, Bug21,
Bug22, Bug23, Bug25

Bug01, Bug07,
Bug09

Bug19

Semaphore Bug24 Bug16

Readers/writer lock Bug04

• Lock granularity / Synchronization mechanism

/ 16Hong,Shin @ PSWLAB

Concurrency Bug Patterns 1/5

• Based on the analysis result of previously reported concurrency bugs, we

construct bug patterns in order to detect similar unrevealed bug

automatically.

• We abstract 6 bug patterns:
(1) Misused of “Test and Test-and-Set”

(2) Unexpected BKL releasing

(3) Unlock before I/O operations

(4) Absence of “get”/”put” function invocations

(5) Unsynchronized communication at thread creations

• We formalize two bug patterns and then construct automatic bug

detection tool using syntactic analyzer(parser) for the two bug patterns.

– The tools detects suspected bugs in recent Linux file system codes.

– The tools are built on EDG C/C++ front-end.

2009-07-14 Concurrency Bug Detection by Bug Pattern Matching 6

/ 16Hong,Shin @ PSWLAB

Concurrency Bug Patterns 2/5
• Misused “Test and Test-and-Set” bug pattern

2009-07-14 Concurrency Bug Detection by Bug Pattern Matching 7

int data; /*shared data*/

int func(){
if (test(data)) { /*test*/
lock () ;
if (test(data)) { /*test&set*/
data = newvalue ;

}
unlock () ;
}

} /* Correct Code */

int data; /*shared data*/

int func(){
if (test(data)){ /*test*/

lock() ;
data = newvalue ;
unlock() ;

}
}

/* Buggy Code */

• Related bug in Linux Kernel 2.6.11.10. (Bug07 in the bug list)

/fs/ext3/balloc.c :: void ext3_discard_reservation()

void ext3_discard_reservation(struct inode *inode)
{

if(!rsv_is_empty(&rsv->rsv_window))
{
/*if (!rsv_is_empty(&rsv->rsv_window)) must be here */

spin_lock(rsv_lock);
rsv_window_remove(inode->i_sb,rsv);
spin_unlock(rsv_lock);

}
}

/ 16Hong,Shin @ PSWLAB

Concurrency Bug Patterns 5/5

– Bug detection result (Linux 2.6.26)
• We verifies 8 naive file systems in Linux using the bug pattern detection tool.

In the verification, we found total 35 bug candidates.

2009-07-14 Concurrency Bug Detection by Bug Pattern Matching 8

Ext2 Ext3 Ext4 NFS ReiserFS Proc Sysfs UDF Total

of suspected

bugs
2 3 6 11 7 1 1 4 35

of files 18 24 23 34 26 20 9 17 171

LOC 28K 104K 25K 56K 27K 18K 37K 9K 304K

Time(sec) 2.338 3.849 4.306 6.420 4.454 2.525 1.029 2.689 27.610

/* In Linux kernel 2.6.26 /fs/nfs/nfs4state.c */
static void nfs4_drop_state_owner(struct nfs4_state_owner *sp)
{

if (!RB_EMPTY_NODE(&sp->so_client_node)) {
struct nfs_client *clp = sp->so_client;
spin_lock(&clp->cl_lock);
rb_erase(&sp->so_client_node, &clp->cl_state_owners);
RB_CLEAR_NODE(&sp->so_client_node);
spin_unlock(&clp->cl_lock);

}
}

/ 16Hong,Shin @ PSWLAB

Improved Bug Pattern Matching 1/6

• We improve the bug pattern matching using semantic information to refine the bug

detection results.

2009-07-14 Concurrency Bug Detection by Bug Pattern Matching 9

Program behavior
(reachable states)

Safe states (no error)

State space Syntactic bug pattern

Syntactic
bug pattern

Syntactic
bug pattern

Syntactic
bug pattern

Semantic
bug

pattern

Semantic
bug

pattern

Semantic
bug

pattern

Semantic bug pattern

• We validates the bug detection results by syntactic bug pattern matching manually. There

are the following main sources of false positives.

– No parallel thread to race  Multiple code pattern matching

– Synchronized by other locks  Lock analysis

– Shared variable initializations without holding locks  Simple points-to analysis

/ 16Hong,Shin @ PSWLAB

Improved Bug Pattern Matching 2/6

Multiple code pattern matching (thread sensitive analysis)

• There are at least two thread executions in one concurrency error execution.

• We extend the syntactic bug patterns to match multiple code patterns for a bug

detection rather than single code pattern matching.

– The syntactic bug pattern match would be false positive if there is no code which can be executed

concurrently to generate concurrency errors.

– We assume that two pointers of the same type may point to the same memory address.

2009-07-14 Concurrency Bug Detection by Bug Pattern Matching 10

Code

pattern

match#1

Code

pattern

match #2

Error

execution

/ 16Hong,Shin @ PSWLAB

Improved Bug Pattern Matching 3/6

2009-07-14 Concurrency Bug Detection by Bug Pattern Matching 11

Code pattern #1

if (expr) { /* expr accesses x */

lock(m) ;
/* no if(expr) here*/
...
unlock(m) ;

}

Code pattern #2

write(x) ;

• Extended misused “Test and Test-and-Set” bug pattern

proc_get_sb() {
…

ei = PROC_I(sb->s_root->d_inode);
if (!ei->pid) {

rcu_read_lock();
ei->pid = get_pid(find_pid_ns(1,ns));
rcu_read_unlock();

}
…

}

Code pattern #1

proc_alloc_inode() {
…

ei = kmem_cache_alloc(proc_inode_cachep,…
if (!ei) return NULL ;
ei->pid = NULL ;

proc_get_sb() {
…

if (!ei->pid) ei->pid = find_get_pid(1) ;

Code pattern #2

Ex. Linux 2.6.26 /fs/proc

• Match 2-2

• Match 2-1• Match 1-1

/ 16Hong,Shin @ PSWLAB

Improved Bug Pattern Matching 4/6

2009-07-14 Concurrency Bug Detection by Bug Pattern Matching 12

Code

pattern

match#1

Code

pattern

match #2

Lock analysis

• We applied lock analysis to compute the set of locks held when a code pattern match is

executed. This approach is similar to RacerX approach.

– Inter-procedural, flow-sensitive, path-insensitive, alias-insensitive analysis

– We assume that the specification of lock acquiring/releasing functions are specified.

– We assume that a thread can be started from one of system call routines.

– We assume that two lock variables of the same type can point to the same memory address.

Lock(A)

Lock(B)

Unlock(A)

Lock(A)

LS = {A}

LS = {B}

/ 16Hong,Shin @ PSWLAB

Improved Bug Pattern Matching 5/6

2009-07-14 Concurrency Bug Detection by Bug Pattern Matching 13

proc_alloc_inode() {
…

ei = kmem_cache_alloc(… ;
if (!ei) return NULL ;
ei->pid = NULL ;

proc_get_sb() {
…

if (!ei->pid)
ei->pid = find_get_pid(1) ;

Lockset:

{lock_kernel}

sys_mount()

do_mount()

do_new_mount()

do_kern_mount()

vfs_kern_mount()

proc_get_sb() {

…
ei = PROC_I(sb->s_root->d_inode);
if (!ei->pid) {
rcu_read_lock();
ei->pid=get_pid(find_pid_ns(1,ns));
rcu_read_unlock();
}

…

sys_mount()

do_mount()

do_new_mount()

do_kern_mount()

vfs_kern_mount()

compat_sys_futimesat()

__user_walk_fd()

__emul_lookup_dentry()

do_utimes()

do_path_lookup()

Lockset:

{lock_kernel}
Lockset:

{inode.i_mutexl}

acquire lock_kernel() acquire lock_kernel()

acquire inode.i_mutex

real_lookup()

• Code pattern match 1-1 • Code pattern match 2-1 • Code pattern match 2-2

/ 16Hong,Shin @ PSWLAB

Improved Bug Pattern Matching 4/6

Points-to analysis

• Many programmers initialize a newly allocated heap variable before it becomes shared

variable without any synchronization. However, this initialization is recognized as buggy code

in the bug pattern matching for the lack of alias-sensitive analysis.

• We apply simple intra-procedural points-to analysis to remove the false positives caused by

unshared heap variable initialization.
– We assume that dynamic memory allocation functions are specified as fmalloc (e.g. kmalloc())

– We assume that a newly allocated heap variable becomes shared when its address is assigned to

other shared variable.

– The algorithm for checking initialization without locking is as follow.

For each function func where a code pattern matches, access to a variable x at location l cannot be

involved in concurrency error if

1. There exists x = alloc() where alloc 2 fmalloc at location i where 0 · i < l , and

2. There is no y = x at location j where i < j < l and y is expected to be a shared variable.

2009-07-14
Concurrency Bug Detection through Improved Pattern Matching

using Semantic Information
14

Ex. Match 2-2
0: proc_alloc_inode() {
1: ...
2: ei = kmem_cache_alloc(proc_inode_cachep,…;
3: if (!ei) return NULL ;
4: ei->pid = NULL ;

...

kmem_cache_alloc 2 fmalloc

@ j (0 < j < 4). y = ei ;

/ 16Hong,Shin @ PSWLAB

Improved Bug Pattern Matching 6/6

2009-07-14 Concurrency Bug Detection by Bug Pattern Matching 15

Bug detection result

Ext2 Ext3 Ext4 NFS ReiserFS Proc Sysfs UDF Total

of suspected
bugs

by syntactic
bug pattern
matching

2 3 6 11 7 1 1 4 35

of suspected
bugs

by improved
bug pattern
matching

1 3 3 7 2 0 0 3 19

of files 18 24 23 34 26 20 9 17 171

LOC 546K 619K 708K 737K 718K 442K 490K 553K 4813K

Further improvement- Checking exclusive path conditions
• Extract a set of syntactic path conditions for execution path to each code pattern match

• For two code pattern matches m1 and m2 , it may be false positive if

9c1,c2. c12 PCm1 Æ c2 2 PCm2 Æ exclusive(c1, c2)

• exclusive() compares c1 and c2 to a set of syntactic templates of exclusive conditions.

e.g. exclusive(x,y) is true for following cases:

(“a == b” , “a != b”), (“!a”, “a”), (“a>b”, “a<b”), (“a>b”, “b>a”),

(“a && b”, “!a”), (“a && b”, “!b”), (“!(a||b)”, “a”), (“!(a||b)”, “b”) , etc.

/ 16Hong,Shin @ PSWLAB

Related work
• Pattern-based bug detection

– MetaL (by D. Engler et al. @ Stanford)

– FindBugs (by W.Pugh et al. @ Univ.Maryland)

– ConTest (by IBM Haifa Lab.)

– Learning from mistakes (by Opera group @ UIUC)

• Static concurrency bug detection

– RacerX (by D. Engler et al. @ Stanford): Static analysis to check lock discipline(data

race) and lock ordering constraints (deadlock)

– RELAY (by R. Jhala et al. @ UCSD): Scalable, lock-sensitive analysis tool for

detection data race bugs from concurrent C programs with false alarm

restriction heuristics.

2009-07-14 Concurrency Bug Detection by Bug Pattern Matching 16

/ 16Hong,Shin @ PSWLAB2009-07-14 Concurrency Bug Detection by Bug Pattern Matching 17

