
Comparison between SAT and SMT as

a Software Analysis Engine

Presented by Yunho Kim
Provable Software Laboratory

CS Dept. KAIST

2 / 30

Introduction

Yunho Kim@ pswlab Comparison between SAT and SMT

as a Software Analysis Engine

SAT &

SMT

Test case
Generation

Bounded
Model

Checking

Predicate
Abstraction

3 / 30

Satisfiability Modulo Theory(1/2)

Yunho Kim@ pswlab Comparison between SAT and SMT

as a Software Analysis Engine

SAT

Theories

SMT

 Arithmetic

 Bit-vectors

 Arrays

 …

4 / 30

Satisfiability Modulo Theory(2/2)

Yunho Kim@ pswlab Comparison between SAT and SMT

as a Software Analysis Engine

x+2 = y) f(select(store(a, x, 3), y – 2) = f(y-x+1)

Arithmetic

Array Uninterpreted

Function

5 / 30

C Bounded Model Checking

Yunho Kim@ pswlab Comparison between SAT and SMT

as a Software Analysis Engine

Program

Claim

UNSAT

(no C.E. found)

SAT

(C.E. exists)

CNF

1 int main(){

2 int a[2], i, x;

3 if (x==0)

4 a[i] = 0;

5 else

6 a[i+2]=1;

7 assert(a[i+1]==1);

8 }

1 guard1 == (x0 == 0)

2 a1 == (a0 WITH [i0:=0])

3 a2 == a0
4 a3 == (a2 WITH [2+i0:=1])

5 a4 == (guard1 ? a1 : a3)

6 t1 == (a4[1+i0]==1)

Constraints

(:x4 Ç :x36)Æ

(:x5 Ç :x36)Æ
…

(:x134 Ç : x135)Æ

(x38 Ç :x135)Æ

(x134 Ç :x38 Ç x135)Ç
…

6 / 30

Encoding Approach(1/2)

 Bit-level encoding

 Every bit is represented individually

 Word-level encoding

 E.g., unbounded integers

 Bit-vector encoding

 Captures true semantics of hardware and software

 Has more structures for abstraction than with bits

Yunho Kim@ pswlab Comparison between SAT and SMT

as a Software Analysis Engine

7 / 30

Encoding Approach(2/2)

Yunho Kim@ pswlab Comparison between SAT and SMT

as a Software Analysis Engine

1 guard1 == (x0 == 0)

2 a1 == (a0 WITH [i0:=0])

3 a2 == a0
4 a3 == (a2 WITH [2+i0:=1])

5 a4 == (guard1 ? a1 : a3)

6 t1 == (a4[1+i0]==1)

Bit-level encoding
(:x4 Ç :x36)Æ

(:x5 Ç :x36)Æ
…

(:x134 Ç : x135)Æ

(x38 Ç :x135)Æ
…

Word-level encoding
(guard1  x0 = 0) Æ
a1 = store(a, i0, 0) Æ

…

(T1  select(a4, 1+i0)=1)

Bit-vector encoding
(guard1  x0 = bv0[32]) Æ
a1 = store(a, i0, bv0[32]) Æ

…

(T1  select(a4,(bvadd bv1[32] i0))

=bv1[32])

8 / 30

Benchmark

 We benchmark three examples to compare each

encoding scheme

 Insertion sort (20LOC, 2-level loop)

 Binary search (54LOC, 1-level loop)

 Multi-sector read function in the proprietary flash device driver

(157LOC, 4-level loop)

 We use four state-of-the-art SAT and SMT solvers

 MiniSAT 1.14(integrated with CBMC)

 Z3 (2008 SMT-competition winner of linear arithmetic category)

 Yices

 Boolector (2008 SMT-competition winner of bit-vector category)

Yunho Kim@ pswlab Comparison between SAT and SMT

as a Software Analysis Engine

9 / 30

Results(1/2)

Yunho Kim@ pswlab Comparison between SAT and SMT

as a Software Analysis Engine

Sort_5 Sort_7 Search_5 Search_7

Bit-level MiniSAT 17.4 53.1 8.8 23.5

Word-level Yices 2.5 5.5 1.8 4.5

Word-level Z3 0.8 1.1 2.9 3.6

Bit-vector Yices 9.6 14.9 4.2 12.4

Bit-vector Z3 6.5 19.7 8.2 11.4

Bit-vector Boolector 3.8 17.5 6.6 13.5

0.0

10.0

20.0

30.0

40.0

50.0

60.0

S
o

lv
in

g
 t

im
e
(s

)

Comparison of solving time
Insertion sort and binary search

10 / 30

Results(2/2)

Yunho Kim@ pswlab Comparison between SAT and SMT

as a Software Analysis Engine

MSR_4_5 MSR_4_6

Bit-level MiniSAT 8.6 15.8

Word-level Yices 85.1 359.7

Word-level Z3 16.1 76.3

Bit-vector Yices 293.4 270.4

Bit-vector Z3 141.4 486.4

Bit-vector Boolector 1196.8

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

S
o

lv
in

g
 t

im
e
(s

)

Comparison of solving time
MSR in flash device driver

11 / 30

Conclusion

 SAT & SMT is a hot issue in software verification

 Constraint encoding scheme can vary solving

performance dramatically

 We need to investigate more efficient encoding method to

improve scalability

Yunho Kim@ pswlab Comparison between SAT and SMT

as a Software Analysis Engine

