Comparison between SAT and SMT as a Software Analysis Engine

Presented by Yunho Kim

Provable Software Laboratory CS Dept. KAIST

Introduction

Yunho Kim@ pswlab

Arithmetic

 $x+2 = y \Rightarrow f(select(store(a, x, 3), y-2) = f(y-x+1)$

Array

Uninterpreted Function

Yunho Kim@ pswlab

C Bounded Model Checking

Yunho Kim@ pswlab

Encoding Approach(1/2)

- Every bit is represented individually
- Word-level encoding
 - E.g., unbounded integers
- Bit-vector encoding
 - Captures true semantics of hardware and software
 - Has more structures for abstraction than with bits

Encoding Approach(2/2)

Benchmark

We benchmark three examples to compare each encoding scheme

- Insertion sort (20LOC, 2-level loop)
- Binary search (54LOC, 1-level loop)
- Multi-sector read function in the proprietary flash device driver (157LOC, 4-level loop)
- We use four state-of-the-art SAT and SMT solvers
 - MiniSAT 1.14(integrated with CBMC)
 - Z3 (2008 SMT-competition winner of linear arithmetic category)
 - Yices
 - Boolector (2008 SMT-competition winner of bit-vector category)

Results(1/2)

Yunho Kim@ pswlab

Results(2/2)

Comparison of solving time MSR in flash device driver

Yunho Kim@ pswlab

Comparison between SAT and SMT as a Software Analysis Engine

10/30

Conclusion

SAT & SMT is a hot issue in software verification

- Constraint encoding scheme can vary solving performance dramatically
- We need to investigate more efficient encoding method to improve scalability