
Abstract Parsing for Two-staged Languages
with Concatenation

2009/07/10

Soonho Kong Wontae Choi Kwangkeun Yi

Programming Research Lab.
Seoul National University

{soon,wtchoi,kwang}@ropas.snu.ac.kr

2nd Workshop

/62

Why?

2

Why should I Listen to You?

/62

Why?

3

Abstract Parsing is
a powerful static analysis technique

which has many applications.

/624

Abstract
Interpretation LR Parsing

Why Powerful?

Abstract Parsing
Combine Two Powerful Techniques

/625

Why Powerful?

Many Applications

• Syntax Check of Generated Programs
in Two-Staged Languages

• Shape Analysis using Abstract Parsing

• Proof Carrying Code Framework
for Program Generators

/626

Why Powerful?

Many Applications

• Syntax Check of Generated Programs
in Two-Staged Languages

• Shape Analysis using Abstract Parsing

• Proof Carrying Code Framework
for Program Generators

/62

Motivation

• Two-staged languages with Concatenation:
Program generates programs

• Want to check:
Syntax of generated programs

7

/62

the analysis first computes L(s0). With the state s0 and the token
“[” the goto controller returns goto(s0, [) = s1. Having L(s0) =
s1, the analysis computes X0(s1). After consuming the token “a”
and moving to the parse state s2, parser reduces with S → a and
moves the parse state back to s1. Then goto(s1,S) = s3 yields
X0(s1) = s3. Therefore we have

X1(s0) = s3s1

and the analysis concludes that X1 has a string unacceptable for the
grammar because state s3 is not the accept state.

1.3 Contribution

• We formulate this abstract parsing idea in the abstract interpre-
tation framework for two-staged languages with concatenation.
By this formulation we can see what approximations are in-
volved in abstract parsing and what limitations (as a static anal-
ysis) to expect from the abstract parsing technique.
Based on the abstract interpretation framework, we present a
concise and elegant perspective on the core idea of abstract
parsing. In the original work [16], code is abstracted into the
parse stack and the special operator “∗” is needed to handle
string concatenation. In our formulation, however, we abstract
code into a function which maps an input parse stack to an
output parse stack. Code concatenation is handled simply by
function composition.

• We generalize the abstract-parsing abstract interpretation, as
usual, by parameterizing the abstract domain of parse stacks.
This generalization separates the core idea and its implemen-
tation of abstract parsing. By choosing an appropriate abstract
domain, one can control the analysis precision and cost.

1.4 Organization

Section 2 introduces the syntax and semantics of our target two-
staged language with concatenation. Section 3 presents concrete
parsing semantics with LR(k) parsing. Section 4 presents abstract
parsing semantics and its parameterized framework. Section 5
presents a concrete example of the abstract domain which can be
used to instantiate the framework. Section 6 reviews related work
and Section 7 concludes.

2. Two-staged Language

We consider a two-staged language with concatenation. The lan-
guage is an imaginary, first-order language whose only value is
code. The language is minimal, so as not to distract our focus
on formalizing the abstract parsing method. For example, loops
and conditional jumps are without the condition expression, for
which abstract interpretation anyway considers all iterations and
all branches.

2.1 Syntax and Semantics

A program is an expression e:

e ∈ Exp ::= x | let x e1 e2 | or e1 e2 | re x e1 e2 e3 | ‘f
An expression can contain code fragments f :

f ∈ Frag ::= x | let | or | re | (|) | f1.f2 | ,e
Operational semantics of the target language is shown in Figure 3.
Expression ore1e2 is for branches. It could be the value of e1 or the
value of e2. Expression rexe1 e2 e3 is for loops. Variable x has the
value of e1 as its initial value. Loop body e2 is iterated ≥ 0 times.
The result of each iteration e2 will be bound to x in e2 for next
iteration or in e3 for the result of the loop. Backquote form ‘f is for
code fragment f . We construct the fragment by using the following

σ ∈ Env = Var → Code

v ∈ Code = Token sequence

e ∈ Exp

f ∈ Frag

σ �0 e ⇒ v
σ �0 x ⇒ σ(x) (variable)

σ �0 e1 ⇒ v σ[x �→ v] �0 e2 ⇒ v�

σ �0 let x e1 e2 ⇒ v� (let binding)

σ �0 e1 ⇒ v

σ �0 or e1 e2 ⇒ v

σ �0 e2 ⇒ v

σ �0 or e1 e2 ⇒ v
(branch)

σ �0 e1 ⇒ v σ[x �→ v] �0 loop x e2 e3 ⇒ v�

σ �0 re x e1 e2 e3 ⇒ v� (loop)

σ �0 e2 ⇒ v σ[x �→ v] �0 loop x e2 e3 ⇒ v�

σ �0 loop x e2 e3 ⇒ v�

σ �0 e3 ⇒ v

σ �0 loop x e2 e3 ⇒ v

σ �1 f ⇒ v

σ �0 ‘f ⇒ v
(back quote)

σ �1 f ⇒ v

σ �1 x ⇒ x σ �1 let⇒ let
(token)

σ �1 or⇒ or σ �1 re⇒ re

σ �1 (⇒ (σ �1)⇒)

σ �1 f1 ⇒ v1 σ �1 f2 ⇒ v2

σ �1 f1.f2 ⇒ v1v2

(concatenation)

σ �0 e ⇒ v

σ �1 ,e ⇒ v
(comma)

Figure 3. Operational semantics of the target language.

tokens: variables, let, or, re, (, and). Compound fragment f1.f2

concatenates two code fragments f1 and f2. Comma fragment ,e
first evaluates e then substitutes its result code value for itself. Note
that the meaning of ‘f and ,e is the same as in LISP’s quasi-
quotation system.

2.2 Example Program

In our language, it is possible to write a program generating
mal-formed code. For instance, the following program gener-
ates “a b” (after zero iterations), “or a b” (after one iteration),
“or or a b” (after two iterations), and so on.

re x ‘a (‘or . ,x) (‘,x . b)

Only “or a b” is correct and the rest of them have a syntax error.

the analysis first computes L(s0). With the state s0 and the token
“[” the goto controller returns goto(s0, [) = s1. Having L(s0) =
s1, the analysis computes X0(s1). After consuming the token “a”
and moving to the parse state s2, parser reduces with S → a and
moves the parse state back to s1. Then goto(s1,S) = s3 yields
X0(s1) = s3. Therefore we have

X1(s0) = s3s1

and the analysis concludes that X1 has a string unacceptable for the
grammar because state s3 is not the accept state.

1.3 Contribution

• We formulate this abstract parsing idea in the abstract interpre-
tation framework for two-staged languages with concatenation.
By this formulation we can see what approximations are in-
volved in abstract parsing and what limitations (as a static anal-
ysis) to expect from the abstract parsing technique.
Based on the abstract interpretation framework, we present a
concise and elegant perspective on the core idea of abstract
parsing. In the original work [16], code is abstracted into the
parse stack and the special operator “∗” is needed to handle
string concatenation. In our formulation, however, we abstract
code into a function which maps an input parse stack to an
output parse stack. Code concatenation is handled simply by
function composition.

• We generalize the abstract-parsing abstract interpretation, as
usual, by parameterizing the abstract domain of parse stacks.
This generalization separates the core idea and its implemen-
tation of abstract parsing. By choosing an appropriate abstract
domain, one can control the analysis precision and cost.

1.4 Organization

Section 2 introduces the syntax and semantics of our target two-
staged language with concatenation. Section 3 presents concrete
parsing semantics with LR(k) parsing. Section 4 presents abstract
parsing semantics and its parameterized framework. Section 5
presents a concrete example of the abstract domain which can be
used to instantiate the framework. Section 6 reviews related work
and Section 7 concludes.

2. Two-staged Language

We consider a two-staged language with concatenation. The lan-
guage is an imaginary, first-order language whose only value is
code. The language is minimal, so as not to distract our focus
on formalizing the abstract parsing method. For example, loops
and conditional jumps are without the condition expression, for
which abstract interpretation anyway considers all iterations and
all branches.

2.1 Syntax and Semantics

A program is an expression e:

e ∈ Exp ::= x | let x e1 e2 | or e1 e2 | re x e1 e2 e3 | ‘f
An expression can contain code fragments f :

f ∈ Frag ::= x | let | or | re | (|) | f1.f2 | ,e
Operational semantics of the target language is shown in Figure 3.
Expression ore1e2 is for branches. It could be the value of e1 or the
value of e2. Expression rexe1 e2 e3 is for loops. Variable x has the
value of e1 as its initial value. Loop body e2 is iterated ≥ 0 times.
The result of each iteration e2 will be bound to x in e2 for next
iteration or in e3 for the result of the loop. Backquote form ‘f is for
code fragment f . We construct the fragment by using the following

σ ∈ Env = Var → Code

v ∈ Code = Token sequence

e ∈ Exp

f ∈ Frag

σ �0 e ⇒ v
σ �0 x ⇒ σ(x) (variable)

σ �0 e1 ⇒ v σ[x �→ v] �0 e2 ⇒ v�

σ �0 let x e1 e2 ⇒ v� (let binding)

σ �0 e1 ⇒ v

σ �0 or e1 e2 ⇒ v

σ �0 e2 ⇒ v

σ �0 or e1 e2 ⇒ v
(branch)

σ �0 e1 ⇒ v σ[x �→ v] �0 loop x e2 e3 ⇒ v�

σ �0 re x e1 e2 e3 ⇒ v� (loop)

σ �0 e2 ⇒ v σ[x �→ v] �0 loop x e2 e3 ⇒ v�

σ �0 loop x e2 e3 ⇒ v�

σ �0 e3 ⇒ v

σ �0 loop x e2 e3 ⇒ v

σ �1 f ⇒ v

σ �0 ‘f ⇒ v
(back quote)

σ �1 f ⇒ v

σ �1 x ⇒ x σ �1 let⇒ let
(token)

σ �1 or⇒ or σ �1 re⇒ re

σ �1 (⇒ (σ �1)⇒)

σ �1 f1 ⇒ v1 σ �1 f2 ⇒ v2

σ �1 f1.f2 ⇒ v1v2

(concatenation)

σ �0 e ⇒ v

σ �1 ,e ⇒ v
(comma)

Figure 3. Operational semantics of the target language.

tokens: variables, let, or, re, (, and). Compound fragment f1.f2

concatenates two code fragments f1 and f2. Comma fragment ,e
first evaluates e then substitutes its result code value for itself. Note
that the meaning of ‘f and ,e is the same as in LISP’s quasi-
quotation system.

2.2 Example Program

In our language, it is possible to write a program generating
mal-formed code. For instance, the following program gener-
ates “a b” (after zero iterations), “or a b” (after one iteration),
“or or a b” (after two iterations), and so on.

re x ‘a (‘or . ,x) (‘,x . b)

Only “or a b” is correct and the rest of them have a syntax error.

the analysis first computes L(s0). With the state s0 and the token
“[” the goto controller returns goto(s0, [) = s1. Having L(s0) =
s1, the analysis computes X0(s1). After consuming the token “a”
and moving to the parse state s2, parser reduces with S → a and
moves the parse state back to s1. Then goto(s1,S) = s3 yields
X0(s1) = s3. Therefore we have

X1(s0) = s3s1

and the analysis concludes that X1 has a string unacceptable for the
grammar because state s3 is not the accept state.

1.3 Contribution

• We formulate this abstract parsing idea in the abstract interpre-
tation framework for two-staged languages with concatenation.
By this formulation we can see what approximations are in-
volved in abstract parsing and what limitations (as a static anal-
ysis) to expect from the abstract parsing technique.
Based on the abstract interpretation framework, we present a
concise and elegant perspective on the core idea of abstract
parsing. In the original work [16], code is abstracted into the
parse stack and the special operator “∗” is needed to handle
string concatenation. In our formulation, however, we abstract
code into a function which maps an input parse stack to an
output parse stack. Code concatenation is handled simply by
function composition.

• We generalize the abstract-parsing abstract interpretation, as
usual, by parameterizing the abstract domain of parse stacks.
This generalization separates the core idea and its implemen-
tation of abstract parsing. By choosing an appropriate abstract
domain, one can control the analysis precision and cost.

1.4 Organization

Section 2 introduces the syntax and semantics of our target two-
staged language with concatenation. Section 3 presents concrete
parsing semantics with LR(k) parsing. Section 4 presents abstract
parsing semantics and its parameterized framework. Section 5
presents a concrete example of the abstract domain which can be
used to instantiate the framework. Section 6 reviews related work
and Section 7 concludes.

2. Two-staged Language

We consider a two-staged language with concatenation. The lan-
guage is an imaginary, first-order language whose only value is
code. The language is minimal, so as not to distract our focus
on formalizing the abstract parsing method. For example, loops
and conditional jumps are without the condition expression, for
which abstract interpretation anyway considers all iterations and
all branches.

2.1 Syntax and Semantics

A program is an expression e:

e ∈ Exp ::= x | let x e1 e2 | or e1 e2 | re x e1 e2 e3 | ‘f
An expression can contain code fragments f :

f ∈ Frag ::= x | let | or | re | (|) | f1.f2 | ,e
Operational semantics of the target language is shown in Figure 3.
Expression ore1e2 is for branches. It could be the value of e1 or the
value of e2. Expression rexe1 e2 e3 is for loops. Variable x has the
value of e1 as its initial value. Loop body e2 is iterated ≥ 0 times.
The result of each iteration e2 will be bound to x in e2 for next
iteration or in e3 for the result of the loop. Backquote form ‘f is for
code fragment f . We construct the fragment by using the following

σ ∈ Env = Var → Code

v ∈ Code = Token sequence

e ∈ Exp

f ∈ Frag

σ �0 e ⇒ v
σ �0 x ⇒ σ(x) (variable)

σ �0 e1 ⇒ v σ[x �→ v] �0 e2 ⇒ v�

σ �0 let x e1 e2 ⇒ v� (let binding)

σ �0 e1 ⇒ v

σ �0 or e1 e2 ⇒ v

σ �0 e2 ⇒ v

σ �0 or e1 e2 ⇒ v
(branch)

σ �0 e1 ⇒ v σ[x �→ v] �0 loop x e2 e3 ⇒ v�

σ �0 re x e1 e2 e3 ⇒ v� (loop)

σ �0 e2 ⇒ v σ[x �→ v] �0 loop x e2 e3 ⇒ v�

σ �0 loop x e2 e3 ⇒ v�

σ �0 e3 ⇒ v

σ �0 loop x e2 e3 ⇒ v

σ �1 f ⇒ v

σ �0 ‘f ⇒ v
(back quote)

σ �1 f ⇒ v

σ �1 x ⇒ x σ �1 let⇒ let
(token)

σ �1 or⇒ or σ �1 re⇒ re

σ �1 (⇒ (σ �1)⇒)

σ �1 f1 ⇒ v1 σ �1 f2 ⇒ v2

σ �1 f1.f2 ⇒ v1v2

(concatenation)

σ �0 e ⇒ v

σ �1 ,e ⇒ v
(comma)

Figure 3. Operational semantics of the target language.

tokens: variables, let, or, re, (, and). Compound fragment f1.f2

concatenates two code fragments f1 and f2. Comma fragment ,e
first evaluates e then substitutes its result code value for itself. Note
that the meaning of ‘f and ,e is the same as in LISP’s quasi-
quotation system.

2.2 Example Program

In our language, it is possible to write a program generating
mal-formed code. For instance, the following program gener-
ates “a b” (after zero iterations), “or a b” (after one iteration),
“or or a b” (after two iterations), and so on.

re x ‘a (‘or . ,x) (‘,x . b)

Only “or a b” is correct and the rest of them have a syntax error.

the analysis first computes L(s0). With the state s0 and the token
“[” the goto controller returns goto(s0, [) = s1. Having L(s0) =
s1, the analysis computes X0(s1). After consuming the token “a”
and moving to the parse state s2, parser reduces with S → a and
moves the parse state back to s1. Then goto(s1,S) = s3 yields
X0(s1) = s3. Therefore we have

X1(s0) = s3s1

and the analysis concludes that X1 has a string unacceptable for the
grammar because state s3 is not the accept state.

1.3 Contribution

• We formulate this abstract parsing idea in the abstract interpre-
tation framework for two-staged languages with concatenation.
By this formulation we can see what approximations are in-
volved in abstract parsing and what limitations (as a static anal-
ysis) to expect from the abstract parsing technique.
Based on the abstract interpretation framework, we present a
concise and elegant perspective on the core idea of abstract
parsing. In the original work [16], code is abstracted into the
parse stack and the special operator “∗” is needed to handle
string concatenation. In our formulation, however, we abstract
code into a function which maps an input parse stack to an
output parse stack. Code concatenation is handled simply by
function composition.

• We generalize the abstract-parsing abstract interpretation, as
usual, by parameterizing the abstract domain of parse stacks.
This generalization separates the core idea and its implemen-
tation of abstract parsing. By choosing an appropriate abstract
domain, one can control the analysis precision and cost.

1.4 Organization

Section 2 introduces the syntax and semantics of our target two-
staged language with concatenation. Section 3 presents concrete
parsing semantics with LR(k) parsing. Section 4 presents abstract
parsing semantics and its parameterized framework. Section 5
presents a concrete example of the abstract domain which can be
used to instantiate the framework. Section 6 reviews related work
and Section 7 concludes.

2. Two-staged Language

We consider a two-staged language with concatenation. The lan-
guage is an imaginary, first-order language whose only value is
code. The language is minimal, so as not to distract our focus
on formalizing the abstract parsing method. For example, loops
and conditional jumps are without the condition expression, for
which abstract interpretation anyway considers all iterations and
all branches.

2.1 Syntax and Semantics

A program is an expression e:

e ∈ Exp ::= x | let x e1 e2 | or e1 e2 | re x e1 e2 e3 | ‘f
An expression can contain code fragments f :

f ∈ Frag ::= x | let | or | re | (|) | f1.f2 | ,e
Operational semantics of the target language is shown in Figure 3.
Expression ore1e2 is for branches. It could be the value of e1 or the
value of e2. Expression rexe1 e2 e3 is for loops. Variable x has the
value of e1 as its initial value. Loop body e2 is iterated ≥ 0 times.
The result of each iteration e2 will be bound to x in e2 for next
iteration or in e3 for the result of the loop. Backquote form ‘f is for
code fragment f . We construct the fragment by using the following

σ ∈ Env = Var → Code

v ∈ Code = Token sequence

e ∈ Exp

f ∈ Frag

σ �0 e ⇒ v
σ �0 x ⇒ σ(x) (variable)

σ �0 e1 ⇒ v σ[x �→ v] �0 e2 ⇒ v�

σ �0 let x e1 e2 ⇒ v� (let binding)

σ �0 e1 ⇒ v

σ �0 or e1 e2 ⇒ v

σ �0 e2 ⇒ v

σ �0 or e1 e2 ⇒ v
(branch)

σ �0 e1 ⇒ v σ[x �→ v] �0 loop x e2 e3 ⇒ v�

σ �0 re x e1 e2 e3 ⇒ v� (loop)

σ �0 e2 ⇒ v σ[x �→ v] �0 loop x e2 e3 ⇒ v�

σ �0 loop x e2 e3 ⇒ v�

σ �0 e3 ⇒ v

σ �0 loop x e2 e3 ⇒ v

σ �1 f ⇒ v

σ �0 ‘f ⇒ v
(back quote)

σ �1 f ⇒ v

σ �1 x ⇒ x σ �1 let⇒ let
(token)

σ �1 or⇒ or σ �1 re⇒ re

σ �1 (⇒ (σ �1)⇒)

σ �1 f1 ⇒ v1 σ �1 f2 ⇒ v2

σ �1 f1.f2 ⇒ v1v2

(concatenation)

σ �0 e ⇒ v

σ �1 ,e ⇒ v
(comma)

Figure 3. Operational semantics of the target language.

tokens: variables, let, or, re, (, and). Compound fragment f1.f2

concatenates two code fragments f1 and f2. Comma fragment ,e
first evaluates e then substitutes its result code value for itself. Note
that the meaning of ‘f and ,e is the same as in LISP’s quasi-
quotation system.

2.2 Example Program

In our language, it is possible to write a program generating
mal-formed code. For instance, the following program gener-
ates “a b” (after zero iterations), “or a b” (after one iteration),
“or or a b” (after two iterations), and so on.

re x ‘a (‘or . ,x) (‘,x . b)

Only “or a b” is correct and the rest of them have a syntax error.

Syntax

Semantics

Language: Syntax & Semantics

8

/62

Language: Example

re x `a `b x

=> a

 | b

let x `a

let y `b

 or x y

=> a

 | b

re x `a (`b.,x) x

=> a

 | b a

 | b b a

 | b b b a

 ...

let x = `a

let y = `b

`x.y.,y

 => x y b

9

re x `a (`or . ,x) (`,x . b)

=> a b

 | or a b

 | or or a b

 | or or or a b

 | ...

/62

Language: Collecting Semantics

However the following program generates “a” (after zero itera-
tions), “(or a b)” (after one iteration), “(or (or a b) b)” (af-
ter two iterations), and so on,

re x ‘a ‘(or . ,x . b) x

and all of them are syntactically correct.

2.3 Collecting Semantics and its Abstraction Plan
The collecting semantics of the language is defined as follows. This
semantics is the natural set extension for the sets of environments.
The fix operator is the usual least fixpoint operator to capture all
the iteration results from loops.

Code = Token sequence

σ ∈ Env = Var → Code

[[e]]0 ∈ 2Env → 2Code

[[f]]1 ∈ 2Env → 2Code

[[x]]0Σ = {σ(x) | σ ∈ Σ}

[[let x e1 e2]]
0Σ =

[

σ∈Σ

[

c∈[[e1]]0{σ}

[[e2]]
0{σ[x �→ c]}

[[or e1 e2]]
0Σ = [[e1]]

0Σ ∪ [[e2]]
0Σ

[[re x e1 e2 e3]]
0Σ =

[

σ∈Σ

[[e3]]
0{σ[x �→ c] | c ∈

fixλC.[[e1]]
0{σ} ∪ [[e2]]

0{σ[x �→ c�] | c� ∈ C}}
[[‘f]]0Σ = [[f]]1Σ

[[x]]1Σ = {x}
[[let]]1Σ = {let}
[[or]]1Σ = {or}
[[re]]1Σ = {re}
[[(]]1Σ = {(}
[[)]]1Σ = {)}

[[f1.f2]]
1Σ =

[

σ∈Σ

{xy | x ∈ [[f1]]
1{σ} ∧ y ∈ [[f2]]

1{σ}}

[[,e]]1Σ = [[e]]0Σ

From the collecting semantics above, we derive a series of ab-
stract semantics. From the collecting semantics’ semantic domain

2Var→Code → 2Code ,

the powerset environment 2Var→Code is abstracted into Var →
2Code , i.e., the semantic domain becomes

(Var → 2Code)→ 2Code .

Now the abstraction of 2Code becomes the essential part of the ab-
stract interpretation design. Before we abstract 2Code , we formu-
late a code fragment as a function that maps a parse stack to a parse
stack. We call this formulation “concrete parsing” (Section 3). That
is, 2Code becomes 2P→P (where P is the set of parse stacks). Then
we abstract 2P→P into 2P → 2P (Section 4). Lastly, we present
an abstract-parsing abstract interpretation that parameterizes an ab-
stract domain D� of 2P .

In summary, this series of abstraction steps for the value domain
in the semantics is:

2Code

−→

2P → 2P2P→P D� → D�

−→ −→Collecting
Semantics

Concrete
Parsing

Semantics

First Step
Abstraction
Semantics

Parameterized
Abstract
Parsing

Semantics

3. Concrete Parsing
3.1 Analyze-and-parse Strategy
We take the analyze-and-parse strategy in abstract parsing [16] into
our semantics. The semantics simulates the parsing operations. It
is compared to the analyze-then-parse strategy which analyzes the
program, calculates approximated set of code, then parses them.

Analyze-and-parse strategy is more efficient than analyze-then-
parse strategy as reported in [16]. In analyze-then-parse strategy,
code is abstracted into a grammar. Then it checks whether the
abstracted grammar is included in the reference grammar or not.
However, grammar inclusion check is more expensive than parsing.
In addition, analyze-and-parse directly computes parsing informa-
tion without approximating the code into the grammar.

We formulate the analyze-and-parse strategy in our semantics.
The parsing domain is constructed as an abstract domain where
code is abstracted into parsing information. We abstract the parsing
domain into an abstract parsing domain to control the precision and
cost of analysis and to make sure the analysis terminates.

Since our semantics uses an LR(k) parser as a component, it is
essential to review its key concepts.

3.2 LR Parsing
The LR(k) parsing technique [1] is an efficient way to determine
whether the string conforms to the given grammar or not. An LR
parser is a state machine which consists of a parse stack, an action
table, and a goto table. The set of parse states Σ = {s1, s2, . . . , sn}
is defined by parser generator from the given grammar. Parse stack
p ∈ P = Σ+ is a sequence of parse states which it has been in.
Two special parse stacks pinit and pacc are defined. Parsing starts
with the initial parse stack pinit . Successful parsing should stop at
the accept parse stack pacc . Otherwise it indicates that the parsed
string does not conform to the given grammar. String representation
“stop . . . sbot” denotes a parse stack whose top state is stop and
bottom state is sbot. The action table decides which operation
(shift/reduce) to perform from the current state and current token.
The goto table determines the state to push after we pop states in
the reduce operation.

The process of parsing is a composition of the atomic function
parse action : P → Token → P which is described in Algo-
rithm 1. It returns the parse stack from the given parse stack p and
input token t.

Algorithm 1 parse action algorithm
1: procedure parse action(p, t)
2: stop ← the state on top of stack p
3: if ACTION [stop, t] = shift s then
4: push s onto the stack p
5: return p
6: else if ACTION [stop, t] = reduce A→ β then
7: pop |β| symbol off the stack p
8: stop ← the state on top of stack p
9: push GOTO [stop, A] onto the stack p

10: return parse action(p, t)
11: end if
12: end procedure

However the following program generates “a” (after zero itera-
tions), “(or a b)” (after one iteration), “(or (or a b) b)” (af-
ter two iterations), and so on,

re x ‘a ‘(or . ,x . b) x

and all of them are syntactically correct.

2.3 Collecting Semantics and its Abstraction Plan
The collecting semantics of the language is defined as follows. This
semantics is the natural set extension for the sets of environments.
The fix operator is the usual least fixpoint operator to capture all
the iteration results from loops.

Code = Token sequence

σ ∈ Env = Var → Code

[[e]]0 ∈ 2Env → 2Code

[[f]]1 ∈ 2Env → 2Code

[[x]]0Σ = {σ(x) | σ ∈ Σ}

[[let x e1 e2]]
0Σ =

[

σ∈Σ

[

c∈[[e1]]0{σ}

[[e2]]
0{σ[x �→ c]}

[[or e1 e2]]
0Σ = [[e1]]

0Σ ∪ [[e2]]
0Σ

[[re x e1 e2 e3]]
0Σ =

[

σ∈Σ

[[e3]]
0{σ[x �→ c] | c ∈

fixλC.[[e1]]
0{σ} ∪ [[e2]]

0{σ[x �→ c�] | c� ∈ C}}
[[‘f]]0Σ = [[f]]1Σ

[[x]]1Σ = {x}
[[let]]1Σ = {let}
[[or]]1Σ = {or}
[[re]]1Σ = {re}
[[(]]1Σ = {(}
[[)]]1Σ = {)}

[[f1.f2]]
1Σ =

[

σ∈Σ

{xy | x ∈ [[f1]]
1{σ} ∧ y ∈ [[f2]]

1{σ}}

[[,e]]1Σ = [[e]]0Σ

From the collecting semantics above, we derive a series of ab-
stract semantics. From the collecting semantics’ semantic domain

2Var→Code → 2Code ,

the powerset environment 2Var→Code is abstracted into Var →
2Code , i.e., the semantic domain becomes

(Var → 2Code)→ 2Code .

Now the abstraction of 2Code becomes the essential part of the ab-
stract interpretation design. Before we abstract 2Code , we formu-
late a code fragment as a function that maps a parse stack to a parse
stack. We call this formulation “concrete parsing” (Section 3). That
is, 2Code becomes 2P→P (where P is the set of parse stacks). Then
we abstract 2P→P into 2P → 2P (Section 4). Lastly, we present
an abstract-parsing abstract interpretation that parameterizes an ab-
stract domain D� of 2P .

In summary, this series of abstraction steps for the value domain
in the semantics is:

2Code

−→

2P → 2P2P→P D� → D�

−→ −→Collecting
Semantics

Concrete
Parsing

Semantics

First Step
Abstraction
Semantics

Parameterized
Abstract
Parsing

Semantics

3. Concrete Parsing
3.1 Analyze-and-parse Strategy
We take the analyze-and-parse strategy in abstract parsing [16] into
our semantics. The semantics simulates the parsing operations. It
is compared to the analyze-then-parse strategy which analyzes the
program, calculates approximated set of code, then parses them.

Analyze-and-parse strategy is more efficient than analyze-then-
parse strategy as reported in [16]. In analyze-then-parse strategy,
code is abstracted into a grammar. Then it checks whether the
abstracted grammar is included in the reference grammar or not.
However, grammar inclusion check is more expensive than parsing.
In addition, analyze-and-parse directly computes parsing informa-
tion without approximating the code into the grammar.

We formulate the analyze-and-parse strategy in our semantics.
The parsing domain is constructed as an abstract domain where
code is abstracted into parsing information. We abstract the parsing
domain into an abstract parsing domain to control the precision and
cost of analysis and to make sure the analysis terminates.

Since our semantics uses an LR(k) parser as a component, it is
essential to review its key concepts.

3.2 LR Parsing
The LR(k) parsing technique [1] is an efficient way to determine
whether the string conforms to the given grammar or not. An LR
parser is a state machine which consists of a parse stack, an action
table, and a goto table. The set of parse states Σ = {s1, s2, . . . , sn}
is defined by parser generator from the given grammar. Parse stack
p ∈ P = Σ+ is a sequence of parse states which it has been in.
Two special parse stacks pinit and pacc are defined. Parsing starts
with the initial parse stack pinit . Successful parsing should stop at
the accept parse stack pacc . Otherwise it indicates that the parsed
string does not conform to the given grammar. String representation
“stop . . . sbot” denotes a parse stack whose top state is stop and
bottom state is sbot. The action table decides which operation
(shift/reduce) to perform from the current state and current token.
The goto table determines the state to push after we pop states in
the reduce operation.

The process of parsing is a composition of the atomic function
parse action : P → Token → P which is described in Algo-
rithm 1. It returns the parse stack from the given parse stack p and
input token t.

Algorithm 1 parse action algorithm
1: procedure parse action(p, t)
2: stop ← the state on top of stack p
3: if ACTION [stop, t] = shift s then
4: push s onto the stack p
5: return p
6: else if ACTION [stop, t] = reduce A→ β then
7: pop |β| symbol off the stack p
8: stop ← the state on top of stack p
9: push GOTO [stop, A] onto the stack p

10: return parse action(p, t)
11: end if
12: end procedure

10

/62

Language: Collecting Semantics

11

• Example

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0{σ0}

= (λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a)� k ◦PA(P, or)))){s1}

[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= (λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a)� k ◦PA(P, or)))){s1}

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative
Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-
ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium
on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional
Programming, pages 275–286. ACM, August 2003.

[7] Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim, and Kyung-Goo Doh.
A practical string analyzer by the widening approach. In Proceedings
of the Asian Symposium on Programming Languages and Systems,
volume 4729 of Lecture Notes in Computer Science, pages 374–388,
Sydney, Austrailia, November 2006. Springer-Verlag.

[8] Aske Simon Christensen, Anders Mller, and Michael I. Schwartzbach.
Precise analysis of string expressions. In Proceedings of the Static
Analysis Symposium, pages 1–18. Springer-Verlag, 2003.

re x `a (`or . ,x) (`,x . b)

=> a b

 | or a b

 | or or a b

 | or or or a b

 | ...

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0{σ0}

= {a b, or a b, or or a b, or or or a b, . . . }

[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= (λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a)� k ◦PA(P, or)))){s1}

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative
Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-
ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium
on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional
Programming, pages 275–286. ACM, August 2003.

[7] Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim, and Kyung-Goo Doh.
A practical string analyzer by the widening approach. In Proceedings
of the Asian Symposium on Programming Languages and Systems,
volume 4729 of Lecture Notes in Computer Science, pages 374–388,
Sydney, Austrailia, November 2006. Springer-Verlag.

[8] Aske Simon Christensen, Anders Mller, and Michael I. Schwartzbach.
Precise analysis of string expressions. In Proceedings of the Static
Analysis Symposium, pages 1–18. Springer-Verlag, 2003.

/62

• Determine whether input string S conforms to
the grammar G

• In our case, the reference grammar is

• LR parser generator builds a state machine for
the given grammar.

LR Parsing

12

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0{σ0}

= {a b, or a b, or or a b, or or or a b, . . . }

e ∈ Exp ::= x | let x e1 e2 | or e1 e2 | re x e1 e2 e3

[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= (λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a)� k ◦PA(P, or)))){s1}

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative
Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-
ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium
on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional
Programming, pages 275–286. ACM, August 2003.

[7] Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim, and Kyung-Goo Doh.
A practical string analyzer by the widening approach. In Proceedings
of the Asian Symposium on Programming Languages and Systems,
volume 4729 of Lecture Notes in Computer Science, pages 374–388,
Sydney, Austrailia, November 2006. Springer-Verlag.

/62

s1: S -> . E

s3: E -> id .

s4: E -> let . id E E

s5: E -> or . E E

s6: E -> re . id E E E

s7: E -> (. E)

s8: S -> E .

s9: E -> let id . E E

s10: E -> or E . E

s11: E -> re id . E E E

s12: E -> (E .)

s13: E -> let id E . E

s14: E -> or E E .

s15: E -> re id E . E E

s16: E -> (E) .

s17: E -> let id E E .

s18: E -> re id E E . E

s2: E -> re id E E E .

id

or

re

(

E

id

id

let

re

(

E

id

id

let

or

re

(

E

id

let

re

(

E

id

let

or

re

(

E

id
let

or

re

(

E

)

id

let

or

re

(

E

id

let

or

re

(

E

id

let

or

re

(

E

E

or

Goto controller of the LR(0) parser for the reference grammar
13

/62

LR Parsing

Part of goto controller of the LR(0) parser for the reference grammar

14

s1: S -> . E s3: E -> id .

s5: E -> or . E E

s8: S -> E .

s10: E -> or E . E

s14: E -> or E E .

id

or

E

id

E

id

or

E
or

/62

• Atomic function :

LR Parsing

However the following program generates “a” (after zero itera-
tions), “(or a b)” (after one iteration), “(or (or a b) b)” (af-
ter two iterations), and so on,

re x ‘a ‘(or . ,x . b) x

and all of them are syntactically correct.

2.3 Collecting Semantics and its Abstraction Plan
The collecting semantics of the language is defined as follows. This
semantics is the natural set extension for the sets of environments.
The fix operator is the usual least fixpoint operator to capture all
the iteration results from loops.

Code = Token sequence

σ ∈ Env = Var → Code

[[e]]0 ∈ 2Env → 2Code

[[f]]1 ∈ 2Env → 2Code

[[x]]0Σ = {σ(x) | σ ∈ Σ}

[[let x e1 e2]]
0Σ =

[

σ∈Σ

[

c∈[[e1]]0{σ}

[[e2]]
0{σ[x �→ c]}

[[or e1 e2]]
0Σ = [[e1]]

0Σ ∪ [[e2]]
0Σ

[[re x e1 e2 e3]]
0Σ =

[

σ∈Σ

[[e3]]
0{σ[x �→ c] | c ∈

fixλC.[[e1]]
0{σ} ∪ [[e2]]

0{σ[x �→ c�] | c� ∈ C}}
[[‘f]]0Σ = [[f]]1Σ

[[x]]1Σ = {x}
[[let]]1Σ = {let}
[[or]]1Σ = {or}
[[re]]1Σ = {re}
[[(]]1Σ = {(}
[[)]]1Σ = {)}

[[f1.f2]]
1Σ =

[

σ∈Σ

{xy | x ∈ [[f1]]
1{σ} ∧ y ∈ [[f2]]

1{σ}}

[[,e]]1Σ = [[e]]0Σ

From the collecting semantics above, we derive a series of ab-
stract semantics. From the collecting semantics’ semantic domain

2Var→Code → 2Code ,

the powerset environment 2Var→Code is abstracted into Var →
2Code , i.e., the semantic domain becomes

(Var → 2Code)→ 2Code .

Now the abstraction of 2Code becomes the essential part of the ab-
stract interpretation design. Before we abstract 2Code , we formu-
late a code fragment as a function that maps a parse stack to a parse
stack. We call this formulation “concrete parsing” (Section 3). That
is, 2Code becomes 2P→P (where P is the set of parse stacks). Then
we abstract 2P→P into 2P → 2P (Section 4). Lastly, we present
an abstract-parsing abstract interpretation that parameterizes an ab-
stract domain D� of 2P .

In summary, this series of abstraction steps for the value domain
in the semantics is:

2Code

−→

2P → 2P2P→P D� → D�

−→ −→Collecting
Semantics

Concrete
Parsing

Semantics

First Step
Abstraction
Semantics

Parameterized
Abstract
Parsing

Semantics

3. Concrete Parsing
3.1 Analyze-and-parse Strategy
We take the analyze-and-parse strategy in abstract parsing [16] into
our semantics. The semantics simulates the parsing operations. It
is compared to the analyze-then-parse strategy which analyzes the
program, calculates approximated set of code, then parses them.

Analyze-and-parse strategy is more efficient than analyze-then-
parse strategy as reported in [16]. In analyze-then-parse strategy,
code is abstracted into a grammar. Then it checks whether the
abstracted grammar is included in the reference grammar or not.
However, grammar inclusion check is more expensive than parsing.
In addition, analyze-and-parse directly computes parsing informa-
tion without approximating the code into the grammar.

We formulate the analyze-and-parse strategy in our semantics.
The parsing domain is constructed as an abstract domain where
code is abstracted into parsing information. We abstract the parsing
domain into an abstract parsing domain to control the precision and
cost of analysis and to make sure the analysis terminates.

Since our semantics uses an LR(k) parser as a component, it is
essential to review its key concepts.

3.2 LR Parsing
The LR(k) parsing technique [1] is an efficient way to determine
whether the string conforms to the given grammar or not. An LR
parser is a state machine which consists of a parse stack, an action
table, and a goto table. The set of parse states Σ = {s1, s2, . . . , sn}
is defined by parser generator from the given grammar. Parse stack
p ∈ P = Σ+ is a sequence of parse states which it has been in.
Two special parse stacks pinit and pacc are defined. Parsing starts
with the initial parse stack pinit . Successful parsing should stop at
the accept parse stack pacc . Otherwise it indicates that the parsed
string does not conform to the given grammar. String representation
“stop . . . sbot” denotes a parse stack whose top state is stop and
bottom state is sbot. The action table decides which operation
(shift/reduce) to perform from the current state and current token.
The goto table determines the state to push after we pop states in
the reduce operation.

The process of parsing is a composition of the atomic function
parse action : P → Token → P which is described in Algo-
rithm 1. It returns the parse stack from the given parse stack p and
input token t.

Algorithm 1 parse action algorithm
1: procedure parse action(p, t)
2: stop ← the state on top of stack p
3: if ACTION [stop, t] = shift s then
4: push s onto the stack p
5: return p
6: else if ACTION [stop, t] = reduce A→ β then
7: pop |β| symbol off the stack p
8: stop ← the state on top of stack p
9: push GOTO [stop, A] onto the stack p

10: return parse action(p, t)
11: end if
12: end procedure

Shift
s

t
s’ = GOTO[t,A]

Reduce

parse action : Token→ P → P

15

/62

LR Parsing

parse_action

Token

parse_action

Token

parse_action

Token

Code

parse

parse : Code→ P → P

• Parsing is composition of parse_action

16

/62

• Example

LR Parsing

. or a b

s1: S -> . E s3: E -> id .

s5: E -> or . E E

s8: S -> E .

s10: E -> or E . E

s14: E -> or E E .

id

or

E

id

E

id

or

E
or

17

s1

/62

• Example

LR Parsing

or . a b

s1: S -> . E s3: E -> id .

s5: E -> or . E E

s8: S -> E .

s10: E -> or E . E

s14: E -> or E E .

id

or

E

id

E

id

or

E
or

18

s5s1

/62

• Example

LR Parsing

or a . b

s1: S -> . E s3: E -> id .

s5: E -> or . E E

s8: S -> E .

s10: E -> or E . E

s14: E -> or E E .

id

or

E

id

E

id

or

E
or

19

s3s5s1

/62

• Example

LR Parsing

or a . b

s1: S -> . E s3: E -> id .

s5: E -> or . E E

s8: S -> E .

s10: E -> or E . E

s14: E -> or E E .

id

or

E

id

E

id

or

E
or

20

s5s1

/62

• Example

LR Parsing

or a . b

s1: S -> . E s3: E -> id .

s5: E -> or . E E

s8: S -> E .

s10: E -> or E . E

s14: E -> or E E .

id

or

E

id

E

id

or

E
or

21

s10s5s1

/62

• Example

LR Parsing

or a b .

s1: S -> . E s3: E -> id .

s5: E -> or . E E

s8: S -> E .

s10: E -> or E . E

s14: E -> or E E .

id

or

E

id

E

id

or

E
or

22

s3s10s5s1

/62

• Example

LR Parsing

or a b .

s1: S -> . E s3: E -> id .

s5: E -> or . E E

s8: S -> E .

s10: E -> or E . E

s14: E -> or E E .

id

or

E

id

E

id

or

E
or

23

s10s5s1

/62

• Example

LR Parsing

s1: S -> . E s3: E -> id .

s5: E -> or . E E

s8: S -> E .

s10: E -> or E . E

s14: E -> or E E .

id

or

E

id

E

id

or

E
or

24

or a b . s14s10s5s1

/62

• Example

LR Parsing

s1: S -> . E s3: E -> id .

s5: E -> or . E E

s8: S -> E .

s10: E -> or E . E

s14: E -> or E E .

id

or

E

id

E

id

or

E
or

25

or a b . s10s5s1

/62

• Example

LR Parsing

s1: S -> . E s3: E -> id .

s5: E -> or . E E

s8: S -> E .

s10: E -> or E . E

s14: E -> or E E .

id

or

E

id

E

id

or

E
or

26

or a b . s5s1

/62

• Example

LR Parsing

s1: S -> . E s3: E -> id .

s5: E -> or . E E

s8: S -> E .

s10: E -> or E . E

s14: E -> or E E .

id

or

E

id

E

id

or

E
or

27

s1or a b .

/62

• Example

LR Parsing

s1: S -> . E s3: E -> id .

s5: E -> or . E E

s8: S -> E .

s10: E -> or E . E

s14: E -> or E E .

id

or

E

id

E

id

or

E
or

28

or a b . s8s1

/62

• Example

LR Parsing

s1: S -> . E s3: E -> id .

s5: E -> or . E E

s8: S -> E .

s10: E -> or E . E

s14: E -> or E E .

id

or

E

id

E

id

or

E
or

29

or a b . Accept!s8s1

/62

• Instead of executing the program and parsing
the result,

• Define abstract semantics using parse stack and
execute the program on it.

Abstract Parsing: Idea

parse(ci) = O/X[[e]]0Σ = {c1, c2, . . . , cn}

ˆ[[e]]0Σ{pinit} = {p1, p2, . . . , pn}

30

/62

• Q: What should be the abstract value for Code c?

• A1: Parse Stack:

Code as Parse Stack Transition Function

parse

Code c

pinit

• Example

parse(pinit , c) : P

parse(pinit , c) : P

31

or→ s1s5
a→ s1s8

s1

/62

• Q: What should be the abstract value for Code c?

• A1: Parse Stack:

Code as Parse Stack Transition Function

• Problem: Parse Stack Concatenation

+ = ?

parse(pinit , c) : P

32
or + a

or→ s1s5
a→ s1s8

parse

Code c

pinit

parse(pinit , c) : P

s1

/62

• Q: What should be the abstract value for Code c?

• A2: Parse Stack Transition Function :

Code as Parse Stack Transition Function

λp.parse(p, c) : P → P

Code concatenation => Function Composition

33

s1 �→ s1s5

or

...

...
s1s5 �→ s1s5s10

a

...

...

+ =>

a

...

...
s1 �→ s1s5s10

or

/62

• Q: What should be the abstract value for Code c?

• A2: Parse Stack Transition Function :

Code as Parse Stack Transition Function

+
concat

= ◦

λp.parse(p, c) : P → P

Code concatenation => Function Composition

34

or a

fa ◦ for

/62

• Using the abstraction from Code to
establish a Galois connection

Concrete Parsing Semantics

P → P

The parsing process parse : P → Token sequence → P is a
composition of the parse action .

parse(p, t1 . . . tn)

= parse action(. . . (parse action(p, t1)), . . . , tn)

A parser gets the input code c and returns the parse stack parse(pinit , c).

3.3 Concrete Parsing Domain : Value VP = 2P→P

We define the concrete parsing domain. It is “concrete” in that we
use the same parse stack defined in LR(k) parsing.

Because LR(k) parsing computes a parse stack, it is tempting to
choose the parse stack parse(pinit , c) as an abstraction of the code
c. However this setting causes a problem when we handle the con-
catenation x.y. Let px = parse(pinit , x) and py = parse(pinit , y)
be the resulting parse stacks for the code fragments x and y. The
parse stack p for the concatenation x.y is computed as

p = parse(pinit , x.y)

= parse(parse(pinit , x), y)

= parse(px, y).

However, what we have is py = parse(pinit , y) not parse(px, y).
The parse(pinit , y) is the parse stack after parsing y from the initial
stack not from the px stack. We cannot directly compute p from px

and py .
Abstracting the code c into the parse stack transition function

λp.parse(p, c) solves the above concatenation problem elegantly.
Let fx and fy be the parse stack transition functions for code
fragments x and y respectively. Then we have

fx = λp.parse(p, x)

fy = λp.parse(p, y).

With the two parse stack transition functions fx and fy , we con-
struct the parse stack transition function fx.y as follows.

fx.y = λp.parse(p, x.y)

= λp.parse(parse(p, x), y)

= (λp.parse(p, y)) ◦ (λp.parse(p, x))

= fy ◦ fx

3.4 Concrete Parsing Semantics
Using the abstraction from Code to P → P , the Galois connection
2Code −−→←−−α

γ
VP = 2P→P is established as follows.

α = λC.{λp.parse(p, c) | c ∈ C}

γ = λF.
[

f∈F

{c | ∀p ∈ P.parse(p, c) = f(p)}

Concrete parsing semantics is derived from the collecting se-
mantics as follows.

P = the set of parse stacks

VP = 2P→P

σ ∈ EnvP = Var → VP

[[e]]0P ∈ EnvP → VP

[[f]]1P ∈ EnvP → VP

[[x]]0P σ = σ(x)

[[let x e1 e2]]
0
P σ = [[e2]]

0
P (σ[x �→ [[e1]]

0
P σ])

[[or e1 e2]]
0
P σ = [[e1]]

0
P σ ∪ [[e2]]

0
P σ

[[re x e1 e2 e3]]
0
P σ = [[e3]]

0
P (σ[x �→

fix λk.[[e1]]
0
P σ ∪ [[e2]]

0
P (σ[x �→ k])])

[[‘f]]0P σ = [[f]]1P σ

[[t]]1P σ = {λp.parse action(p, t)}
[[f1.f2]]

1
P σ = {p2 ◦ p1 | p1 ∈ [[f1]]

1
P σ ∧ p2 ∈ [[f2]]

1
P σ}

[[,e]]1P σ = [[e]]0P σ

4. Abstract Parsing
4.1 First Step Abstraction : Value VP̂ = 2P → 2P

First, we abstract the concrete parsing domain VP = 2P→P

to VP̂ = 2P → 2P by establishing the Galois connection
VP −−→←−−α

γ
VP̂ where

α =λF.λP.
[

p∈P

{f(p) | f ∈ F}

γ = λF.
[

{S | α(S) ⊆ f}.

Then we derive the abstract semantics for this domain as follows.

σ ∈ Env P̂ = Var → VP̂

[[e]]0P̂ ∈ Env P̂ → VP̂

[[f]]1P̂ ∈ Env P̂ → VP̂

[[x]]0P̂ = σ(x)

[[let x e1 e2]]
0
P̂ σ = [[e2]]

0
P̂ (σ[x �→ [[e1]]

0
P̂ σ])

[[or e1 e2]]
0
P̂ σ = λP.[[e1]]

0
P̂ σP ∪ [[e2]]

0
P̂ σP

[[re x e1 e2 e3]]
0
P̂ σ = [[e3]]

0
P̂ (σ[x �→

fix λk.λP.[[e1]]
0
P̂ σP ∪ [[e2]]

0
P̂ (σ[x �→ k])P])

[[‘f]]0P̂ σ = [[f]]1P̂ σ

[[t]]1P̂ σ = λP.Parse action(P, t)

[[f1.f2]]
1
P̂ σ = [[f2]]

1
P̂ σ ◦ [[f1]]

1
P̂ σ

[[,e]]1P̂ σ = [[e]]0P̂ σ

where Parse action : 2P → Token → 2P is the natural set
extension of parse action:

Parse action = λP.λt.{parse action(p, t) | p ∈ P}.

The abstract semantic function [[·]]0
P̂

is used to check whether
generated code conforms to the grammar. For the given program e,
we compute

S = [[e]]0P̂ σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare S
with {pacc}, the accept parse state. If they are equal, we conclude
that the generated code in the given program conforms to the
grammar. Otherwise, the analysis concludes that the program may
generate syntactically incorrect code.

Consider, the example program e1 shown in 2.2:

re x ‘a ‘(or . ,x . b) x

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting 2P (the powerset domain of parse stacks) into
a particular domain, we provide conditions which the abstract do-
main for 2P should satisfy. Then we define the semantic function
on the abstract parsing domain.

2Code VP = 2P→P

• Derive concrete parsing semantics

The parsing process parse : P → Token sequence → P is a
composition of the parse action .

parse(p, t1 . . . tn)

= parse action(. . . (parse action(p, t1)), . . . , tn)

A parser gets the input code c and returns the parse stack parse(pinit , c).

3.3 Concrete Parsing Domain : Value VP = 2P→P

We define the concrete parsing domain. It is “concrete” in that we
use the same parse stack defined in LR(k) parsing.

Because LR(k) parsing computes a parse stack, it is tempting to
choose the parse stack parse(pinit , c) as an abstraction of the code
c. However this setting causes a problem when we handle the con-
catenation x.y. Let px = parse(pinit , x) and py = parse(pinit , y)
be the resulting parse stacks for the code fragments x and y. The
parse stack p for the concatenation x.y is computed as

p = parse(pinit , x.y)

= parse(parse(pinit , x), y)

= parse(px, y).

However, what we have is py = parse(pinit , y) not parse(px, y).
The parse(pinit , y) is the parse stack after parsing y from the initial
stack not from the px stack. We cannot directly compute p from px

and py .
Abstracting the code c into the parse stack transition function

λp.parse(p, c) solves the above concatenation problem elegantly.
Let fx and fy be the parse stack transition functions for code
fragments x and y respectively. Then we have

fx = λp.parse(p, x)

fy = λp.parse(p, y).

With the two parse stack transition functions fx and fy , we con-
struct the parse stack transition function fx.y as follows.

fx.y = λp.parse(p, x.y)

= λp.parse(parse(p, x), y)

= (λp.parse(p, y)) ◦ (λp.parse(p, x))

= fy ◦ fx

3.4 Concrete Parsing Semantics
Using the abstraction from Code to P → P , the Galois connection
2Code −−→←−−α

γ
VP = 2P→P is established as follows.

α = λC.{λp.parse(p, c) | c ∈ C}

γ = λF.
[

f∈F

{c | ∀p ∈ P.parse(p, c) = f(p)}

Concrete parsing semantics is derived from the collecting se-
mantics as follows.

P = the set of parse stacks

VP = 2P→P

σ ∈ EnvP = Var → VP

[[e]]0P ∈ EnvP → VP

[[f]]1P ∈ EnvP → VP

[[x]]0P σ = σ(x)

[[let x e1 e2]]
0
P σ = [[e2]]

0
P (σ[x �→ [[e1]]

0
P σ])

[[or e1 e2]]
0
P σ = [[e1]]

0
P σ ∪ [[e2]]

0
P σ

[[re x e1 e2 e3]]
0
P σ = [[e3]]

0
P (σ[x �→

fix λk.[[e1]]
0
P σ ∪ [[e2]]

0
P (σ[x �→ k])])

[[‘f]]0P σ = [[f]]1P σ

[[t]]1P σ = {λp.parse action(p, t)}
[[f1.f2]]

1
P σ = {p2 ◦ p1 | p1 ∈ [[f1]]

1
P σ ∧ p2 ∈ [[f2]]

1
P σ}

[[,e]]1P σ = [[e]]0P σ

4. Abstract Parsing
4.1 First Step Abstraction : Value VP̂ = 2P → 2P

First, we abstract the concrete parsing domain VP = 2P→P

to VP̂ = 2P → 2P by establishing the Galois connection
VP −−→←−−α

γ
VP̂ where

α =λF.λP.
[

p∈P

{f(p) | f ∈ F}

γ = λF.
[

{S | α(S) ⊆ f}.

Then we derive the abstract semantics for this domain as follows.

σ ∈ Env P̂ = Var → VP̂

[[e]]0P̂ ∈ Env P̂ → VP̂

[[f]]1P̂ ∈ Env P̂ → VP̂

[[x]]0P̂ = σ(x)

[[let x e1 e2]]
0
P̂ σ = [[e2]]

0
P̂ (σ[x �→ [[e1]]

0
P̂ σ])

[[or e1 e2]]
0
P̂ σ = λP.[[e1]]

0
P̂ σP ∪ [[e2]]

0
P̂ σP

[[re x e1 e2 e3]]
0
P̂ σ = [[e3]]

0
P̂ (σ[x �→

fix λk.λP.[[e1]]
0
P̂ σP ∪ [[e2]]

0
P̂ (σ[x �→ k])P])

[[‘f]]0P̂ σ = [[f]]1P̂ σ

[[t]]1P̂ σ = λP.Parse action(P, t)

[[f1.f2]]
1
P̂ σ = [[f2]]

1
P̂ σ ◦ [[f1]]

1
P̂ σ

[[,e]]1P̂ σ = [[e]]0P̂ σ

where Parse action : 2P → Token → 2P is the natural set
extension of parse action:

Parse action = λP.λt.{parse action(p, t) | p ∈ P}.

The abstract semantic function [[·]]0
P̂

is used to check whether
generated code conforms to the grammar. For the given program e,
we compute

S = [[e]]0P̂ σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare S
with {pacc}, the accept parse state. If they are equal, we conclude
that the generated code in the given program conforms to the
grammar. Otherwise, the analysis concludes that the program may
generate syntactically incorrect code.

Consider, the example program e1 shown in 2.2:

re x ‘a ‘(or . ,x . b) x

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting 2P (the powerset domain of parse stacks) into
a particular domain, we provide conditions which the abstract do-
main for 2P should satisfy. Then we define the semantic function
on the abstract parsing domain.

The parsing process parse : P → Token sequence → P is a
composition of the parse action .

parse(p, t1 . . . tn)

= parse action(. . . (parse action(p, t1)), . . . , tn)

A parser gets the input code c and returns the parse stack parse(pinit , c).

3.3 Concrete Parsing Domain : Value VP = 2P→P

We define the concrete parsing domain. It is “concrete” in that we
use the same parse stack defined in LR(k) parsing.

Because LR(k) parsing computes a parse stack, it is tempting to
choose the parse stack parse(pinit , c) as an abstraction of the code
c. However this setting causes a problem when we handle the con-
catenation x.y. Let px = parse(pinit , x) and py = parse(pinit , y)
be the resulting parse stacks for the code fragments x and y. The
parse stack p for the concatenation x.y is computed as

p = parse(pinit , x.y)

= parse(parse(pinit , x), y)

= parse(px, y).

However, what we have is py = parse(pinit , y) not parse(px, y).
The parse(pinit , y) is the parse stack after parsing y from the initial
stack not from the px stack. We cannot directly compute p from px

and py .
Abstracting the code c into the parse stack transition function

λp.parse(p, c) solves the above concatenation problem elegantly.
Let fx and fy be the parse stack transition functions for code
fragments x and y respectively. Then we have

fx = λp.parse(p, x)

fy = λp.parse(p, y).

With the two parse stack transition functions fx and fy , we con-
struct the parse stack transition function fx.y as follows.

fx.y = λp.parse(p, x.y)

= λp.parse(parse(p, x), y)

= (λp.parse(p, y)) ◦ (λp.parse(p, x))

= fy ◦ fx

3.4 Concrete Parsing Semantics
Using the abstraction from Code to P → P , the Galois connection
2Code −−→←−−α

γ
VP = 2P→P is established as follows.

α = λC.{λp.parse(p, c) | c ∈ C}

γ = λF.
[

f∈F

{c | ∀p ∈ P.parse(p, c) = f(p)}

Concrete parsing semantics is derived from the collecting se-
mantics as follows.

P = the set of parse stacks

VP = 2P→P

σ ∈ EnvP = Var → VP

[[e]]0P ∈ EnvP → VP

[[f]]1P ∈ EnvP → VP

[[x]]0P σ = σ(x)

[[let x e1 e2]]
0
P σ = [[e2]]

0
P (σ[x �→ [[e1]]

0
P σ])

[[or e1 e2]]
0
P σ = [[e1]]

0
P σ ∪ [[e2]]

0
P σ

[[re x e1 e2 e3]]
0
P σ = [[e3]]

0
P (σ[x �→

fix λk.[[e1]]
0
P σ ∪ [[e2]]

0
P (σ[x �→ k])])

[[‘f]]0P σ = [[f]]1P σ

[[t]]1P σ = {λp.parse action(p, t)}
[[f1.f2]]

1
P σ = {p2 ◦ p1 | p1 ∈ [[f1]]

1
P σ ∧ p2 ∈ [[f2]]

1
P σ}

[[,e]]1P σ = [[e]]0P σ

4. Abstract Parsing
4.1 First Step Abstraction : Value VP̂ = 2P → 2P

First, we abstract the concrete parsing domain VP = 2P→P

to VP̂ = 2P → 2P by establishing the Galois connection
VP −−→←−−α

γ
VP̂ where

α =λF.λP.
[

p∈P

{f(p) | f ∈ F}

γ = λF.
[

{S | α(S) ⊆ f}.

Then we derive the abstract semantics for this domain as follows.

σ ∈ Env P̂ = Var → VP̂

[[e]]0P̂ ∈ Env P̂ → VP̂

[[f]]1P̂ ∈ Env P̂ → VP̂

[[x]]0P̂ = σ(x)

[[let x e1 e2]]
0
P̂ σ = [[e2]]

0
P̂ (σ[x �→ [[e1]]

0
P̂ σ])

[[or e1 e2]]
0
P̂ σ = λP.[[e1]]

0
P̂ σP ∪ [[e2]]

0
P̂ σP

[[re x e1 e2 e3]]
0
P̂ σ = [[e3]]

0
P̂ (σ[x �→

fix λk.λP.[[e1]]
0
P̂ σP ∪ [[e2]]

0
P̂ (σ[x �→ k])P])

[[‘f]]0P̂ σ = [[f]]1P̂ σ

[[t]]1P̂ σ = λP.Parse action(P, t)

[[f1.f2]]
1
P̂ σ = [[f2]]

1
P̂ σ ◦ [[f1]]

1
P̂ σ

[[,e]]1P̂ σ = [[e]]0P̂ σ

where Parse action : 2P → Token → 2P is the natural set
extension of parse action:

Parse action = λP.λt.{parse action(p, t) | p ∈ P}.

The abstract semantic function [[·]]0
P̂

is used to check whether
generated code conforms to the grammar. For the given program e,
we compute

S = [[e]]0P̂ σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare S
with {pacc}, the accept parse state. If they are equal, we conclude
that the generated code in the given program conforms to the
grammar. Otherwise, the analysis concludes that the program may
generate syntactically incorrect code.

Consider, the example program e1 shown in 2.2:

re x ‘a ‘(or . ,x . b) x

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting 2P (the powerset domain of parse stacks) into
a particular domain, we provide conditions which the abstract do-
main for 2P should satisfy. Then we define the semantic function
on the abstract parsing domain.

35

/62

First Abstraction

• First, we abstract to by,

May 1, 2009 ROPAS-2009-02 4

3.5 Concrete Parsing Semantics

σP ∈ EnvP : V ar → 2P→P

V0
P : Exp → EnvP → 2P→P

V1
P : Frag → EnvP → 2P→P

V0
P xσP = σP (x)

V0
P (or e1 e2)σP = V 0

P e1σP p ∪ V0
P e2σP p

V0
P (let x e1 e2)σP = V0

P e2(σP [x �→ V0
P e1σP])

V0
P (re x e1 e2 e3)σP = V0

P e3(σP [x �→ fixλk.((V0
P e1σP) � (V0

P e2(σP [x �→ k])))])

V0
P `fσP = V1

P fσP

V1
P (f1.f2)σP = {p2 ◦ p1 | p1 ∈ V1

P f1 ∧ p2 ∈ V1
P f2}

V1
P (, e)σP = V0

P eσP

V1
P aσP = {λp.parse action a p}

4 Abstraction

4.1 First Step Abstraction V bP : 2P → 2P

General Abstract Parsing Domain is �2P → 2P ,�,�,⊥�

� : f1 � f2 ∀p ∈ P : f1(p) � f2(p)
� : f1 � f2 λp.f1(p) � f2(p)

4.1.1 Galois Connection

α2P→P→(2P→2P) = λFλP.{f(p) | f ∈ F ∧ p ∈ P}
γ(2P→2P)→2P→P = λF{f | ∀x ∈ dom(f).∃X ∈ dom(F).x ∈ X ∧ f(x) ∈ (F (X) ∪ {⊥}}

4.1.2 First Step Abstract Semantics

σ bP ∈ Env bP : V ar → (2P → 2P)

V0
bP : Exp → EnvP → (2P → 2P)

V1
bP : Frag → EnvP → (2P → 2P)

V0
bP xσ = σ bP (x)

V0
bP (or e1 e2)σ = V0

bP e1σ � V0
bP e2σ

V0
bP (let x e1 e2)σ = V0

bP e2(σ[x �→ V0
bP e1σ])

V0
bP (re x e1 e2 e3)σ = V0

bP e3(σ[x �→ fixλk.((V0
bP e1σ) � (V0

bP e2(σ[x �→ k]))])

V0
bP `fσ = V1

bP fσ

V1
bP (f1.f2)σ = V1

bP f2σ ◦ V1
bP f1σ

V1
bP (, e)σ = V0

bP eσ

V1
bP aσ = λP.{parse action a p | p ∈ P}

• Semantics:

2P→P 2P → 2P

The parsing process parse : P → Token sequence → P is a
composition of the parse action .

parse(p, t1 . . . tn)

= parse action(. . . (parse action(p, t1)), . . . , tn)

A parser gets the input code c and returns the parse stack parse(pinit , c).

3.3 Concrete Parsing Domain : Value VP = 2P→P

We define the concrete parsing domain. It is “concrete” in that we
use the same parse stack defined in LR(k) parsing.

Because LR(k) parsing computes a parse stack, it is tempting to
choose the parse stack parse(pinit , c) as an abstraction of the code
c. However this setting causes a problem when we handle the con-
catenation x.y. Let px = parse(pinit , x) and py = parse(pinit , y)
be the resulting parse stacks for the code fragments x and y. The
parse stack p for the concatenation x.y is computed as

p = parse(pinit , x.y)

= parse(parse(pinit , x), y)

= parse(px, y).

However, what we have is py = parse(pinit , y) not parse(px, y).
The parse(pinit , y) is the parse stack after parsing y from the initial
stack not from the px stack. We cannot directly compute p from px

and py .
Abstracting the code c into the parse stack transition function

λp.parse(p, c) solves the above concatenation problem elegantly.
Let fx and fy be the parse stack transition functions for code
fragments x and y respectively. Then we have

fx = λp.parse(p, x)

fy = λp.parse(p, y).

With the two parse stack transition functions fx and fy , we con-
struct the parse stack transition function fx.y as follows.

fx.y = λp.parse(p, x.y)

= λp.parse(parse(p, x), y)

= (λp.parse(p, y)) ◦ (λp.parse(p, x))

= fy ◦ fx

3.4 Concrete Parsing Semantics
Using the abstraction from Code to P → P , the Galois connection
2Code −−→←−−α

γ
VP = 2P→P is established as follows.

α = λC.{λp.parse(p, c) | c ∈ C}

γ = λF.
[

f∈F

{c | ∀p ∈ P.parse(p, c) = f(p)}

Concrete parsing semantics is derived from the collecting se-
mantics as follows.

P = the set of parse stacks

VP = 2P→P

σ ∈ EnvP = Var → VP

[[e]]0P ∈ EnvP → VP

[[f]]1P ∈ EnvP → VP

[[x]]0P σ = σ(x)

[[let x e1 e2]]
0
P σ = [[e2]]

0
P (σ[x �→ [[e1]]

0
P σ])

[[or e1 e2]]
0
P σ = [[e1]]

0
P σ ∪ [[e2]]

0
P σ

[[re x e1 e2 e3]]
0
P σ = [[e3]]

0
P (σ[x �→

fix λk.[[e1]]
0
P σ ∪ [[e2]]

0
P (σ[x �→ k])])

[[‘f]]0P σ = [[f]]1P σ

[[t]]1P σ = {λp.parse action(p, t)}
[[f1.f2]]

1
P σ = {p2 ◦ p1 | p1 ∈ [[f1]]

1
P σ ∧ p2 ∈ [[f2]]

1
P σ}

[[,e]]1P σ = [[e]]0P σ

4. Abstract Parsing
4.1 First Step Abstraction : Value VP̂ = 2P → 2P

First, we abstract the concrete parsing domain VP = 2P→P

to VP̂ = 2P → 2P by establishing the Galois connection
VP −−→←−−α

γ
VP̂ where

α =λF.λP.
[

p∈P

{f(p) | f ∈ F}

γ = λF.
[

{S | α(S) ⊆ f}.

Then we derive the abstract semantics for this domain as follows.

σ ∈ Env P̂ = Var → VP̂

[[e]]0P̂ ∈ Env P̂ → VP̂

[[f]]1P̂ ∈ Env P̂ → VP̂

[[x]]0P̂ = σ(x)

[[let x e1 e2]]
0
P̂ σ = [[e2]]

0
P̂ (σ[x �→ [[e1]]

0
P̂ σ])

[[or e1 e2]]
0
P̂ σ = λP.[[e1]]

0
P̂ σP ∪ [[e2]]

0
P̂ σP

[[re x e1 e2 e3]]
0
P̂ σ = [[e3]]

0
P̂ (σ[x �→

fix λk.λP.[[e1]]
0
P̂ σP ∪ [[e2]]

0
P̂ (σ[x �→ k])P])

[[‘f]]0P̂ σ = [[f]]1P̂ σ

[[t]]1P̂ σ = λP.Parse action(P, t)

[[f1.f2]]
1
P̂ σ = [[f2]]

1
P̂ σ ◦ [[f1]]

1
P̂ σ

[[,e]]1P̂ σ = [[e]]0P̂ σ

where Parse action : 2P → Token → 2P is the natural set
extension of parse action:

Parse action = λP.λt.{parse action(p, t) | p ∈ P}.

The abstract semantic function [[·]]0
P̂

is used to check whether
generated code conforms to the grammar. For the given program e,
we compute

S = [[e]]0P̂ σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare S
with {pacc}, the accept parse state. If they are equal, we conclude
that the generated code in the given program conforms to the
grammar. Otherwise, the analysis concludes that the program may
generate syntactically incorrect code.

Consider, the example program e1 shown in 2.2:

re x ‘a ‘(or . ,x . b) x

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting 2P (the powerset domain of parse stacks) into
a particular domain, we provide conditions which the abstract do-
main for 2P should satisfy. Then we define the semantic function
on the abstract parsing domain.

36

/62

• Since is infinite, computing f : may
not terminate.

• Example:

Need More Abstraction

P 2P → 2P

re x (`or . , x) (`,x . b)

=> a b

 or a b

 or or a b

 ...

37

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a) � k ◦ PA(P, or)))

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative

Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-

ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium

on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional

Programming, pages 275–286. ACM, August 2003.

[7] Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim, and Kyung-Goo Doh.
A practical string analyzer by the widening approach. In Proceedings

of the Asian Symposium on Programming Languages and Systems,
volume 4729 of Lecture Notes in Computer Science, pages 374–388,
Sydney, Austrailia, November 2006. Springer-Verlag.

[8] Aske Simon Christensen, Anders Mller, and Michael I. Schwartzbach.
Precise analysis of string expressions. In Proceedings of the Static

Analysis Symposium, pages 1–18. Springer-Verlag, 2003.

[9] Mihai Christodorescu, Nicholas Kidd, and Wen-Han Goh. String
analysis for x86 binaries. In Proceedings of the ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering, pages 88–95, New York, NY, USA, 2005. ACM.

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= (λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a)� k ◦PA(P, or)))){s1}

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative

Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-

ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium

on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional

Programming, pages 275–286. ACM, August 2003.

[7] Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim, and Kyung-Goo Doh.
A practical string analyzer by the widening approach. In Proceedings

of the Asian Symposium on Programming Languages and Systems,
volume 4729 of Lecture Notes in Computer Science, pages 374–388,
Sydney, Austrailia, November 2006. Springer-Verlag.

[8] Aske Simon Christensen, Anders Mller, and Michael I. Schwartzbach.
Precise analysis of string expressions. In Proceedings of the Static

Analysis Symposium, pages 1–18. Springer-Verlag, 2003.

[9] Mihai Christodorescu, Nicholas Kidd, and Wen-Han Goh. String
analysis for x86 binaries. In Proceedings of the ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering, pages 88–95, New York, NY, USA, 2005. ACM.

/62

• Example:

Need More Abstraction

re x (`or . ,x) (`,x . b)

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a) � k ◦ PA(P, or)))

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative

Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-

ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium

on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional

Programming, pages 275–286. ACM, August 2003.

[7] Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim, and Kyung-Goo Doh.
A practical string analyzer by the widening approach. In Proceedings

of the Asian Symposium on Programming Languages and Systems,
volume 4729 of Lecture Notes in Computer Science, pages 374–388,
Sydney, Austrailia, November 2006. Springer-Verlag.

[8] Aske Simon Christensen, Anders Mller, and Michael I. Schwartzbach.
Precise analysis of string expressions. In Proceedings of the Static

Analysis Symposium, pages 1–18. Springer-Verlag, 2003.

[9] Mihai Christodorescu, Nicholas Kidd, and Wen-Han Goh. String
analysis for x86 binaries. In Proceedings of the ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering, pages 88–95, New York, NY, USA, 2005. ACM.

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= (λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a)� k ◦PA(P, or)))){s1}

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative

Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-

ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium

on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional

Programming, pages 275–286. ACM, August 2003.

[7] Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim, and Kyung-Goo Doh.
A practical string analyzer by the widening approach. In Proceedings

of the Asian Symposium on Programming Languages and Systems,
volume 4729 of Lecture Notes in Computer Science, pages 374–388,
Sydney, Austrailia, November 2006. Springer-Verlag.

[8] Aske Simon Christensen, Anders Mller, and Michael I. Schwartzbach.
Precise analysis of string expressions. In Proceedings of the Static

Analysis Symposium, pages 1–18. Springer-Verlag, 2003.

[9] Mihai Christodorescu, Nicholas Kidd, and Wen-Han Goh. String
analysis for x86 binaries. In Proceedings of the ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering, pages 88–95, New York, NY, USA, 2005. ACM.

38

s1: S -> . E s3: E -> id .

s5: E -> or . E E

s8: S -> E .

s10: E -> or E . E

s14: E -> or E E .

id

or

E

id

E

id

or

E
or

/62

• Example:

Need More Abstraction

re x (`or . ,x) (`,x . b)

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a) � k ◦ PA(P, or)))

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative

Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-

ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium

on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional

Programming, pages 275–286. ACM, August 2003.

[7] Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim, and Kyung-Goo Doh.
A practical string analyzer by the widening approach. In Proceedings

of the Asian Symposium on Programming Languages and Systems,
volume 4729 of Lecture Notes in Computer Science, pages 374–388,
Sydney, Austrailia, November 2006. Springer-Verlag.

[8] Aske Simon Christensen, Anders Mller, and Michael I. Schwartzbach.
Precise analysis of string expressions. In Proceedings of the Static

Analysis Symposium, pages 1–18. Springer-Verlag, 2003.

[9] Mihai Christodorescu, Nicholas Kidd, and Wen-Han Goh. String
analysis for x86 binaries. In Proceedings of the ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering, pages 88–95, New York, NY, USA, 2005. ACM.

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= (λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a)� k ◦PA(P, or)))){s1}

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative

Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-

ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium

on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional

Programming, pages 275–286. ACM, August 2003.

[7] Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim, and Kyung-Goo Doh.
A practical string analyzer by the widening approach. In Proceedings

of the Asian Symposium on Programming Languages and Systems,
volume 4729 of Lecture Notes in Computer Science, pages 374–388,
Sydney, Austrailia, November 2006. Springer-Verlag.

[8] Aske Simon Christensen, Anders Mller, and Michael I. Schwartzbach.
Precise analysis of string expressions. In Proceedings of the Static

Analysis Symposium, pages 1–18. Springer-Verlag, 2003.

[9] Mihai Christodorescu, Nicholas Kidd, and Wen-Han Goh. String
analysis for x86 binaries. In Proceedings of the ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering, pages 88–95, New York, NY, USA, 2005. ACM.

39

s1: S -> . E s3: E -> id .

s5: E -> or . E E

s8: S -> E .

s10: E -> or E . E

s14: E -> or E E .

id

or

E

id

E

id

or

E
or

/62

• Example:

Need More Abstraction

re x (`or . ,x) (`,x . b)

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a) � k ◦ PA(P, or)))

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative

Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-

ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium

on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional

Programming, pages 275–286. ACM, August 2003.

[7] Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim, and Kyung-Goo Doh.
A practical string analyzer by the widening approach. In Proceedings

of the Asian Symposium on Programming Languages and Systems,
volume 4729 of Lecture Notes in Computer Science, pages 374–388,
Sydney, Austrailia, November 2006. Springer-Verlag.

[8] Aske Simon Christensen, Anders Mller, and Michael I. Schwartzbach.
Precise analysis of string expressions. In Proceedings of the Static

Analysis Symposium, pages 1–18. Springer-Verlag, 2003.

[9] Mihai Christodorescu, Nicholas Kidd, and Wen-Han Goh. String
analysis for x86 binaries. In Proceedings of the ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering, pages 88–95, New York, NY, USA, 2005. ACM.

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= (λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a)� k ◦PA(P, or)))){s1}

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative

Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-

ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium

on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional

Programming, pages 275–286. ACM, August 2003.

[7] Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim, and Kyung-Goo Doh.
A practical string analyzer by the widening approach. In Proceedings

of the Asian Symposium on Programming Languages and Systems,
volume 4729 of Lecture Notes in Computer Science, pages 374–388,
Sydney, Austrailia, November 2006. Springer-Verlag.

[8] Aske Simon Christensen, Anders Mller, and Michael I. Schwartzbach.
Precise analysis of string expressions. In Proceedings of the Static

Analysis Symposium, pages 1–18. Springer-Verlag, 2003.

[9] Mihai Christodorescu, Nicholas Kidd, and Wen-Han Goh. String
analysis for x86 binaries. In Proceedings of the ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering, pages 88–95, New York, NY, USA, 2005. ACM.

40

s1: S -> . E s3: E -> id .

s5: E -> or . E E

s8: S -> E .

s10: E -> or E . E

s14: E -> or E E .

id

or

E

id

E

id

or

E
or

{s1} �→ {s8s1}

/62

• Example:

Need More Abstraction

re x (`or . ,x) (`,x . b)

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a) � k ◦ PA(P, or)))

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative

Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-

ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium

on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional

Programming, pages 275–286. ACM, August 2003.

[7] Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim, and Kyung-Goo Doh.
A practical string analyzer by the widening approach. In Proceedings

of the Asian Symposium on Programming Languages and Systems,
volume 4729 of Lecture Notes in Computer Science, pages 374–388,
Sydney, Austrailia, November 2006. Springer-Verlag.

[8] Aske Simon Christensen, Anders Mller, and Michael I. Schwartzbach.
Precise analysis of string expressions. In Proceedings of the Static

Analysis Symposium, pages 1–18. Springer-Verlag, 2003.

[9] Mihai Christodorescu, Nicholas Kidd, and Wen-Han Goh. String
analysis for x86 binaries. In Proceedings of the ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering, pages 88–95, New York, NY, USA, 2005. ACM.

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= (λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a)� k ◦PA(P, or)))){s1}

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative

Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-

ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium

on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional

Programming, pages 275–286. ACM, August 2003.

[7] Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim, and Kyung-Goo Doh.
A practical string analyzer by the widening approach. In Proceedings

of the Asian Symposium on Programming Languages and Systems,
volume 4729 of Lecture Notes in Computer Science, pages 374–388,
Sydney, Austrailia, November 2006. Springer-Verlag.

[8] Aske Simon Christensen, Anders Mller, and Michael I. Schwartzbach.
Precise analysis of string expressions. In Proceedings of the Static

Analysis Symposium, pages 1–18. Springer-Verlag, 2003.

[9] Mihai Christodorescu, Nicholas Kidd, and Wen-Han Goh. String
analysis for x86 binaries. In Proceedings of the ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering, pages 88–95, New York, NY, USA, 2005. ACM.

41

s1: S -> . E s3: E -> id .

s5: E -> or . E E

s8: S -> E .

s10: E -> or E . E

s14: E -> or E E .

id

or

E

id

E

id

or

E
or

{s1} �→ {s8s1} ∪ k({s5s1})

/62

• Example:

Need More Abstraction

re x (`or . ,x) (`,x . b)

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a) � k ◦ PA(P, or)))

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative

Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-

ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium

on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional

Programming, pages 275–286. ACM, August 2003.

[7] Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim, and Kyung-Goo Doh.
A practical string analyzer by the widening approach. In Proceedings

of the Asian Symposium on Programming Languages and Systems,
volume 4729 of Lecture Notes in Computer Science, pages 374–388,
Sydney, Austrailia, November 2006. Springer-Verlag.

[8] Aske Simon Christensen, Anders Mller, and Michael I. Schwartzbach.
Precise analysis of string expressions. In Proceedings of the Static

Analysis Symposium, pages 1–18. Springer-Verlag, 2003.

[9] Mihai Christodorescu, Nicholas Kidd, and Wen-Han Goh. String
analysis for x86 binaries. In Proceedings of the ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering, pages 88–95, New York, NY, USA, 2005. ACM.

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= (λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a)� k ◦PA(P, or)))){s1}

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative

Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-

ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium

on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional

Programming, pages 275–286. ACM, August 2003.

[7] Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim, and Kyung-Goo Doh.
A practical string analyzer by the widening approach. In Proceedings

of the Asian Symposium on Programming Languages and Systems,
volume 4729 of Lecture Notes in Computer Science, pages 374–388,
Sydney, Austrailia, November 2006. Springer-Verlag.

[8] Aske Simon Christensen, Anders Mller, and Michael I. Schwartzbach.
Precise analysis of string expressions. In Proceedings of the Static

Analysis Symposium, pages 1–18. Springer-Verlag, 2003.

[9] Mihai Christodorescu, Nicholas Kidd, and Wen-Han Goh. String
analysis for x86 binaries. In Proceedings of the ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering, pages 88–95, New York, NY, USA, 2005. ACM.

42

s1: S -> . E s3: E -> id .

s5: E -> or . E E

s8: S -> E .

s10: E -> or E . E

s14: E -> or E E .

id

or

E

id

E

id

or

E
or

{s1} �→ {s8s1}
{s5s1} �→ {s10s5s1}

/62

• Example:

Need More Abstraction

re x (`or . ,x) (`,x . b)

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a) � k ◦ PA(P, or)))

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative

Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-

ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium

on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional

Programming, pages 275–286. ACM, August 2003.

[7] Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim, and Kyung-Goo Doh.
A practical string analyzer by the widening approach. In Proceedings

of the Asian Symposium on Programming Languages and Systems,
volume 4729 of Lecture Notes in Computer Science, pages 374–388,
Sydney, Austrailia, November 2006. Springer-Verlag.

[8] Aske Simon Christensen, Anders Mller, and Michael I. Schwartzbach.
Precise analysis of string expressions. In Proceedings of the Static

Analysis Symposium, pages 1–18. Springer-Verlag, 2003.

[9] Mihai Christodorescu, Nicholas Kidd, and Wen-Han Goh. String
analysis for x86 binaries. In Proceedings of the ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering, pages 88–95, New York, NY, USA, 2005. ACM.

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= (λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a)� k ◦PA(P, or)))){s1}

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative

Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-

ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium

on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional

Programming, pages 275–286. ACM, August 2003.

[7] Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim, and Kyung-Goo Doh.
A practical string analyzer by the widening approach. In Proceedings

of the Asian Symposium on Programming Languages and Systems,
volume 4729 of Lecture Notes in Computer Science, pages 374–388,
Sydney, Austrailia, November 2006. Springer-Verlag.

[8] Aske Simon Christensen, Anders Mller, and Michael I. Schwartzbach.
Precise analysis of string expressions. In Proceedings of the Static

Analysis Symposium, pages 1–18. Springer-Verlag, 2003.

[9] Mihai Christodorescu, Nicholas Kidd, and Wen-Han Goh. String
analysis for x86 binaries. In Proceedings of the ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering, pages 88–95, New York, NY, USA, 2005. ACM.

43

s1: S -> . E s3: E -> id .

s5: E -> or . E E

s8: S -> E .

s10: E -> or E . E

s14: E -> or E E .

id

or

E

id

E

id

or

E
or {s5s1} �→ {s10s5s1} ∪ k({s5s5s1})

{s1} �→ {s8s1}

/62

• Example:

Need More Abstraction

re x (`or . ,x) (`,x . b)

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a) � k ◦ PA(P, or)))

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative

Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-

ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium

on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional

Programming, pages 275–286. ACM, August 2003.

[7] Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim, and Kyung-Goo Doh.
A practical string analyzer by the widening approach. In Proceedings

of the Asian Symposium on Programming Languages and Systems,
volume 4729 of Lecture Notes in Computer Science, pages 374–388,
Sydney, Austrailia, November 2006. Springer-Verlag.

[8] Aske Simon Christensen, Anders Mller, and Michael I. Schwartzbach.
Precise analysis of string expressions. In Proceedings of the Static

Analysis Symposium, pages 1–18. Springer-Verlag, 2003.

[9] Mihai Christodorescu, Nicholas Kidd, and Wen-Han Goh. String
analysis for x86 binaries. In Proceedings of the ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering, pages 88–95, New York, NY, USA, 2005. ACM.

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= (λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a)� k ◦PA(P, or)))){s1}

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative

Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-

ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium

on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional

Programming, pages 275–286. ACM, August 2003.

[7] Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim, and Kyung-Goo Doh.
A practical string analyzer by the widening approach. In Proceedings

of the Asian Symposium on Programming Languages and Systems,
volume 4729 of Lecture Notes in Computer Science, pages 374–388,
Sydney, Austrailia, November 2006. Springer-Verlag.

[8] Aske Simon Christensen, Anders Mller, and Michael I. Schwartzbach.
Precise analysis of string expressions. In Proceedings of the Static

Analysis Symposium, pages 1–18. Springer-Verlag, 2003.

[9] Mihai Christodorescu, Nicholas Kidd, and Wen-Han Goh. String
analysis for x86 binaries. In Proceedings of the ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering, pages 88–95, New York, NY, USA, 2005. ACM.

44

s1: S -> . E s3: E -> id .

s5: E -> or . E E

s8: S -> E .

s10: E -> or E . E

s14: E -> or E E .

id

or

E

id

E

id

or

E
or

{s1} �→ {s8s1}
{s5s1} �→ {s10s5s1}

{s5s5s1} �→ {s10s5s5s1}

/62

• Example:

Need More Abstraction

re x (`or . ,x) (`,x . b)

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a) � k ◦ PA(P, or)))

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative

Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-

ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium

on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional

Programming, pages 275–286. ACM, August 2003.

[7] Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim, and Kyung-Goo Doh.
A practical string analyzer by the widening approach. In Proceedings

of the Asian Symposium on Programming Languages and Systems,
volume 4729 of Lecture Notes in Computer Science, pages 374–388,
Sydney, Austrailia, November 2006. Springer-Verlag.

[8] Aske Simon Christensen, Anders Mller, and Michael I. Schwartzbach.
Precise analysis of string expressions. In Proceedings of the Static

Analysis Symposium, pages 1–18. Springer-Verlag, 2003.

[9] Mihai Christodorescu, Nicholas Kidd, and Wen-Han Goh. String
analysis for x86 binaries. In Proceedings of the ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering, pages 88–95, New York, NY, USA, 2005. ACM.

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= (λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a)� k ◦PA(P, or)))){s1}

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative

Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-

ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium

on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional

Programming, pages 275–286. ACM, August 2003.

[7] Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim, and Kyung-Goo Doh.
A practical string analyzer by the widening approach. In Proceedings

of the Asian Symposium on Programming Languages and Systems,
volume 4729 of Lecture Notes in Computer Science, pages 374–388,
Sydney, Austrailia, November 2006. Springer-Verlag.

[8] Aske Simon Christensen, Anders Mller, and Michael I. Schwartzbach.
Precise analysis of string expressions. In Proceedings of the Static

Analysis Symposium, pages 1–18. Springer-Verlag, 2003.

[9] Mihai Christodorescu, Nicholas Kidd, and Wen-Han Goh. String
analysis for x86 binaries. In Proceedings of the ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering, pages 88–95, New York, NY, USA, 2005. ACM.

45

s1: S -> . E s3: E -> id .

s5: E -> or . E E

s8: S -> E .

s10: E -> or E . E

s14: E -> or E E .

id

or

E

id

E

id

or

E
or

{s5s5s1} �→ {s10s5s5s1} ∪ k({s5s5s5s1})

{s1} �→ {s8s1}
{s5s1} �→ {s10s5s1}

/62

• Example:

Need More Abstraction

re x (`or . ,x) (`,x . b)

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a) � k ◦ PA(P, or)))

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative

Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-

ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium

on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional

Programming, pages 275–286. ACM, August 2003.

[7] Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim, and Kyung-Goo Doh.
A practical string analyzer by the widening approach. In Proceedings

of the Asian Symposium on Programming Languages and Systems,
volume 4729 of Lecture Notes in Computer Science, pages 374–388,
Sydney, Austrailia, November 2006. Springer-Verlag.

[8] Aske Simon Christensen, Anders Mller, and Michael I. Schwartzbach.
Precise analysis of string expressions. In Proceedings of the Static

Analysis Symposium, pages 1–18. Springer-Verlag, 2003.

[9] Mihai Christodorescu, Nicholas Kidd, and Wen-Han Goh. String
analysis for x86 binaries. In Proceedings of the ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering, pages 88–95, New York, NY, USA, 2005. ACM.

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= (λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a)� k ◦PA(P, or)))){s1}

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative

Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-

ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium

on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional

Programming, pages 275–286. ACM, August 2003.

[7] Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim, and Kyung-Goo Doh.
A practical string analyzer by the widening approach. In Proceedings

of the Asian Symposium on Programming Languages and Systems,
volume 4729 of Lecture Notes in Computer Science, pages 374–388,
Sydney, Austrailia, November 2006. Springer-Verlag.

[8] Aske Simon Christensen, Anders Mller, and Michael I. Schwartzbach.
Precise analysis of string expressions. In Proceedings of the Static

Analysis Symposium, pages 1–18. Springer-Verlag, 2003.

[9] Mihai Christodorescu, Nicholas Kidd, and Wen-Han Goh. String
analysis for x86 binaries. In Proceedings of the ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering, pages 88–95, New York, NY, USA, 2005. ACM.

46

s1: S -> . E s3: E -> id .

s5: E -> or . E E

s8: S -> E .

s10: E -> or E . E

s14: E -> or E E .

id

or

E

id

E

id

or

E
or

{s1} �→ {s8s1}
{s5s1} �→ {s10s5s1}

{s5s5s1} �→ {s10s5s5s1}
{s5s5s5s1} �→ . . .

/62

• Example:

Need More Abstraction

re x (`or . ,x) (`,x . b)

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a) � k ◦ PA(P, or)))

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative

Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-

ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium

on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional

Programming, pages 275–286. ACM, August 2003.

[7] Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim, and Kyung-Goo Doh.
A practical string analyzer by the widening approach. In Proceedings

of the Asian Symposium on Programming Languages and Systems,
volume 4729 of Lecture Notes in Computer Science, pages 374–388,
Sydney, Austrailia, November 2006. Springer-Verlag.

[8] Aske Simon Christensen, Anders Mller, and Michael I. Schwartzbach.
Precise analysis of string expressions. In Proceedings of the Static

Analysis Symposium, pages 1–18. Springer-Verlag, 2003.

[9] Mihai Christodorescu, Nicholas Kidd, and Wen-Han Goh. String
analysis for x86 binaries. In Proceedings of the ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering, pages 88–95, New York, NY, USA, 2005. ACM.

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= (λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a)� k ◦PA(P, or)))){s1}

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative

Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-

ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium

on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional

Programming, pages 275–286. ACM, August 2003.

[7] Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim, and Kyung-Goo Doh.
A practical string analyzer by the widening approach. In Proceedings

of the Asian Symposium on Programming Languages and Systems,
volume 4729 of Lecture Notes in Computer Science, pages 374–388,
Sydney, Austrailia, November 2006. Springer-Verlag.

[8] Aske Simon Christensen, Anders Mller, and Michael I. Schwartzbach.
Precise analysis of string expressions. In Proceedings of the Static

Analysis Symposium, pages 1–18. Springer-Verlag, 2003.

[9] Mihai Christodorescu, Nicholas Kidd, and Wen-Han Goh. String
analysis for x86 binaries. In Proceedings of the ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering, pages 88–95, New York, NY, USA, 2005. ACM.

47

s1: S -> . E s3: E -> id .

s5: E -> or . E E

s8: S -> E .

s10: E -> or E . E

s14: E -> or E E .

id

or

E

id

E

id

or

E
or

...

Not Terminated.

{s1} �→ {s8s1}
{s5s1} �→ {s10s5s1}

{s5s5s1} �→ {s10s5s5s1}
{s5s5s5s1} �→ . . .

/62

Parameterized Framework

48

Instead of providing particular abstract domain for ,
Parameterize an abstract domain with the conditions it
should satisfy.

2P

/62

Parameterized Framework

We can abstract to

if satisfies the following conditions.

D� → D�

D�

1. is CPO

2. and are Galois connected via and

3. is a sound abstraction of

 . That is,

May 1, 2009 ROPAS-2009-02 5

4.2 Framework

Theorem 1. Abstract Parsing Framework

Let :

1. (D�,�,�,⊥D�) be CPO.

Some abstract domains are naturally derived from D�.

VD� : D� → D�

EnvD� : V ar → D�

2. 2P and D�be galois connected via α2P→D� and γD�→2P .

Galois connections between derived domains and derived abstract domains are naturally

derived from α2P→D� and γD�→2P .

αV bP→VD� = λF.λD.α2P→D�(F (γD�→2P D))

γVD�→V bP
= λ �F .λP.γD�→2P (�F (α2P→D�P))

αEnv bP→EnvD� = λσ.λx.αV bP→VD� (σ(x))

γEnvD�→Env bP
= λ�σ.λx.γVD�→V bP

(�σ(x))

3. parse action� : D� → Token → D� be a sound abstraction of parse action. Formally,

∀a ∈ Token.∀P ∈ 2P .α2P→D�({parse action(p, a) | p ∈ P}) �
parse action�(α2P→D�(P), a)

4. VD� be a abstract counterpart of V bP , defined as below.

σ ∈ EnvD�

VD� : Pgm → EnvD� → VD�

V0
D�xσD� = σ(x)

V0
D�(or e1 e2)σD� = V0

D�e1σD� � V0
D�e2σD�

V0
D�(let x e1 e2)σD� = V0

D�e2(σD� [x �→ V0
D�e1σD�])

V0
D�(re x e1 e2 e3)σD� = V0

D�e3(σD� [x �→ fix(λk.((V0
D�e1σD�) � (V0

D�e2(σD� [x �→ k])))]))

V0
D�`fσD� = V1

D�fσD�

V1
D�(f1 · f2)σD� = V1

D�f1σD� ◦ V1
D�f2σD�

V1
D�(, e)σD� = V0

D�eσD�

V1
D�aσD� = λD.parse action�(D, a)

Then, VD� is a sound approximation of V bP . Formally,

∀℘ ∈ Pgm.α(V bP)(℘)) � VD�(℘)
where α(V bP (℘)) = αV bP→VD�V bP (℘)γEnvD�→Env2P

Proof. Proof by structural induction on ℘
To make notation clear, let’s introduce symbols αV , γV , αEnv, γEnv, αd and γd instead of
αV bP→VD� , γVD�→V bP

, αEnv2P→EnvD� γEnvD�→Env2P , α2P→D� and γD�→2P

May 1, 2009 ROPAS-2009-02 5

4.2 Framework

Theorem 1. Abstract Parsing Framework

Let :

1. (D�,�,�,⊥D�) be CPO.

Some abstract domains are naturally derived from D�.

VD� : D� → D�

EnvD� : V ar → D�

2. 2P and D�be galois connected via α2P→D� and γD�→2P .

Galois connections between derived domains and derived abstract domains are naturally

derived from α2P→D� and γD�→2P .

αV bP→VD� = λF.λD.α2P→D�(F (γD�→2P D))

γVD�→V bP
= λ �F .λP.γD�→2P (�F (α2P→D�P))

αEnv bP→EnvD� = λσ.λx.αV bP→VD� (σ(x))

γEnvD�→Env bP
= λ�σ.λx.γVD�→V bP

(�σ(x))

3. parse action� : D� → Token → D� be a sound abstraction of parse action. Formally,

∀a ∈ Token.∀P ∈ 2P .α2P→D�({parse action(p, a) | p ∈ P}) �
parse action�(α2P→D�(P), a)

4. VD� be a abstract counterpart of V bP , defined as below.

σ ∈ EnvD�

VD� : Pgm → EnvD� → VD�

V0
D�xσD� = σ(x)

V0
D�(or e1 e2)σD� = V0

D�e1σD� � V0
D�e2σD�

V0
D�(let x e1 e2)σD� = V0

D�e2(σD� [x �→ V0
D�e1σD�])

V0
D�(re x e1 e2 e3)σD� = V0

D�e3(σD� [x �→ fix(λk.((V0
D�e1σD�) � (V0

D�e2(σD� [x �→ k])))]))

V0
D�`fσD� = V1

D�fσD�

V1
D�(f1 · f2)σD� = V1

D�f1σD� ◦ V1
D�f2σD�

V1
D�(, e)σD� = V0

D�eσD�

V1
D�aσD� = λD.parse action�(D, a)

Then, VD� is a sound approximation of V bP . Formally,

∀℘ ∈ Pgm.α(V bP)(℘)) � VD�(℘)
where α(V bP (℘)) = αV bP→VD�V bP (℘)γEnvD�→Env2P

Proof. Proof by structural induction on ℘
To make notation clear, let’s introduce symbols αV , γV , αEnv, γEnv, αd and γd instead of
αV bP→VD� , γVD�→V bP

, αEnv2P→EnvD� γEnvD�→Env2P , α2P→D� and γD�→2P

May 1, 2009 ROPAS-2009-02 5

4.2 Framework

Theorem 1. Abstract Parsing Framework

Let :

1. (D�,�,�,⊥D�) be CPO.

Some abstract domains are naturally derived from D�.

VD� : D� → D�

EnvD� : V ar → D�

2. 2P and D�be galois connected via α2P→D� and γD�→2P .

Galois connections between derived domains and derived abstract domains are naturally

derived from α2P→D� and γD�→2P .

αV bP→VD� = λF.λD.α2P→D�(F (γD�→2P D))

γVD�→V bP
= λ �F .λP.γD�→2P (�F (α2P→D�P))

αEnv bP→EnvD� = λσ.λx.αV bP→VD� (σ(x))

γEnvD�→Env bP
= λ�σ.λx.γVD�→V bP

(�σ(x))

3. parse action� : D� → Token → D� be a sound abstraction of parse action. Formally,

∀a ∈ Token.∀P ∈ 2P .α2P→D�({parse action(p, a) | p ∈ P}) �
parse action�(α2P→D�(P), a)

4. VD� be a abstract counterpart of V bP , defined as below.

σ ∈ EnvD�

VD� : Pgm → EnvD� → VD�

V0
D�xσD� = σ(x)

V0
D�(or e1 e2)σD� = V0

D�e1σD� � V0
D�e2σD�

V0
D�(let x e1 e2)σD� = V0

D�e2(σD� [x �→ V0
D�e1σD�])

V0
D�(re x e1 e2 e3)σD� = V0

D�e3(σD� [x �→ fix(λk.((V0
D�e1σD�) � (V0

D�e2(σD� [x �→ k])))]))

V0
D�`fσD� = V1

D�fσD�

V1
D�(f1 · f2)σD� = V1

D�f1σD� ◦ V1
D�f2σD�

V1
D�(, e)σD� = V0

D�eσD�

V1
D�aσD� = λD.parse action�(D, a)

Then, VD� is a sound approximation of V bP . Formally,

∀℘ ∈ Pgm.α(V bP)(℘)) � VD�(℘)
where α(V bP (℘)) = αV bP→VD�V bP (℘)γEnvD�→Env2P

Proof. Proof by structural induction on ℘
To make notation clear, let’s introduce symbols αV , γV , αEnv, γEnv, αd and γd instead of
αV bP→VD� , γVD�→V bP

, αEnv2P→EnvD� γEnvD�→Env2P , α2P→D� and γD�→2P

May 1, 2009 ROPAS-2009-02 5

4.2 Framework

Theorem 1. Abstract Parsing Framework

Let :

1. (D�,�,�,⊥D�) be CPO.

Some abstract domains are naturally derived from D�.

VD� : D� → D�

EnvD� : V ar → D�

2. 2P and D�be galois connected via α2P→D� and γD�→2P .

Galois connections between derived domains and derived abstract domains are naturally

derived from α2P→D� and γD�→2P .

αV bP→VD� = λF.λD.α2P→D�(F (γD�→2P D))

γVD�→V bP
= λ �F .λP.γD�→2P (�F (α2P→D�P))

αEnv bP→EnvD� = λσ.λx.αV bP→VD� (σ(x))

γEnvD�→Env bP
= λ�σ.λx.γVD�→V bP

(�σ(x))

3. parse action� : D� → Token → D� be a sound abstraction of parse action. Formally,

∀a ∈ Token.∀P ∈ 2P .α2P→D�({parse action(p, a) | p ∈ P}) �
parse action�(α2P→D�(P), a)

4. VD� be a abstract counterpart of V bP , defined as below.

σ ∈ EnvD�

VD� : Pgm → EnvD� → VD�

V0
D�xσD� = σ(x)

V0
D�(or e1 e2)σD� = V0

D�e1σD� � V0
D�e2σD�

V0
D�(let x e1 e2)σD� = V0

D�e2(σD� [x �→ V0
D�e1σD�])

V0
D�(re x e1 e2 e3)σD� = V0

D�e3(σD� [x �→ fix(λk.((V0
D�e1σD�) � (V0

D�e2(σD� [x �→ k])))]))

V0
D�`fσD� = V1

D�fσD�

V1
D�(f1 · f2)σD� = V1

D�f1σD� ◦ V1
D�f2σD�

V1
D�(, e)σD� = V0

D�eσD�

V1
D�aσD� = λD.parse action�(D, a)

Then, VD� is a sound approximation of V bP . Formally,

∀℘ ∈ Pgm.α(V bP)(℘)) � VD�(℘)
where α(V bP (℘)) = αV bP→VD� V bP (℘)γEnvD�→Env2P

Proof. Proof by structural induction on ℘
To make notation clear, let’s introduce symbols αV , γV , αEnv, γEnv, αd and γd instead of
αV bP→VD� , γVD�→V bP

, αEnv2P→EnvD� γEnvD�→Env2P , α2P→D� and γD�→2P

D�

May 1, 2009 ROPAS-2009-02 5

4.2 Framework

Theorem 1. Abstract Parsing Framework

Let :

1. (D�,�,�,⊥D�) be CPO.

Some abstract domains are naturally derived from D�.

VD� : D� → D�

EnvD� : V ar → D�

2. 2P and D�be galois connected via α2P→D� and γD�→2P .

Galois connections between derived domains and derived abstract domains are naturally

derived from α2P→D� and γD�→2P .

αV bP→VD� = λF.λD.α2P→D�(F (γD�→2P D))

γVD�→V bP
= λ �F .λP.γD�→2P (�F (α2P→D�P))

αEnv bP→EnvD� = λσ.λx.αV bP→VD� (σ(x))

γEnvD�→Env bP
= λ�σ.λx.γVD�→V bP

(�σ(x))

3. parse action� : Token → D� → D� be a sound abstraction of parse action. Formally,

∀a ∈ Token.∀P ∈ 2P .α2P→D�({parse action(p, a) | p ∈ P}) �
parse action�(α2P→D�(P), a)

4. VD� be a abstract counterpart of V bP , defined as below.

σ ∈ EnvD�

VD� : Pgm → EnvD� → VD�

V0
D�xσD� = σ(x)

V0
D�(or e1 e2)σD� = V0

D�e1σD� � V0
D�e2σD�

V0
D�(let x e1 e2)σD� = V0

D�e2(σD� [x �→ V0
D�e1σD�])

V0
D�(re x e1 e2 e3)σD� = V0

D�e3(σD� [x �→ fix(λk.((V0
D�e1σD�) � (V0

D�e2(σD� [x �→ k])))]))

V0
D�`fσD� = V1

D�fσD�

V1
D�(f1 · f2)σD� = V1

D�f1σD� ◦ V1
D�f2σD�

V1
D�(, e)σD� = V0

D�eσD�

V1
D�aσD� = λD.parse action�(D, a)

Then, VD� is a sound approximation of V bP . Formally,

∀℘ ∈ Pgm.α(V bP)(℘)) � VD�(℘)
where α(V bP (℘)) = αV bP→VD�V bP (℘)γEnvD�→Env2P

Proof. Proof by structural induction on ℘
To make notation clear, let’s introduce symbols αV , γV , αEnv, γEnv, αd and γd instead of
αV bP→VD� , γVD�→V bP

, αEnv2P→EnvD� γEnvD�→Env2P , α2P→D� and γD�→2P

parse action : Token→ 2P → 2P

∀a ∈ Token.∀P ∈ 2P .

α2P→D�({parse action a p | p ∈ P}) � parse action� a α2P→D�(P)

2P → 2P

49

/62

Parameterized Framework
We define abstract semantics function

Then is a sound approximation of .

Definition 1 (Abstract Parsing Domain). V � = D� → D�
is

an abstract parsing domain if an abstract domain D�
satisfies the

following conditions [10, 11, 12].

1. �D�,�,�,⊥D�� is a CPO (Complete Partial Order).

2. Powerset domain of concrete parse stack 2P
and its abstract

domain D�
are Galois connected via α2P→D� and γD�→2P .

3. Parse action�
: D� → Token → D�

is a sound approxima-

tion of Parse action . That is, we have

∀P ∈ 2P .∀t ∈ Token.

α2P→D�(Parse action(P, t)) � Parse action�(α2P→D�(P), t)

The partial order �V � and join operator �V � are defined point-

wisely.

Definition 2. Semantic function [[·]]D� on the abstract parsing

domain V �
is defined as follows.

σ ∈ EnvD� = Var → V �

[[e]]0D� ∈ EnvD� → V �

[[f]]1D� ∈ EnvD� → V �

[[x]]0D�σ = σ(x)

[[let x e1 e2]]
0
D�σ = [[e2]]

0
D�(σ[x �→ [[e1]]

0
D�σ])

[[or e1 e2]]
0
D�σ = [[e1]]

0
D�σ � [[e2]]

0
D�σ

[[re x e1 e2 e3]]
0
D�σ = [[e3]]

0
D�(σ[x �→

fix λk.[[e1]]
0
D�σ � [[e2]]

0
D�(σ[x �→ k])])

[[‘f]]0D�σ = [[f]]1D�σ

[[t]]1D�σ = λD.Parse action�(D, t)

[[f1.f2]]
1
D�σ = [[f2]]

1
D�σ ◦ [[f1]]

1
D�σ

[[,e]]1D�σ = [[e]]0D�σ

Theorem 1 shows that [[·]]D� is a sound approximation of [[·]]P̂ .

Theorem 1. Semantic function [[·]]D� on the abstract parsing do-

main V �
is a sound approximation of [[·]]P̂ . That is, we have

∀e ∈ Exp.∀σ ∈ Env P̂ .

αV
P̂
→V �([[e]]P̂ σ) � [[e]]D�(αEnv

P̂
→Env

D� (σ))

where

αV
P̂
→V � = λF.λD.α2P→D�(F (γD�→2P (D)))

αEnv
P̂
→Env

D� = λσ.λx.αV
P̂
→V �(σ(x)).

Proof. By structural induction on e with the conditions that the

abstract parsing domain D�
should satisfy.

5. Instantiation : Powerset Domain of Abstract
Parse Stack P̂ with k-cutting

In this section, we introduce an instance of an abstract domain D�
,

which is D̂, a powerset domain of abstract parse stack P̂ and its

widening with k-cutting. Thus the abstract parsing domain is

V̂ = D̂ → D̂.

First, we define abstract parse stack P̂ which is an abstraction

of concrete parse stack P . The abstract domain D̂ is constructed

with abstract parse stack P̂ . By establishing the Galois connection

between 2P
and D̂ and defining Parsde action , we show that D̂

is an instance of D�
. Finally, a widening operator is defined using

k-cutting to guarantee the termination of analysis.

5.1 Abstract Parse Stack P̂

Cut parse stack P̄ is introduced to represent a parse stack which

has been cut and only maintains top n states. Special state ‘–’ �∈ Σ
at the bottom of cut parse stack p̄ indicates that it has been cut.

P̄ = {p · – | p ∈ Σ∗}

Abstract parse stack P̂ is defined as a union of concrete parse stack

P and cut parse stack P̄ .

P̂ = P ∪ P̄

Given an abstract parse stack ρ, the function prefix : P̂ → Σ∗

yields the longest prefix of ρ which does not contain special state ‘–’.

prefix(ρ) =

8
><

>:

ρ if ρ ∈ P

s1 . . . sn if ρ = s1 . . . sn–

� (empty string) ρ = –

Then we define partial order � on P̂ as follows.

ρ1 �P̂ ρ2
def
= prefix(ρ1) starts with prefix(ρ2)

5.2 Abstract Domain : D̂

Abstract domain D̂ with its partial order � and join � is defined as

follows.

D̂ = {norm(d̂) | d̂ ∈ 2P̂ }

d̂1 � d̂2
def
= ∀ρ1 ∈ d̂1.∃ρ2 ∈ d̂2.ρ1 �P̂ ρ2

d̂1 � d̂2
def
= norm(d̂1 ∪ d̂2)

Normalization function norm is defined by

norm(d̂) = {ρ ∈ d̂ | ∀ρ� ∈ d̂.ρ ��P̂ ρ�}

to ensure that elements in norm(d̂) are the maximal elements of d̂.

It is necessary to eliminate non-maximal elements for binary rela-

tion � to be anti-symmetric and to be a partial order. For instance,

{–, s1s0–} contains non-maximal element {s1s0–} since we have

s1s0– � –. If we allow {s1s0–, –} in D̂ without normalizing it

into {–}, we have

({s1s0–, –} � {–}) ∧ ({–} � {s1s0–, –})
�⇒ {s1s0–, –} = {–}.

Then partial order � on D̂ becomes preorder since � is not anti-

symmetric anymore.

5.3 Abstract Domain D̂ as an Instance of D�

Abstract domain D̂ is an instance of D�
. To verify this, we need to

show that D̂ satisfies the conditions in Definition 1.

1. �D̂,�,�, φ� is a CPO by definition of D̂.

2. To establish a Galois connection between 2P
and D̂, we first

define the function expand : P̂ → 2P
as follows.

expand(ρ) =

 {ρ} if ρ ∈ P

{prefix(ρ) · p | p ∈ P} if ρ ∈ P̄

It expands an abstract parse stack ρ to all the concrete parse

stacks which ρ can represent. For instance, expand(s1–) =
{s1s0, s1s2, . . . }. Note that we have ∀p ∈ expand(ρ).p �P̂ ρ
and therefore we get expand(ρ) �D̂ {ρ}.

The function Expand : D̂ → 2P
is also defined as the natural

set extension of expand function by

Expand(d̂) =
[

ρ∈d̂

expand(ρ).

Definition 1 (Abstract Parsing Domain). V � = D� → D�
is

an abstract parsing domain if an abstract domain D�
satisfies the

following conditions [10, 11, 12].

1. �D�,�,�,⊥D�� is a CPO (Complete Partial Order).

2. Powerset domain of concrete parse stack 2P
and its abstract

domain D�
are Galois connected via α2P→D� and γD�→2P .

3. Parse action�
: D� → Token → D�

is a sound approxima-

tion of Parse action . That is, we have

∀P ∈ 2P .∀t ∈ Token.

α2P→D�(Parse action(P, t)) � Parse action�(α2P→D�(P), t)

The partial order �V � and join operator �V � are defined point-

wisely.

Definition 2. Semantic function [[·]]D� on the abstract parsing

domain V �
is defined as follows.

σ ∈ EnvD� = Var → V �

[[e]]0D� ∈ EnvD� → V �

[[f]]1D� ∈ EnvD� → V �

[[x]]0D�σ = σ(x)

[[let x e1 e2]]
0
D�σ = [[e2]]

0
D�(σ[x �→ [[e1]]

0
D�σ])

[[or e1 e2]]
0
D�σ = [[e1]]

0
D�σ � [[e2]]

0
D�σ

[[re x e1 e2 e3]]
0
D�σ = [[e3]]

0
D�(σ[x �→

fix λk.[[e1]]
0
D�σ � [[e2]]

0
D�(σ[x �→ k])])

[[‘f]]0D�σ = [[f]]1D�σ

[[t]]1D�σ = λD.Parse action�(D, t)

[[f1.f2]]
1
D�σ = [[f2]]

1
D�σ ◦ [[f1]]

1
D�σ

[[,e]]1D�σ = [[e]]0D�σ

Theorem 1 shows that [[·]]D� is a sound approximation of [[·]]P̂ .

Theorem 1. Semantic function [[·]]D� on the abstract parsing do-

main V �
is a sound approximation of [[·]]P̂ . That is, we have

∀e ∈ Exp.∀σ ∈ Env P̂ .

αV
P̂
→V �([[e]]P̂ σ) � [[e]]D�(αEnv

P̂
→Env

D� (σ))

where

αV
P̂
→V � = λF.λD.α2P→D�(F (γD�→2P (D)))

αEnv
P̂
→Env

D� = λσ.λx.αV
P̂
→V �(σ(x)).

Proof. By structural induction on e with the conditions that the

abstract parsing domain D�
should satisfy.

5. Instantiation : Powerset Domain of Abstract
Parse Stack P̂ with k-cutting

In this section, we introduce an instance of an abstract domain D�
,

which is D̂, a powerset domain of abstract parse stack P̂ and its

widening with k-cutting. Thus the abstract parsing domain is

V̂ = D̂ → D̂.

First, we define abstract parse stack P̂ which is an abstraction

of concrete parse stack P . The abstract domain D̂ is constructed

with abstract parse stack P̂ . By establishing the Galois connection

between 2P
and D̂ and defining Parsde action , we show that D̂

is an instance of D�
. Finally, a widening operator is defined using

k-cutting to guarantee the termination of analysis.

5.1 Abstract Parse Stack P̂

Cut parse stack P̄ is introduced to represent a parse stack which

has been cut and only maintains top n states. Special state ‘–’ �∈ Σ
at the bottom of cut parse stack p̄ indicates that it has been cut.

P̄ = {p · – | p ∈ Σ∗}

Abstract parse stack P̂ is defined as a union of concrete parse stack

P and cut parse stack P̄ .

P̂ = P ∪ P̄

Given an abstract parse stack ρ, the function prefix : P̂ → Σ∗

yields the longest prefix of ρ which does not contain special state ‘–’.

prefix(ρ) =

8
><

>:

ρ if ρ ∈ P

s1 . . . sn if ρ = s1 . . . sn–

� (empty string) ρ = –

Then we define partial order � on P̂ as follows.

ρ1 �P̂ ρ2
def
= prefix(ρ1) starts with prefix(ρ2)

5.2 Abstract Domain : D̂

Abstract domain D̂ with its partial order � and join � is defined as

follows.

D̂ = {norm(d̂) | d̂ ∈ 2P̂ }

d̂1 � d̂2
def
= ∀ρ1 ∈ d̂1.∃ρ2 ∈ d̂2.ρ1 �P̂ ρ2

d̂1 � d̂2
def
= norm(d̂1 ∪ d̂2)

Normalization function norm is defined by

norm(d̂) = {ρ ∈ d̂ | ∀ρ� ∈ d̂.ρ ��P̂ ρ�}

to ensure that elements in norm(d̂) are the maximal elements of d̂.

It is necessary to eliminate non-maximal elements for binary rela-

tion � to be anti-symmetric and to be a partial order. For instance,

{–, s1s0–} contains non-maximal element {s1s0–} since we have

s1s0– � –. If we allow {s1s0–, –} in D̂ without normalizing it

into {–}, we have

({s1s0–, –} � {–}) ∧ ({–} � {s1s0–, –})
�⇒ {s1s0–, –} = {–}.

Then partial order � on D̂ becomes preorder since � is not anti-

symmetric anymore.

5.3 Abstract Domain D̂ as an Instance of D�

Abstract domain D̂ is an instance of D�
. To verify this, we need to

show that D̂ satisfies the conditions in Definition 1.

1. �D̂,�,�, φ� is a CPO by definition of D̂.

2. To establish a Galois connection between 2P
and D̂, we first

define the function expand : P̂ → 2P
as follows.

expand(ρ) =

 {ρ} if ρ ∈ P

{prefix(ρ) · p | p ∈ P} if ρ ∈ P̄

It expands an abstract parse stack ρ to all the concrete parse

stacks which ρ can represent. For instance, expand(s1–) =
{s1s0, s1s2, . . . }. Note that we have ∀p ∈ expand(ρ).p �P̂ ρ
and therefore we get expand(ρ) �D̂ {ρ}.

The function Expand : D̂ → 2P
is also defined as the natural

set extension of expand function by

Expand(d̂) =
[

ρ∈d̂

expand(ρ).

Definition 1 (Abstract Parsing Domain). V � = D� → D�
is

an abstract parsing domain if an abstract domain D�
satisfies the

following conditions [10, 11, 12].

1. �D�,�,�,⊥D�� is a CPO (Complete Partial Order).

2. Powerset domain of concrete parse stack 2P
and its abstract

domain D�
are Galois connected via α2P→D� and γD�→2P .

3. Parse action�
: D� → Token → D�

is a sound approxima-

tion of Parse action . That is, we have

∀P ∈ 2P .∀t ∈ Token.

α2P→D�(Parse action(P, t)) � Parse action�(α2P→D�(P), t)

The partial order �V � and join operator �V � are defined point-

wisely.

Definition 2. Semantic function [[·]]D� on the abstract parsing

domain V �
is defined as follows.

σ ∈ EnvD� = Var → V �

[[e]]0D� ∈ EnvD� → V �

[[f]]1D� ∈ EnvD� → V �

[[x]]0D�σ = σ(x)

[[let x e1 e2]]
0
D�σ = [[e2]]

0
D�(σ[x �→ [[e1]]

0
D�σ])

[[or e1 e2]]
0
D�σ = [[e1]]

0
D�σ � [[e2]]

0
D�σ

[[re x e1 e2 e3]]
0
D�σ = [[e3]]

0
D�(σ[x �→

fix λk.[[e1]]
0
D�σ � [[e2]]

0
D�(σ[x �→ k])])

[[‘f]]0D�σ = [[f]]1D�σ

[[t]]1D�σ = λD.Parse action�(D, t)

[[f1.f2]]
1
D�σ = [[f2]]

1
D�σ ◦ [[f1]]

1
D�σ

[[,e]]1D�σ = [[e]]0D�σ

Theorem 1 shows that [[·]]D� is a sound approximation of [[·]]P̂ .

Theorem 1. Semantic function [[·]]D� on the abstract parsing do-

main V �
is a sound approximation of [[·]]P̂ . That is, we have

∀e ∈ Exp.∀σ ∈ Env P̂ .

αV
P̂
→V �([[e]]P̂ σ) � [[e]]D�(αEnv

P̂
→Env

D� (σ))

where

αV
P̂
→V � = λF.λD.α2P→D�(F (γD�→2P (D)))

αEnv
P̂
→Env

D� = λσ.λx.αV
P̂
→V �(σ(x)).

Proof. By structural induction on e with the conditions that the

abstract parsing domain D�
should satisfy.

5. Instantiation : Powerset Domain of Abstract
Parse Stack P̂ with k-cutting

In this section, we introduce an instance of an abstract domain D�
,

which is D̂, a powerset domain of abstract parse stack P̂ and its

widening with k-cutting. Thus the abstract parsing domain is

V̂ = D̂ → D̂.

First, we define abstract parse stack P̂ which is an abstraction

of concrete parse stack P . The abstract domain D̂ is constructed

with abstract parse stack P̂ . By establishing the Galois connection

between 2P
and D̂ and defining Parsde action , we show that D̂

is an instance of D�
. Finally, a widening operator is defined using

k-cutting to guarantee the termination of analysis.

5.1 Abstract Parse Stack P̂

Cut parse stack P̄ is introduced to represent a parse stack which

has been cut and only maintains top n states. Special state ‘–’ �∈ Σ
at the bottom of cut parse stack p̄ indicates that it has been cut.

P̄ = {p · – | p ∈ Σ∗}

Abstract parse stack P̂ is defined as a union of concrete parse stack

P and cut parse stack P̄ .

P̂ = P ∪ P̄

Given an abstract parse stack ρ, the function prefix : P̂ → Σ∗

yields the longest prefix of ρ which does not contain special state ‘–’.

prefix(ρ) =

8
><

>:

ρ if ρ ∈ P

s1 . . . sn if ρ = s1 . . . sn–

� (empty string) ρ = –

Then we define partial order � on P̂ as follows.

ρ1 �P̂ ρ2
def
= prefix(ρ1) starts with prefix(ρ2)

5.2 Abstract Domain : D̂

Abstract domain D̂ with its partial order � and join � is defined as

follows.

D̂ = {norm(d̂) | d̂ ∈ 2P̂ }

d̂1 � d̂2
def
= ∀ρ1 ∈ d̂1.∃ρ2 ∈ d̂2.ρ1 �P̂ ρ2

d̂1 � d̂2
def
= norm(d̂1 ∪ d̂2)

Normalization function norm is defined by

norm(d̂) = {ρ ∈ d̂ | ∀ρ� ∈ d̂.ρ ��P̂ ρ�}

to ensure that elements in norm(d̂) are the maximal elements of d̂.

It is necessary to eliminate non-maximal elements for binary rela-

tion � to be anti-symmetric and to be a partial order. For instance,

{–, s1s0–} contains non-maximal element {s1s0–} since we have

s1s0– � –. If we allow {s1s0–, –} in D̂ without normalizing it

into {–}, we have

({s1s0–, –} � {–}) ∧ ({–} � {s1s0–, –})
�⇒ {s1s0–, –} = {–}.

Then partial order � on D̂ becomes preorder since � is not anti-

symmetric anymore.

5.3 Abstract Domain D̂ as an Instance of D�

Abstract domain D̂ is an instance of D�
. To verify this, we need to

show that D̂ satisfies the conditions in Definition 1.

1. �D̂,�,�, φ� is a CPO by definition of D̂.

2. To establish a Galois connection between 2P
and D̂, we first

define the function expand : P̂ → 2P
as follows.

expand(ρ) =

 {ρ} if ρ ∈ P

{prefix(ρ) · p | p ∈ P} if ρ ∈ P̄

It expands an abstract parse stack ρ to all the concrete parse

stacks which ρ can represent. For instance, expand(s1–) =
{s1s0, s1s2, . . . }. Note that we have ∀p ∈ expand(ρ).p �P̂ ρ
and therefore we get expand(ρ) �D̂ {ρ}.

The function Expand : D̂ → 2P
is also defined as the natural

set extension of expand function by

Expand(d̂) =
[

ρ∈d̂

expand(ρ).

Definition 1 (Abstract Parsing Domain). V � = D� → D�
is

an abstract parsing domain if an abstract domain D�
satisfies the

following conditions [10, 11, 12].

1. �D�,�,�,⊥D�� is a CPO (Complete Partial Order).

2. Powerset domain of concrete parse stack 2P
and its abstract

domain D�
are Galois connected via α2P→D� and γD�→2P .

3. Parse action�
: D� → Token → D�

is a sound approxima-

tion of Parse action . That is, we have

∀P ∈ 2P .∀t ∈ Token.

α2P→D�(Parse action(P, t)) � Parse action�(α2P→D�(P), t)

The partial order �V � and join operator �V � are defined point-

wisely.

Definition 2. Semantic function [[·]]D� on the abstract parsing

domain V �
is defined as follows.

σ ∈ EnvD� = Var → V �

[[e]]0D� ∈ EnvD� → V �

[[f]]1D� ∈ EnvD� → V �

[[x]]0D�σ = σ(x)

[[let x e1 e2]]
0
D�σ = [[e2]]

0
D�(σ[x �→ [[e1]]

0
D�σ])

[[or e1 e2]]
0
D�σ = [[e1]]

0
D�σ � [[e2]]

0
D�σ

[[re x e1 e2 e3]]
0
D�σ = [[e3]]

0
D�(σ[x �→

fix λk.[[e1]]
0
D�σ � [[e2]]

0
D�(σ[x �→ k])])

[[‘f]]0D�σ = [[f]]1D�σ

[[t]]1D�σ = λD.Parse action�(D, t)

[[f1.f2]]
1
D�σ = [[f2]]

1
D�σ ◦ [[f1]]

1
D�σ

[[,e]]1D�σ = [[e]]0D�σ

Theorem 1 shows that [[·]]D� is a sound approximation of [[·]]P̂ .

Theorem 1. Semantic function [[·]]D� on the abstract parsing do-

main V �
is a sound approximation of [[·]]P̂ . That is, we have

∀e ∈ Exp.∀σ ∈ Env P̂ .

αV
P̂
→V �([[e]]P̂ σ) � [[e]]D�(αEnv

P̂
→Env

D� (σ))

where

αV
P̂
→V � = λF.λD.α2P→D�(F (γD�→2P (D)))

αEnv
P̂
→Env

D� = λσ.λx.αV
P̂
→V �(σ(x)).

Proof. By structural induction on e with the conditions that the

abstract parsing domain D�
should satisfy.

5. Instantiation : Powerset Domain of Abstract
Parse Stack P̂ with k-cutting

In this section, we introduce an instance of an abstract domain D�
,

which is D̂, a powerset domain of abstract parse stack P̂ and its

widening with k-cutting. Thus the abstract parsing domain is

V̂ = D̂ → D̂.

First, we define abstract parse stack P̂ which is an abstraction

of concrete parse stack P . The abstract domain D̂ is constructed

with abstract parse stack P̂ . By establishing the Galois connection

between 2P
and D̂ and defining Parsde action , we show that D̂

is an instance of D�
. Finally, a widening operator is defined using

k-cutting to guarantee the termination of analysis.

5.1 Abstract Parse Stack P̂

Cut parse stack P̄ is introduced to represent a parse stack which

has been cut and only maintains top n states. Special state ‘–’ �∈ Σ
at the bottom of cut parse stack p̄ indicates that it has been cut.

P̄ = {p · – | p ∈ Σ∗}

Abstract parse stack P̂ is defined as a union of concrete parse stack

P and cut parse stack P̄ .

P̂ = P ∪ P̄

Given an abstract parse stack ρ, the function prefix : P̂ → Σ∗

yields the longest prefix of ρ which does not contain special state ‘–’.

prefix(ρ) =

8
><

>:

ρ if ρ ∈ P

s1 . . . sn if ρ = s1 . . . sn–

� (empty string) ρ = –

Then we define partial order � on P̂ as follows.

ρ1 �P̂ ρ2
def
= prefix(ρ1) starts with prefix(ρ2)

5.2 Abstract Domain : D̂

Abstract domain D̂ with its partial order � and join � is defined as

follows.

D̂ = {norm(d̂) | d̂ ∈ 2P̂ }

d̂1 � d̂2
def
= ∀ρ1 ∈ d̂1.∃ρ2 ∈ d̂2.ρ1 �P̂ ρ2

d̂1 � d̂2
def
= norm(d̂1 ∪ d̂2)

Normalization function norm is defined by

norm(d̂) = {ρ ∈ d̂ | ∀ρ� ∈ d̂.ρ ��P̂ ρ�}

to ensure that elements in norm(d̂) are the maximal elements of d̂.

It is necessary to eliminate non-maximal elements for binary rela-

tion � to be anti-symmetric and to be a partial order. For instance,

{–, s1s0–} contains non-maximal element {s1s0–} since we have

s1s0– � –. If we allow {s1s0–, –} in D̂ without normalizing it

into {–}, we have

({s1s0–, –} � {–}) ∧ ({–} � {s1s0–, –})
�⇒ {s1s0–, –} = {–}.

Then partial order � on D̂ becomes preorder since � is not anti-

symmetric anymore.

5.3 Abstract Domain D̂ as an Instance of D�

Abstract domain D̂ is an instance of D�
. To verify this, we need to

show that D̂ satisfies the conditions in Definition 1.

1. �D̂,�,�, φ� is a CPO by definition of D̂.

2. To establish a Galois connection between 2P
and D̂, we first

define the function expand : P̂ → 2P
as follows.

expand(ρ) =

 {ρ} if ρ ∈ P

{prefix(ρ) · p | p ∈ P} if ρ ∈ P̄

It expands an abstract parse stack ρ to all the concrete parse

stacks which ρ can represent. For instance, expand(s1–) =
{s1s0, s1s2, . . . }. Note that we have ∀p ∈ expand(ρ).p �P̂ ρ
and therefore we get expand(ρ) �D̂ {ρ}.

The function Expand : D̂ → 2P
is also defined as the natural

set extension of expand function by

Expand(d̂) =
[

ρ∈d̂

expand(ρ).

Definition 1 (Abstract Parsing Domain). V � = D� → D�
is

an abstract parsing domain if an abstract domain D�
satisfies the

following conditions [10, 11, 12].

1. �D�,�,�,⊥D�� is a CPO (Complete Partial Order).

2. Powerset domain of concrete parse stack 2P
and its abstract

domain D�
are Galois connected via α2P→D� and γD�→2P .

3. Parse action�
: D� → Token → D�

is a sound approxima-

tion of Parse action . That is, we have

∀P ∈ 2P .∀t ∈ Token.

α2P→D�(Parse action(P, t)) � Parse action�(α2P→D�(P), t)

The partial order �V � and join operator �V � are defined point-

wisely.

Definition 2. Semantic function [[·]]D� on the abstract parsing

domain V �
is defined as follows.

σ ∈ EnvD� = Var → V �

[[e]]0D� ∈ EnvD� → V �

[[f]]1D� ∈ EnvD� → V �

[[x]]0D�σ = σ(x)

[[let x e1 e2]]
0
D�σ = [[e2]]

0
D�(σ[x �→ [[e1]]

0
D�σ])

[[or e1 e2]]
0
D�σ = [[e1]]

0
D�σ � [[e2]]

0
D�σ

[[re x e1 e2 e3]]
0
D�σ = [[e3]]

0
D�(σ[x �→

fix λk.[[e1]]
0
D�σ � [[e2]]

0
D�(σ[x �→ k])])

[[‘f]]0D�σ = [[f]]1D�σ

[[t]]1D�σ = λD.Parse action�(D, t)

[[f1.f2]]
1
D�σ = [[f2]]

1
D�σ ◦ [[f1]]

1
D�σ

[[,e]]1D�σ = [[e]]0D�σ

Theorem 1 shows that [[·]]D� is a sound approximation of [[·]]P̂ .

Theorem 1. Semantic function [[·]]D� on the abstract parsing do-

main V �
is a sound approximation of [[·]]P̂ . That is, we have

∀e ∈ Exp.∀σ ∈ Env P̂ .

αV
P̂
→V �([[e]]P̂ σ) � [[e]]D�(αEnv

P̂
→Env

D� (σ))

where

αV
P̂
→V � = λF.λD.α2P→D�(F (γD�→2P (D)))

αEnv
P̂
→Env

D� = λσ.λx.αV
P̂
→V �(σ(x)).

Proof. By structural induction on e with the conditions that the

abstract parsing domain D�
should satisfy.

5. Instantiation : Powerset Domain of Abstract
Parse Stack P̂ with k-cutting

In this section, we introduce an instance of an abstract domain D�
,

which is D̂, a powerset domain of abstract parse stack P̂ and its

widening with k-cutting. Thus the abstract parsing domain is

V̂ = D̂ → D̂.

First, we define abstract parse stack P̂ which is an abstraction

of concrete parse stack P . The abstract domain D̂ is constructed

with abstract parse stack P̂ . By establishing the Galois connection

between 2P
and D̂ and defining Parsde action , we show that D̂

is an instance of D�
. Finally, a widening operator is defined using

k-cutting to guarantee the termination of analysis.

5.1 Abstract Parse Stack P̂

Cut parse stack P̄ is introduced to represent a parse stack which

has been cut and only maintains top n states. Special state ‘–’ �∈ Σ
at the bottom of cut parse stack p̄ indicates that it has been cut.

P̄ = {p · – | p ∈ Σ∗}

Abstract parse stack P̂ is defined as a union of concrete parse stack

P and cut parse stack P̄ .

P̂ = P ∪ P̄

Given an abstract parse stack ρ, the function prefix : P̂ → Σ∗

yields the longest prefix of ρ which does not contain special state ‘–’.

prefix(ρ) =

8
><

>:

ρ if ρ ∈ P

s1 . . . sn if ρ = s1 . . . sn–

� (empty string) ρ = –

Then we define partial order � on P̂ as follows.

ρ1 �P̂ ρ2
def
= prefix(ρ1) starts with prefix(ρ2)

5.2 Abstract Domain : D̂

Abstract domain D̂ with its partial order � and join � is defined as

follows.

D̂ = {norm(d̂) | d̂ ∈ 2P̂ }

d̂1 � d̂2
def
= ∀ρ1 ∈ d̂1.∃ρ2 ∈ d̂2.ρ1 �P̂ ρ2

d̂1 � d̂2
def
= norm(d̂1 ∪ d̂2)

Normalization function norm is defined by

norm(d̂) = {ρ ∈ d̂ | ∀ρ� ∈ d̂.ρ ��P̂ ρ�}

to ensure that elements in norm(d̂) are the maximal elements of d̂.

It is necessary to eliminate non-maximal elements for binary rela-

tion � to be anti-symmetric and to be a partial order. For instance,

{–, s1s0–} contains non-maximal element {s1s0–} since we have

s1s0– � –. If we allow {s1s0–, –} in D̂ without normalizing it

into {–}, we have

({s1s0–, –} � {–}) ∧ ({–} � {s1s0–, –})
�⇒ {s1s0–, –} = {–}.

Then partial order � on D̂ becomes preorder since � is not anti-

symmetric anymore.

5.3 Abstract Domain D̂ as an Instance of D�

Abstract domain D̂ is an instance of D�
. To verify this, we need to

show that D̂ satisfies the conditions in Definition 1.

1. �D̂,�,�, φ� is a CPO by definition of D̂.

2. To establish a Galois connection between 2P
and D̂, we first

define the function expand : P̂ → 2P
as follows.

expand(ρ) =

 {ρ} if ρ ∈ P

{prefix(ρ) · p | p ∈ P} if ρ ∈ P̄

It expands an abstract parse stack ρ to all the concrete parse

stacks which ρ can represent. For instance, expand(s1–) =
{s1s0, s1s2, . . . }. Note that we have ∀p ∈ expand(ρ).p �P̂ ρ
and therefore we get expand(ρ) �D̂ {ρ}.

The function Expand : D̂ → 2P
is also defined as the natural

set extension of expand function by

Expand(d̂) =
[

ρ∈d̂

expand(ρ).

50

/62

Instantiation of
 : Abstract Parsing Stack with k-cutting

D�

�D

IDEA : limit the length of parsing stack with k

3-cutting

s4

s3

s2

s1

_

s2

s1

51

s1s2s3s4 s1s2−

/62

Instantiation of
 : Abstract Parsing Stack with k-cutting

D�

�D
Definition 1 (Abstract Parsing Domain). V � = D� → D�

is

an abstract parsing domain if an abstract domain D�
satisfies the

following conditions [10, 11, 12].

1. �D�,�,�,⊥D�� is a CPO (Complete Partial Order).

2. Powerset domain of concrete parse stack 2P
and its abstract

domain D�
are Galois connected via α2P→D� and γD�→2P .

3. Parse action�
: D� → Token → D�

is a sound approxima-

tion of Parse action . That is, we have

∀P ∈ 2P .∀t ∈ Token.

α2P→D�(Parse action(P, t)) � Parse action�(α2P→D�(P), t)

The partial order �V � and join operator �V � are defined point-

wisely.

Definition 2. Semantic function [[·]]D� on the abstract parsing

domain V �
is defined as follows.

σ ∈ EnvD� = Var → V �

[[e]]0D� ∈ EnvD� → V �

[[f]]1D� ∈ EnvD� → V �

[[x]]0D�σ = σ(x)

[[let x e1 e2]]
0
D�σ = [[e2]]

0
D�(σ[x �→ [[e1]]

0
D�σ])

[[or e1 e2]]
0
D�σ = [[e1]]

0
D�σ � [[e2]]

0
D�σ

[[re x e1 e2 e3]]
0
D�σ = [[e3]]

0
D�(σ[x �→

fix λk.[[e1]]
0
D�σ � [[e2]]

0
D�(σ[x �→ k])])

[[‘f]]0D�σ = [[f]]1D�σ

[[t]]1D�σ = λD.Parse action�(D, t)

[[f1.f2]]
1
D�σ = [[f2]]

1
D�σ ◦ [[f1]]

1
D�σ

[[,e]]1D�σ = [[e]]0D�σ

Theorem 1 shows that [[·]]D� is a sound approximation of [[·]]P̂ .

Theorem 1. Semantic function [[·]]D� on the abstract parsing do-

main V �
is a sound approximation of [[·]]P̂ . That is, we have

∀e ∈ Exp.∀σ ∈ Env P̂ .

αV
P̂
→V �([[e]]P̂ σ) � [[e]]D�(αEnv

P̂
→Env

D� (σ))

where

αV
P̂
→V � = λF.λD.α2P→D�(F (γD�→2P (D)))

αEnv
P̂
→Env

D� = λσ.λx.αV
P̂
→V �(σ(x)).

Proof. By structural induction on e with the conditions that the

abstract parsing domain D�
should satisfy.

5. Instantiation : Powerset Domain of Abstract
Parse Stack P̂ with k-cutting

In this section, we introduce an instance of an abstract domain D�
,

which is D̂, a powerset domain of abstract parse stack P̂ and its

widening with k-cutting. Thus the abstract parsing domain is

V̂ = D̂ → D̂.

First, we define abstract parse stack P̂ which is an abstraction

of concrete parse stack P . The abstract domain D̂ is constructed

with abstract parse stack P̂ . By establishing the Galois connection

between 2P
and D̂ and defining Parsde action , we show that D̂

is an instance of D�
. Finally, a widening operator is defined using

k-cutting to guarantee the termination of analysis.

5.1 Abstract Parse Stack P̂

Cut parse stack P̄ is introduced to represent a parse stack which

has been cut and only maintains top n states. Special state ‘–’ �∈ Σ
at the bottom of cut parse stack p̄ indicates that it has been cut.

P̄ = {p · – | p ∈ Σ∗}

Abstract parse stack P̂ is defined as a union of concrete parse stack

P and cut parse stack P̄ .

P̂ = P ∪ P̄

Given an abstract parse stack ρ, the function prefix : P̂ → Σ∗

yields the longest prefix of ρ which does not contain special state ‘–’.

prefix(ρ) =

8
><

>:

ρ if ρ ∈ P

s1 . . . sn if ρ = s1 . . . sn–

� (empty string) ρ = –

Then we define partial order � on P̂ as follows.

ρ1 �P̂ ρ2
def
= prefix(ρ1) starts with prefix(ρ2)

5.2 Abstract Domain : D̂

Abstract domain D̂ with its partial order � and join � is defined as

follows.

D̂ = {norm(d̂) | d̂ ∈ 2P̂ }

d̂1 � d̂2
def
= ∀ρ1 ∈ d̂1.∃ρ2 ∈ d̂2.ρ1 �P̂ ρ2

d̂1 � d̂2
def
= norm(d̂1 ∪ d̂2)

Normalization function norm is defined by

norm(d̂) = {ρ ∈ d̂ | ∀ρ� ∈ d̂.ρ ��P̂ ρ�}

to ensure that elements in norm(d̂) are the maximal elements of d̂.

It is necessary to eliminate non-maximal elements for binary rela-

tion � to be anti-symmetric and to be a partial order. For instance,

{–, s1s0–} contains non-maximal element {s1s0–} since we have

s1s0– � –. If we allow {s1s0–, –} in D̂ without normalizing it

into {–}, we have

({s1s0–, –} � {–}) ∧ ({–} � {s1s0–, –})
�⇒ {s1s0–, –} = {–}.

Then partial order � on D̂ becomes preorder since � is not anti-

symmetric anymore.

5.3 Abstract Domain D̂ as an Instance of D�

Abstract domain D̂ is an instance of D�
. To verify this, we need to

show that D̂ satisfies the conditions in Definition 1.

1. �D̂,�,�, φ� is a CPO by definition of D̂.

2. To establish a Galois connection between 2P
and D̂, we first

define the function expand : P̂ → 2P
as follows.

expand(ρ) =

 {ρ} if ρ ∈ P

{prefix(ρ) · p | p ∈ P} if ρ ∈ P̄

It expands an abstract parse stack ρ to all the concrete parse

stacks which ρ can represent. For instance, expand(s1–) =
{s1s0, s1s2, . . . }. Note that we have ∀p ∈ expand(ρ).p �P̂ ρ
and therefore we get expand(ρ) �D̂ {ρ}.

The function Expand : D̂ → 2P
is also defined as the natural

set extension of expand function by

Expand(d̂) =
[

ρ∈d̂

expand(ρ).

Definition 1 (Abstract Parsing Domain). V � = D� → D�
is

an abstract parsing domain if an abstract domain D�
satisfies the

following conditions [10, 11, 12].

1. �D�,�,�,⊥D�� is a CPO (Complete Partial Order).

2. Powerset domain of concrete parse stack 2P
and its abstract

domain D�
are Galois connected via α2P→D� and γD�→2P .

3. Parse action�
: D� → Token → D�

is a sound approxima-

tion of Parse action . That is, we have

∀P ∈ 2P .∀t ∈ Token.

α2P→D�(Parse action(P, t)) � Parse action�(α2P→D�(P), t)

The partial order �V � and join operator �V � are defined point-

wisely.

Definition 2. Semantic function [[·]]D� on the abstract parsing

domain V �
is defined as follows.

σ ∈ EnvD� = Var → V �

[[e]]0D� ∈ EnvD� → V �

[[f]]1D� ∈ EnvD� → V �

[[x]]0D�σ = σ(x)

[[let x e1 e2]]
0
D�σ = [[e2]]

0
D�(σ[x �→ [[e1]]

0
D�σ])

[[or e1 e2]]
0
D�σ = [[e1]]

0
D�σ � [[e2]]

0
D�σ

[[re x e1 e2 e3]]
0
D�σ = [[e3]]

0
D�(σ[x �→

fix λk.[[e1]]
0
D�σ � [[e2]]

0
D�(σ[x �→ k])])

[[‘f]]0D�σ = [[f]]1D�σ

[[t]]1D�σ = λD.Parse action�(D, t)

[[f1.f2]]
1
D�σ = [[f2]]

1
D�σ ◦ [[f1]]

1
D�σ

[[,e]]1D�σ = [[e]]0D�σ

Theorem 1 shows that [[·]]D� is a sound approximation of [[·]]P̂ .

Theorem 1. Semantic function [[·]]D� on the abstract parsing do-

main V �
is a sound approximation of [[·]]P̂ . That is, we have

∀e ∈ Exp.∀σ ∈ Env P̂ .

αV
P̂
→V �([[e]]P̂ σ) � [[e]]D�(αEnv

P̂
→Env

D� (σ))

where

αV
P̂
→V � = λF.λD.α2P→D�(F (γD�→2P (D)))

αEnv
P̂
→Env

D� = λσ.λx.αV
P̂
→V �(σ(x)).

Proof. By structural induction on e with the conditions that the

abstract parsing domain D�
should satisfy.

5. Instantiation : Powerset Domain of Abstract
Parse Stack P̂ with k-cutting

In this section, we introduce an instance of an abstract domain D�
,

which is D̂, a powerset domain of abstract parse stack P̂ and its

widening with k-cutting. Thus the abstract parsing domain is

V̂ = D̂ → D̂.

First, we define abstract parse stack P̂ which is an abstraction

of concrete parse stack P . The abstract domain D̂ is constructed

with abstract parse stack P̂ . By establishing the Galois connection

between 2P
and D̂ and defining Parsde action , we show that D̂

is an instance of D�
. Finally, a widening operator is defined using

k-cutting to guarantee the termination of analysis.

5.1 Abstract Parse Stack P̂

Cut parse stack P̄ is introduced to represent a parse stack which

has been cut and only maintains top n states. Special state ‘–’ �∈ Σ
at the bottom of cut parse stack p̄ indicates that it has been cut.

P̄ = {p · – | p ∈ Σ∗}

Abstract parse stack P̂ is defined as a union of concrete parse stack

P and cut parse stack P̄ .

P̂ = P ∪ P̄

Given an abstract parse stack ρ, the function prefix : P̂ → Σ∗

yields the longest prefix of ρ which does not contain special state ‘–’.

prefix(ρ) =

8
><

>:

ρ if ρ ∈ P

s1 . . . sn if ρ = s1 . . . sn–

� (empty string) ρ = –

Then we define partial order � on P̂ as follows.

ρ1 �P̂ ρ2
def
= prefix(ρ1) starts with prefix(ρ2)

5.2 Abstract Domain : D̂

Abstract domain D̂ with its partial order � and join � is defined as

follows.

D̂ = {norm(d̂) | d̂ ∈ 2P̂ }

d̂1 � d̂2
def
= ∀ρ1 ∈ d̂1.∃ρ2 ∈ d̂2.ρ1 �P̂ ρ2

d̂1 � d̂2
def
= norm(d̂1 ∪ d̂2)

Normalization function norm is defined by

norm(d̂) = {ρ ∈ d̂ | ∀ρ� ∈ d̂.ρ ��P̂ ρ�}

to ensure that elements in norm(d̂) are the maximal elements of d̂.

It is necessary to eliminate non-maximal elements for binary rela-

tion � to be anti-symmetric and to be a partial order. For instance,

{–, s1s0–} contains non-maximal element {s1s0–} since we have

s1s0– � –. If we allow {s1s0–, –} in D̂ without normalizing it

into {–}, we have

({s1s0–, –} � {–}) ∧ ({–} � {s1s0–, –})
�⇒ {s1s0–, –} = {–}.

Then partial order � on D̂ becomes preorder since � is not anti-

symmetric anymore.

5.3 Abstract Domain D̂ as an Instance of D�

Abstract domain D̂ is an instance of D�
. To verify this, we need to

show that D̂ satisfies the conditions in Definition 1.

1. �D̂,�,�, φ� is a CPO by definition of D̂.

2. To establish a Galois connection between 2P
and D̂, we first

define the function expand : P̂ → 2P
as follows.

expand(ρ) =

 {ρ} if ρ ∈ P

{prefix(ρ) · p | p ∈ P} if ρ ∈ P̄

It expands an abstract parse stack ρ to all the concrete parse

stacks which ρ can represent. For instance, expand(s1–) =
{s1s0, s1s2, . . . }. Note that we have ∀p ∈ expand(ρ).p �P̂ ρ
and therefore we get expand(ρ) �D̂ {ρ}.

The function Expand : D̂ → 2P
is also defined as the natural

set extension of expand function by

Expand(d̂) =
[

ρ∈d̂

expand(ρ).

Definition 1 (Abstract Parsing Domain). V � = D� → D�
is

an abstract parsing domain if an abstract domain D�
satisfies the

following conditions [10, 11, 12].

1. �D�,�,�,⊥D�� is a CPO (Complete Partial Order).

2. Powerset domain of concrete parse stack 2P
and its abstract

domain D�
are Galois connected via α2P→D� and γD�→2P .

3. Parse action�
: D� → Token → D�

is a sound approxima-

tion of Parse action . That is, we have

∀P ∈ 2P .∀t ∈ Token.

α2P→D�(Parse action(P, t)) � Parse action�(α2P→D�(P), t)

The partial order �V � and join operator �V � are defined point-

wisely.

Definition 2. Semantic function [[·]]D� on the abstract parsing

domain V �
is defined as follows.

σ ∈ EnvD� = Var → V �

[[e]]0D� ∈ EnvD� → V �

[[f]]1D� ∈ EnvD� → V �

[[x]]0D�σ = σ(x)

[[let x e1 e2]]
0
D�σ = [[e2]]

0
D�(σ[x �→ [[e1]]

0
D�σ])

[[or e1 e2]]
0
D�σ = [[e1]]

0
D�σ � [[e2]]

0
D�σ

[[re x e1 e2 e3]]
0
D�σ = [[e3]]

0
D�(σ[x �→

fix λk.[[e1]]
0
D�σ � [[e2]]

0
D�(σ[x �→ k])])

[[‘f]]0D�σ = [[f]]1D�σ

[[t]]1D�σ = λD.Parse action�(D, t)

[[f1.f2]]
1
D�σ = [[f2]]

1
D�σ ◦ [[f1]]

1
D�σ

[[,e]]1D�σ = [[e]]0D�σ

Theorem 1 shows that [[·]]D� is a sound approximation of [[·]]P̂ .

Theorem 1. Semantic function [[·]]D� on the abstract parsing do-

main V �
is a sound approximation of [[·]]P̂ . That is, we have

∀e ∈ Exp.∀σ ∈ Env P̂ .

αV
P̂
→V �([[e]]P̂ σ) � [[e]]D�(αEnv

P̂
→Env

D� (σ))

where

αV
P̂
→V � = λF.λD.α2P→D�(F (γD�→2P (D)))

αEnv
P̂
→Env

D� = λσ.λx.αV
P̂
→V �(σ(x)).

Proof. By structural induction on e with the conditions that the

abstract parsing domain D�
should satisfy.

5. Instantiation : Powerset Domain of Abstract
Parse Stack P̂ with k-cutting

In this section, we introduce an instance of an abstract domain D�
,

which is D̂, a powerset domain of abstract parse stack P̂ and its

widening with k-cutting. Thus the abstract parsing domain is

V̂ = D̂ → D̂.

First, we define abstract parse stack P̂ which is an abstraction

of concrete parse stack P . The abstract domain D̂ is constructed

with abstract parse stack P̂ . By establishing the Galois connection

between 2P
and D̂ and defining Parsde action , we show that D̂

is an instance of D�
. Finally, a widening operator is defined using

k-cutting to guarantee the termination of analysis.

5.1 Abstract Parse Stack P̂

Cut parse stack P̄ is introduced to represent a parse stack which

has been cut and only maintains top n states. Special state ‘–’ �∈ Σ
at the bottom of cut parse stack p̄ indicates that it has been cut.

P̄ = {p · – | p ∈ Σ∗}

Abstract parse stack P̂ is defined as a union of concrete parse stack

P and cut parse stack P̄ .

P̂ = P ∪ P̄

Given an abstract parse stack ρ, the function prefix : P̂ → Σ∗

yields the longest prefix of ρ which does not contain special state ‘–’.

prefix(ρ) =

8
><

>:

ρ if ρ ∈ P

s1 . . . sn if ρ = s1 . . . sn–

� (empty string) ρ = –

Then we define partial order � on P̂ as follows.

ρ1 �P̂ ρ2
def
= prefix(ρ1) starts with prefix(ρ2)

5.2 Abstract Domain : D̂

Abstract domain D̂ with its partial order � and join � is defined as

follows.

D̂ = {norm(d̂) | d̂ ∈ 2P̂ }

d̂1 � d̂2
def
= ∀ρ1 ∈ d̂1.∃ρ2 ∈ d̂2.ρ1 �P̂ ρ2

d̂1 � d̂2
def
= norm(d̂1 ∪ d̂2)

Normalization function norm is defined by

norm(d̂) = {ρ ∈ d̂ | ∀ρ� ∈ d̂.ρ ��P̂ ρ�}

to ensure that elements in norm(d̂) are the maximal elements of d̂.

It is necessary to eliminate non-maximal elements for binary rela-

tion � to be anti-symmetric and to be a partial order. For instance,

{–, s1s0–} contains non-maximal element {s1s0–} since we have

s1s0– � –. If we allow {s1s0–, –} in D̂ without normalizing it

into {–}, we have

({s1s0–, –} � {–}) ∧ ({–} � {s1s0–, –})
�⇒ {s1s0–, –} = {–}.

Then partial order � on D̂ becomes preorder since � is not anti-

symmetric anymore.

5.3 Abstract Domain D̂ as an Instance of D�

Abstract domain D̂ is an instance of D�
. To verify this, we need to

show that D̂ satisfies the conditions in Definition 1.

1. �D̂,�,�, φ� is a CPO by definition of D̂.

2. To establish a Galois connection between 2P
and D̂, we first

define the function expand : P̂ → 2P
as follows.

expand(ρ) =

 {ρ} if ρ ∈ P

{prefix(ρ) · p | p ∈ P} if ρ ∈ P̄

It expands an abstract parse stack ρ to all the concrete parse

stacks which ρ can represent. For instance, expand(s1–) =
{s1s0, s1s2, . . . }. Note that we have ∀p ∈ expand(ρ).p �P̂ ρ
and therefore we get expand(ρ) �D̂ {ρ}.

The function Expand : D̂ → 2P
is also defined as the natural

set extension of expand function by

Expand(d̂) =
[

ρ∈d̂

expand(ρ).

Definition 1 (Abstract Parsing Domain). V � = D� → D�
is

an abstract parsing domain if an abstract domain D�
satisfies the

following conditions [10, 11, 12].

1. �D�,�,�,⊥D�� is a CPO (Complete Partial Order).

2. Powerset domain of concrete parse stack 2P
and its abstract

domain D�
are Galois connected via α2P→D� and γD�→2P .

3. Parse action�
: D� → Token → D�

is a sound approxima-

tion of Parse action . That is, we have

∀P ∈ 2P .∀t ∈ Token.

α2P→D�(Parse action(P, t)) � Parse action�(α2P→D�(P), t)

The partial order �V � and join operator �V � are defined point-

wisely.

Definition 2. Semantic function [[·]]D� on the abstract parsing

domain V �
is defined as follows.

σ ∈ EnvD� = Var → V �

[[e]]0D� ∈ EnvD� → V �

[[f]]1D� ∈ EnvD� → V �

[[x]]0D�σ = σ(x)

[[let x e1 e2]]
0
D�σ = [[e2]]

0
D�(σ[x �→ [[e1]]

0
D�σ])

[[or e1 e2]]
0
D�σ = [[e1]]

0
D�σ � [[e2]]

0
D�σ

[[re x e1 e2 e3]]
0
D�σ = [[e3]]

0
D�(σ[x �→

fix λk.[[e1]]
0
D�σ � [[e2]]

0
D�(σ[x �→ k])])

[[‘f]]0D�σ = [[f]]1D�σ

[[t]]1D�σ = λD.Parse action�(D, t)

[[f1.f2]]
1
D�σ = [[f2]]

1
D�σ ◦ [[f1]]

1
D�σ

[[,e]]1D�σ = [[e]]0D�σ

Theorem 1 shows that [[·]]D� is a sound approximation of [[·]]P̂ .

Theorem 1. Semantic function [[·]]D� on the abstract parsing do-

main V �
is a sound approximation of [[·]]P̂ . That is, we have

∀e ∈ Exp.∀σ ∈ Env P̂ .

αV
P̂
→V �([[e]]P̂ σ) � [[e]]D�(αEnv

P̂
→Env

D� (σ))

where

αV
P̂
→V � = λF.λD.α2P→D�(F (γD�→2P (D)))

αEnv
P̂
→Env

D� = λσ.λx.αV
P̂
→V �(σ(x)).

Proof. By structural induction on e with the conditions that the

abstract parsing domain D�
should satisfy.

5. Instantiation : Powerset Domain of Abstract
Parse Stack P̂ with k-cutting

In this section, we introduce an instance of an abstract domain D�
,

which is D̂, a powerset domain of abstract parse stack P̂ and its

widening with k-cutting. Thus the abstract parsing domain is

V̂ = D̂ → D̂.

First, we define abstract parse stack P̂ which is an abstraction

of concrete parse stack P . The abstract domain D̂ is constructed

with abstract parse stack P̂ . By establishing the Galois connection

between 2P
and D̂ and defining Parsde action , we show that D̂

is an instance of D�
. Finally, a widening operator is defined using

k-cutting to guarantee the termination of analysis.

5.1 Abstract Parse Stack P̂

Cut parse stack P̄ is introduced to represent a parse stack which

has been cut and only maintains top n states. Special state ‘–’ �∈ Σ
at the bottom of cut parse stack p̄ indicates that it has been cut.

P̄ = {p · – | p ∈ Σ∗}

Abstract parse stack P̂ is defined as a union of concrete parse stack

P and cut parse stack P̄ .

P̂ = P ∪ P̄

Given an abstract parse stack ρ, the function prefix : P̂ → Σ∗

yields the longest prefix of ρ which does not contain special state ‘–’.

prefix(ρ) =

8
><

>:

ρ if ρ ∈ P

s1 . . . sn if ρ = s1 . . . sn–

� (empty string) ρ = –

Then we define partial order � on P̂ as follows.

ρ1 �P̂ ρ2
def
= prefix(ρ1) starts with prefix(ρ2)

5.2 Abstract Domain : D̂

Abstract domain D̂ with its partial order � and join � is defined as

follows.

D̂ = {norm(d̂) | d̂ ∈ 2P̂ }

d̂1 � d̂2
def
= ∀ρ1 ∈ d̂1.∃ρ2 ∈ d̂2.ρ1 �P̂ ρ2

d̂1 � d̂2
def
= norm(d̂1 ∪ d̂2)

Normalization function norm is defined by

norm(d̂) = {ρ ∈ d̂ | ∀ρ� ∈ d̂.ρ ��P̂ ρ�}

to ensure that elements in norm(d̂) are the maximal elements of d̂.

It is necessary to eliminate non-maximal elements for binary rela-

tion � to be anti-symmetric and to be a partial order. For instance,

{–, s1s0–} contains non-maximal element {s1s0–} since we have

s1s0– � –. If we allow {s1s0–, –} in D̂ without normalizing it

into {–}, we have

({s1s0–, –} � {–}) ∧ ({–} � {s1s0–, –})
�⇒ {s1s0–, –} = {–}.

Then partial order � on D̂ becomes preorder since � is not anti-

symmetric anymore.

5.3 Abstract Domain D̂ as an Instance of D�

Abstract domain D̂ is an instance of D�
. To verify this, we need to

show that D̂ satisfies the conditions in Definition 1.

1. �D̂,�,�, φ� is a CPO by definition of D̂.

2. To establish a Galois connection between 2P
and D̂, we first

define the function expand : P̂ → 2P
as follows.

expand(ρ) =

 {ρ} if ρ ∈ P

{prefix(ρ) · p | p ∈ P} if ρ ∈ P̄

It expands an abstract parse stack ρ to all the concrete parse

stacks which ρ can represent. For instance, expand(s1–) =
{s1s0, s1s2, . . . }. Note that we have ∀p ∈ expand(ρ).p �P̂ ρ
and therefore we get expand(ρ) �D̂ {ρ}.

The function Expand : D̂ → 2P
is also defined as the natural

set extension of expand function by

Expand(d̂) =
[

ρ∈d̂

expand(ρ).

1. Define Abstract Parse Stack

52

_
s3
s2
s1

s1s2s3− =

Example

s4s5s6 � s4−

/62

Instantiation of
 : Abstract Parsing Stack with k-cutting

D�

�D

2. Define Abstract Domain

Definition 1 (Abstract Parsing Domain). V � = D� → D�
is

an abstract parsing domain if an abstract domain D�
satisfies the

following conditions [10, 11, 12].

1. �D�,�,�,⊥D�� is a CPO (Complete Partial Order).

2. Powerset domain of concrete parse stack 2P
and its abstract

domain D�
are Galois connected via α2P→D� and γD�→2P .

3. Parse action�
: D� → Token → D�

is a sound approxima-

tion of Parse action . That is, we have

∀P ∈ 2P .∀t ∈ Token.

α2P→D�(Parse action(P, t)) � Parse action�(α2P→D�(P), t)

The partial order �V � and join operator �V � are defined point-

wisely.

Definition 2. Semantic function [[·]]D� on the abstract parsing

domain V �
is defined as follows.

σ ∈ EnvD� = Var → V �

[[e]]0D� ∈ EnvD� → V �

[[f]]1D� ∈ EnvD� → V �

[[x]]0D�σ = σ(x)

[[let x e1 e2]]
0
D�σ = [[e2]]

0
D�(σ[x �→ [[e1]]

0
D�σ])

[[or e1 e2]]
0
D�σ = [[e1]]

0
D�σ � [[e2]]

0
D�σ

[[re x e1 e2 e3]]
0
D�σ = [[e3]]

0
D�(σ[x �→

fix λk.[[e1]]
0
D�σ � [[e2]]

0
D�(σ[x �→ k])])

[[‘f]]0D�σ = [[f]]1D�σ

[[t]]1D�σ = λD.Parse action�(D, t)

[[f1.f2]]
1
D�σ = [[f2]]

1
D�σ ◦ [[f1]]

1
D�σ

[[,e]]1D�σ = [[e]]0D�σ

Theorem 1 shows that [[·]]D� is a sound approximation of [[·]]P̂ .

Theorem 1. Semantic function [[·]]D� on the abstract parsing do-

main V �
is a sound approximation of [[·]]P̂ . That is, we have

∀e ∈ Exp.∀σ ∈ Env P̂ .

αV
P̂
→V �([[e]]P̂ σ) � [[e]]D�(αEnv

P̂
→Env

D� (σ))

where

αV
P̂
→V � = λF.λD.α2P→D�(F (γD�→2P (D)))

αEnv
P̂
→Env

D� = λσ.λx.αV
P̂
→V �(σ(x)).

Proof. By structural induction on e with the conditions that the

abstract parsing domain D�
should satisfy.

5. Instantiation : Powerset Domain of Abstract
Parse Stack P̂ with k-cutting

In this section, we introduce an instance of an abstract domain D�
,

which is D̂, a powerset domain of abstract parse stack P̂ and its

widening with k-cutting. Thus the abstract parsing domain is

V̂ = D̂ → D̂.

First, we define abstract parse stack P̂ which is an abstraction

of concrete parse stack P . The abstract domain D̂ is constructed

with abstract parse stack P̂ . By establishing the Galois connection

between 2P
and D̂ and defining Parsde action , we show that D̂

is an instance of D�
. Finally, a widening operator is defined using

k-cutting to guarantee the termination of analysis.

5.1 Abstract Parse Stack P̂

Cut parse stack P̄ is introduced to represent a parse stack which

has been cut and only maintains top n states. Special state ‘–’ �∈ Σ
at the bottom of cut parse stack p̄ indicates that it has been cut.

P̄ = {p · – | p ∈ Σ∗}

Abstract parse stack P̂ is defined as a union of concrete parse stack

P and cut parse stack P̄ .

P̂ = P ∪ P̄

Given an abstract parse stack ρ, the function prefix : P̂ → Σ∗

yields the longest prefix of ρ which does not contain special state ‘–’.

prefix(ρ) =

8
><

>:

ρ if ρ ∈ P

s1 . . . sn if ρ = s1 . . . sn–

� (empty string) ρ = –

Then we define partial order � on P̂ as follows.

ρ1 �P̂ ρ2
def
= prefix(ρ1) starts with prefix(ρ2)

5.2 Abstract Domain : D̂

Abstract domain D̂ with its partial order � and join � is defined as

follows.

D̂ = {norm(d̂) | d̂ ∈ 2P̂ }

d̂1 � d̂2
def
= ∀ρ1 ∈ d̂1.∃ρ2 ∈ d̂2.ρ1 �P̂ ρ2

d̂1 � d̂2
def
= norm(d̂1 ∪ d̂2)

Normalization function norm is defined by

norm(d̂) = {ρ ∈ d̂ | ∀ρ� ∈ d̂.ρ ��P̂ ρ�}

to ensure that elements in norm(d̂) are the maximal elements of d̂.

It is necessary to eliminate non-maximal elements for binary rela-

tion � to be anti-symmetric and to be a partial order. For instance,

{–, s1s0–} contains non-maximal element {s1s0–} since we have

s1s0– � –. If we allow {s1s0–, –} in D̂ without normalizing it

into {–}, we have

({s1s0–, –} � {–}) ∧ ({–} � {s1s0–, –})
�⇒ {s1s0–, –} = {–}.

Then partial order � on D̂ becomes preorder since � is not anti-

symmetric anymore.

5.3 Abstract Domain D̂ as an Instance of D�

Abstract domain D̂ is an instance of D�
. To verify this, we need to

show that D̂ satisfies the conditions in Definition 1.

1. �D̂,�,�, φ� is a CPO by definition of D̂.

2. To establish a Galois connection between 2P
and D̂, we first

define the function expand : P̂ → 2P
as follows.

expand(ρ) =

 {ρ} if ρ ∈ P

{prefix(ρ) · p | p ∈ P} if ρ ∈ P̄

It expands an abstract parse stack ρ to all the concrete parse

stacks which ρ can represent. For instance, expand(s1–) =
{s1s0, s1s2, . . . }. Note that we have ∀p ∈ expand(ρ).p �P̂ ρ
and therefore we get expand(ρ) �D̂ {ρ}.

The function Expand : D̂ → 2P
is also defined as the natural

set extension of expand function by

Expand(d̂) =
[

ρ∈d̂

expand(ρ).

Definition 1 (Abstract Parsing Domain). V � = D� → D�
is

an abstract parsing domain if an abstract domain D�
satisfies the

following conditions [10, 11, 12].

1. �D�,�,�,⊥D�� is a CPO (Complete Partial Order).

2. Powerset domain of concrete parse stack 2P
and its abstract

domain D�
are Galois connected via α2P→D� and γD�→2P .

3. Parse action�
: D� → Token → D�

is a sound approxima-

tion of Parse action . That is, we have

∀P ∈ 2P .∀t ∈ Token.

α2P→D�(Parse action(P, t)) � Parse action�(α2P→D�(P), t)

The partial order �V � and join operator �V � are defined point-

wisely.

Definition 2. Semantic function [[·]]D� on the abstract parsing

domain V �
is defined as follows.

σ ∈ EnvD� = Var → V �

[[e]]0D� ∈ EnvD� → V �

[[f]]1D� ∈ EnvD� → V �

[[x]]0D�σ = σ(x)

[[let x e1 e2]]
0
D�σ = [[e2]]

0
D�(σ[x �→ [[e1]]

0
D�σ])

[[or e1 e2]]
0
D�σ = [[e1]]

0
D�σ � [[e2]]

0
D�σ

[[re x e1 e2 e3]]
0
D�σ = [[e3]]

0
D�(σ[x �→

fix λk.[[e1]]
0
D�σ � [[e2]]

0
D�(σ[x �→ k])])

[[‘f]]0D�σ = [[f]]1D�σ

[[t]]1D�σ = λD.Parse action�(D, t)

[[f1.f2]]
1
D�σ = [[f2]]

1
D�σ ◦ [[f1]]

1
D�σ

[[,e]]1D�σ = [[e]]0D�σ

Theorem 1 shows that [[·]]D� is a sound approximation of [[·]]P̂ .

Theorem 1. Semantic function [[·]]D� on the abstract parsing do-

main V �
is a sound approximation of [[·]]P̂ . That is, we have

∀e ∈ Exp.∀σ ∈ Env P̂ .

αV
P̂
→V �([[e]]P̂ σ) � [[e]]D�(αEnv

P̂
→Env

D� (σ))

where

αV
P̂
→V � = λF.λD.α2P→D�(F (γD�→2P (D)))

αEnv
P̂
→Env

D� = λσ.λx.αV
P̂
→V �(σ(x)).

Proof. By structural induction on e with the conditions that the

abstract parsing domain D�
should satisfy.

5. Instantiation : Powerset Domain of Abstract
Parse Stack P̂ with k-cutting

In this section, we introduce an instance of an abstract domain D�
,

which is D̂, a powerset domain of abstract parse stack P̂ and its

widening with k-cutting. Thus the abstract parsing domain is

V̂ = D̂ → D̂.

First, we define abstract parse stack P̂ which is an abstraction

of concrete parse stack P . The abstract domain D̂ is constructed

with abstract parse stack P̂ . By establishing the Galois connection

between 2P
and D̂ and defining Parsde action , we show that D̂

is an instance of D�
. Finally, a widening operator is defined using

k-cutting to guarantee the termination of analysis.

5.1 Abstract Parse Stack P̂

Cut parse stack P̄ is introduced to represent a parse stack which

has been cut and only maintains top n states. Special state ‘–’ �∈ Σ
at the bottom of cut parse stack p̄ indicates that it has been cut.

P̄ = {p · – | p ∈ Σ∗}

Abstract parse stack P̂ is defined as a union of concrete parse stack

P and cut parse stack P̄ .

P̂ = P ∪ P̄

Given an abstract parse stack ρ, the function prefix : P̂ → Σ∗

yields the longest prefix of ρ which does not contain special state ‘–’.

prefix(ρ) =

8
><

>:

ρ if ρ ∈ P

s1 . . . sn if ρ = s1 . . . sn–

� (empty string) ρ = –

Then we define partial order � on P̂ as follows.

ρ1 �P̂ ρ2
def
= prefix(ρ1) starts with prefix(ρ2)

5.2 Abstract Domain : D̂

Abstract domain D̂ with its partial order � and join � is defined as

follows.

D̂ = {norm(d̂) | d̂ ∈ 2P̂ }

d̂1 � d̂2
def
= ∀ρ1 ∈ d̂1.∃ρ2 ∈ d̂2.ρ1 �P̂ ρ2

d̂1 � d̂2
def
= norm(d̂1 ∪ d̂2)

Normalization function norm is defined by

norm(d̂) = {ρ ∈ d̂ | ∀ρ� ∈ d̂.ρ ��P̂ ρ�}

to ensure that elements in norm(d̂) are the maximal elements of d̂.

It is necessary to eliminate non-maximal elements for binary rela-

tion � to be anti-symmetric and to be a partial order. For instance,

{–, s1s0–} contains non-maximal element {s1s0–} since we have

s1s0– � –. If we allow {s1s0–, –} in D̂ without normalizing it

into {–}, we have

({s1s0–, –} � {–}) ∧ ({–} � {s1s0–, –})
�⇒ {s1s0–, –} = {–}.

Then partial order � on D̂ becomes preorder since � is not anti-

symmetric anymore.

5.3 Abstract Domain D̂ as an Instance of D�

Abstract domain D̂ is an instance of D�
. To verify this, we need to

show that D̂ satisfies the conditions in Definition 1.

1. �D̂,�,�, φ� is a CPO by definition of D̂.

2. To establish a Galois connection between 2P
and D̂, we first

define the function expand : P̂ → 2P
as follows.

expand(ρ) =

 {ρ} if ρ ∈ P

{prefix(ρ) · p | p ∈ P} if ρ ∈ P̄

It expands an abstract parse stack ρ to all the concrete parse

stacks which ρ can represent. For instance, expand(s1–) =
{s1s0, s1s2, . . . }. Note that we have ∀p ∈ expand(ρ).p �P̂ ρ
and therefore we get expand(ρ) �D̂ {ρ}.

The function Expand : D̂ → 2P
is also defined as the natural

set extension of expand function by

Expand(d̂) =
[

ρ∈d̂

expand(ρ).

Definition 1 (Abstract Parsing Domain). V � = D� → D�
is

an abstract parsing domain if an abstract domain D�
satisfies the

following conditions [10, 11, 12].

1. �D�,�,�,⊥D�� is a CPO (Complete Partial Order).

2. Powerset domain of concrete parse stack 2P
and its abstract

domain D�
are Galois connected via α2P→D� and γD�→2P .

3. Parse action�
: D� → Token → D�

is a sound approxima-

tion of Parse action . That is, we have

∀P ∈ 2P .∀t ∈ Token.

α2P→D�(Parse action(P, t)) � Parse action�(α2P→D�(P), t)

The partial order �V � and join operator �V � are defined point-

wisely.

Definition 2. Semantic function [[·]]D� on the abstract parsing

domain V �
is defined as follows.

σ ∈ EnvD� = Var → V �

[[e]]0D� ∈ EnvD� → V �

[[f]]1D� ∈ EnvD� → V �

[[x]]0D�σ = σ(x)

[[let x e1 e2]]
0
D�σ = [[e2]]

0
D�(σ[x �→ [[e1]]

0
D�σ])

[[or e1 e2]]
0
D�σ = [[e1]]

0
D�σ � [[e2]]

0
D�σ

[[re x e1 e2 e3]]
0
D�σ = [[e3]]

0
D�(σ[x �→

fix λk.[[e1]]
0
D�σ � [[e2]]

0
D�(σ[x �→ k])])

[[‘f]]0D�σ = [[f]]1D�σ

[[t]]1D�σ = λD.Parse action�(D, t)

[[f1.f2]]
1
D�σ = [[f2]]

1
D�σ ◦ [[f1]]

1
D�σ

[[,e]]1D�σ = [[e]]0D�σ

Theorem 1 shows that [[·]]D� is a sound approximation of [[·]]P̂ .

Theorem 1. Semantic function [[·]]D� on the abstract parsing do-

main V �
is a sound approximation of [[·]]P̂ . That is, we have

∀e ∈ Exp.∀σ ∈ Env P̂ .

αV
P̂
→V �([[e]]P̂ σ) � [[e]]D�(αEnv

P̂
→Env

D� (σ))

where

αV
P̂
→V � = λF.λD.α2P→D�(F (γD�→2P (D)))

αEnv
P̂
→Env

D� = λσ.λx.αV
P̂
→V �(σ(x)).

Proof. By structural induction on e with the conditions that the

abstract parsing domain D�
should satisfy.

5. Instantiation : Powerset Domain of Abstract
Parse Stack P̂ with k-cutting

In this section, we introduce an instance of an abstract domain D�
,

which is D̂, a powerset domain of abstract parse stack P̂ and its

widening with k-cutting. Thus the abstract parsing domain is

V̂ = D̂ → D̂.

First, we define abstract parse stack P̂ which is an abstraction

of concrete parse stack P . The abstract domain D̂ is constructed

with abstract parse stack P̂ . By establishing the Galois connection

between 2P
and D̂ and defining Parsde action , we show that D̂

is an instance of D�
. Finally, a widening operator is defined using

k-cutting to guarantee the termination of analysis.

5.1 Abstract Parse Stack P̂

Cut parse stack P̄ is introduced to represent a parse stack which

has been cut and only maintains top n states. Special state ‘–’ �∈ Σ
at the bottom of cut parse stack p̄ indicates that it has been cut.

P̄ = {p · – | p ∈ Σ∗}

Abstract parse stack P̂ is defined as a union of concrete parse stack

P and cut parse stack P̄ .

P̂ = P ∪ P̄

Given an abstract parse stack ρ, the function prefix : P̂ → Σ∗

yields the longest prefix of ρ which does not contain special state ‘–’.

prefix(ρ) =

8
><

>:

ρ if ρ ∈ P

s1 . . . sn if ρ = s1 . . . sn–

� (empty string) ρ = –

Then we define partial order � on P̂ as follows.

ρ1 �P̂ ρ2
def
= prefix(ρ1) starts with prefix(ρ2)

5.2 Abstract Domain : D̂

Abstract domain D̂ with its partial order � and join � is defined as

follows.

D̂ = {norm(d̂) | d̂ ∈ 2P̂ }

d̂1 � d̂2
def
= ∀ρ1 ∈ d̂1.∃ρ2 ∈ d̂2.ρ1 �P̂ ρ2

d̂1 � d̂2
def
= norm(d̂1 ∪ d̂2)

Normalization function norm is defined by

norm(d̂) = {ρ ∈ d̂ | ∀ρ� ∈ d̂.ρ ��P̂ ρ�}

to ensure that elements in norm(d̂) are the maximal elements of d̂.

It is necessary to eliminate non-maximal elements for binary rela-

tion � to be anti-symmetric and to be a partial order. For instance,

{–, s1s0–} contains non-maximal element {s1s0–} since we have

s1s0– � –. If we allow {s1s0–, –} in D̂ without normalizing it

into {–}, we have

({s1s0–, –} � {–}) ∧ ({–} � {s1s0–, –})
�⇒ {s1s0–, –} = {–}.

Then partial order � on D̂ becomes preorder since � is not anti-

symmetric anymore.

5.3 Abstract Domain D̂ as an Instance of D�

Abstract domain D̂ is an instance of D�
. To verify this, we need to

show that D̂ satisfies the conditions in Definition 1.

1. �D̂,�,�, φ� is a CPO by definition of D̂.

2. To establish a Galois connection between 2P
and D̂, we first

define the function expand : P̂ → 2P
as follows.

expand(ρ) =

 {ρ} if ρ ∈ P

{prefix(ρ) · p | p ∈ P} if ρ ∈ P̄

It expands an abstract parse stack ρ to all the concrete parse

stacks which ρ can represent. For instance, expand(s1–) =
{s1s0, s1s2, . . . }. Note that we have ∀p ∈ expand(ρ).p �P̂ ρ
and therefore we get expand(ρ) �D̂ {ρ}.

The function Expand : D̂ → 2P
is also defined as the natural

set extension of expand function by

Expand(d̂) =
[

ρ∈d̂

expand(ρ).

53

norm{s1−, s1s2, s1s3s4} = {s1}
Example

/62

Instantiation of
 : Abstract Parsing Stack with k-cutting

D�

�D

3. Galois Connection

Definition 1 (Abstract Parsing Domain). V � = D� → D�
is

an abstract parsing domain if an abstract domain D�
satisfies the

following conditions [10, 11, 12].

1. �D�,�,�,⊥D�� is a CPO (Complete Partial Order).

2. Powerset domain of concrete parse stack 2P
and its abstract

domain D�
are Galois connected via α2P→D� and γD�→2P .

3. Parse action�
: D� → Token → D�

is a sound approxima-

tion of Parse action . That is, we have

∀P ∈ 2P .∀t ∈ Token.

α2P→D�(Parse action(P, t)) � Parse action�(α2P→D�(P), t)

The partial order �V � and join operator �V � are defined point-

wisely.

Definition 2. Semantic function [[·]]D� on the abstract parsing

domain V �
is defined as follows.

σ ∈ EnvD� = Var → V �

[[e]]0D� ∈ EnvD� → V �

[[f]]1D� ∈ EnvD� → V �

[[x]]0D�σ = σ(x)

[[let x e1 e2]]
0
D�σ = [[e2]]

0
D�(σ[x �→ [[e1]]

0
D�σ])

[[or e1 e2]]
0
D�σ = [[e1]]

0
D�σ � [[e2]]

0
D�σ

[[re x e1 e2 e3]]
0
D�σ = [[e3]]

0
D�(σ[x �→

fix λk.[[e1]]
0
D�σ � [[e2]]

0
D�(σ[x �→ k])])

[[‘f]]0D�σ = [[f]]1D�σ

[[t]]1D�σ = λD.Parse action�(D, t)

[[f1.f2]]
1
D�σ = [[f2]]

1
D�σ ◦ [[f1]]

1
D�σ

[[,e]]1D�σ = [[e]]0D�σ

Theorem 1 shows that [[·]]D� is a sound approximation of [[·]]P̂ .

Theorem 1. Semantic function [[·]]D� on the abstract parsing do-

main V �
is a sound approximation of [[·]]P̂ . That is, we have

∀e ∈ Exp.∀σ ∈ Env P̂ .

αV
P̂
→V �([[e]]P̂ σ) � [[e]]D�(αEnv

P̂
→Env

D� (σ))

where

αV
P̂
→V � = λF.λD.α2P→D�(F (γD�→2P (D)))

αEnv
P̂
→Env

D� = λσ.λx.αV
P̂
→V �(σ(x)).

Proof. By structural induction on e with the conditions that the

abstract parsing domain D�
should satisfy.

5. Instantiation : Powerset Domain of Abstract
Parse Stack P̂ with k-cutting

In this section, we introduce an instance of an abstract domain D�
,

which is D̂, a powerset domain of abstract parse stack P̂ and its

widening with k-cutting. Thus the abstract parsing domain is

V̂ = D̂ → D̂.

First, we define abstract parse stack P̂ which is an abstraction

of concrete parse stack P . The abstract domain D̂ is constructed

with abstract parse stack P̂ . By establishing the Galois connection

between 2P
and D̂ and defining Parsde action , we show that D̂

is an instance of D�
. Finally, a widening operator is defined using

k-cutting to guarantee the termination of analysis.

5.1 Abstract Parse Stack P̂

Cut parse stack P̄ is introduced to represent a parse stack which

has been cut and only maintains top n states. Special state ‘–’ �∈ Σ
at the bottom of cut parse stack p̄ indicates that it has been cut.

P̄ = {p · – | p ∈ Σ∗}

Abstract parse stack P̂ is defined as a union of concrete parse stack

P and cut parse stack P̄ .

P̂ = P ∪ P̄

Given an abstract parse stack ρ, the function prefix : P̂ → Σ∗

yields the longest prefix of ρ which does not contain special state ‘–’.

prefix(ρ) =

8
><

>:

ρ if ρ ∈ P

s1 . . . sn if ρ = s1 . . . sn–

� (empty string) ρ = –

Then we define partial order � on P̂ as follows.

ρ1 �P̂ ρ2
def
= prefix(ρ1) starts with prefix(ρ2)

5.2 Abstract Domain : D̂

Abstract domain D̂ with its partial order � and join � is defined as

follows.

D̂ = {norm(d̂) | d̂ ∈ 2P̂ }

d̂1 � d̂2
def
= ∀ρ1 ∈ d̂1.∃ρ2 ∈ d̂2.ρ1 �P̂ ρ2

d̂1 � d̂2
def
= norm(d̂1 ∪ d̂2)

Normalization function norm is defined by

norm(d̂) = {ρ ∈ d̂ | ∀ρ� ∈ d̂.ρ ��P̂ ρ�}

to ensure that elements in norm(d̂) are the maximal elements of d̂.

It is necessary to eliminate non-maximal elements for binary rela-

tion � to be anti-symmetric and to be a partial order. For instance,

{–, s1s0–} contains non-maximal element {s1s0–} since we have

s1s0– � –. If we allow {s1s0–, –} in D̂ without normalizing it

into {–}, we have

({s1s0–, –} � {–}) ∧ ({–} � {s1s0–, –})
�⇒ {s1s0–, –} = {–}.

Then partial order � on D̂ becomes preorder since � is not anti-

symmetric anymore.

5.3 Abstract Domain D̂ as an Instance of D�

Abstract domain D̂ is an instance of D�
. To verify this, we need to

show that D̂ satisfies the conditions in Definition 1.

1. �D̂,�,�, φ� is a CPO by definition of D̂.

2. To establish a Galois connection between 2P
and D̂, we first

define the function expand : P̂ → 2P
as follows.

expand(ρ) =

 {ρ} if ρ ∈ P

{prefix(ρ) · p | p ∈ P} if ρ ∈ P̄

It expands an abstract parse stack ρ to all the concrete parse

stacks which ρ can represent. For instance, expand(s1–) =
{s1s0, s1s2, . . . }. Note that we have ∀p ∈ expand(ρ).p �P̂ ρ
and therefore we get expand(ρ) �D̂ {ρ}.

The function Expand : D̂ → 2P
is also defined as the natural

set extension of expand function by

Expand(d̂) =
[

ρ∈d̂

expand(ρ).

Definition 1 (Abstract Parsing Domain). V � = D� → D�
is

an abstract parsing domain if an abstract domain D�
satisfies the

following conditions [10, 11, 12].

1. �D�,�,�,⊥D�� is a CPO (Complete Partial Order).

2. Powerset domain of concrete parse stack 2P
and its abstract

domain D�
are Galois connected via α2P→D� and γD�→2P .

3. Parse action�
: D� → Token → D�

is a sound approxima-

tion of Parse action . That is, we have

∀P ∈ 2P .∀t ∈ Token.

α2P→D�(Parse action(P, t)) � Parse action�(α2P→D�(P), t)

The partial order �V � and join operator �V � are defined point-

wisely.

Definition 2. Semantic function [[·]]D� on the abstract parsing

domain V �
is defined as follows.

σ ∈ EnvD� = Var → V �

[[e]]0D� ∈ EnvD� → V �

[[f]]1D� ∈ EnvD� → V �

[[x]]0D�σ = σ(x)

[[let x e1 e2]]
0
D�σ = [[e2]]

0
D�(σ[x �→ [[e1]]

0
D�σ])

[[or e1 e2]]
0
D�σ = [[e1]]

0
D�σ � [[e2]]

0
D�σ

[[re x e1 e2 e3]]
0
D�σ = [[e3]]

0
D�(σ[x �→

fix λk.[[e1]]
0
D�σ � [[e2]]

0
D�(σ[x �→ k])])

[[‘f]]0D�σ = [[f]]1D�σ

[[t]]1D�σ = λD.Parse action�(D, t)

[[f1.f2]]
1
D�σ = [[f2]]

1
D�σ ◦ [[f1]]

1
D�σ

[[,e]]1D�σ = [[e]]0D�σ

Theorem 1 shows that [[·]]D� is a sound approximation of [[·]]P̂ .

Theorem 1. Semantic function [[·]]D� on the abstract parsing do-

main V �
is a sound approximation of [[·]]P̂ . That is, we have

∀e ∈ Exp.∀σ ∈ Env P̂ .

αV
P̂
→V �([[e]]P̂ σ) � [[e]]D�(αEnv

P̂
→Env

D� (σ))

where

αV
P̂
→V � = λF.λD.α2P→D�(F (γD�→2P (D)))

αEnv
P̂
→Env

D� = λσ.λx.αV
P̂
→V �(σ(x)).

Proof. By structural induction on e with the conditions that the

abstract parsing domain D�
should satisfy.

5. Instantiation : Powerset Domain of Abstract
Parse Stack P̂ with k-cutting

In this section, we introduce an instance of an abstract domain D�
,

which is D̂, a powerset domain of abstract parse stack P̂ and its

widening with k-cutting. Thus the abstract parsing domain is

V̂ = D̂ → D̂.

First, we define abstract parse stack P̂ which is an abstraction

of concrete parse stack P . The abstract domain D̂ is constructed

with abstract parse stack P̂ . By establishing the Galois connection

between 2P
and D̂ and defining Parsde action , we show that D̂

is an instance of D�
. Finally, a widening operator is defined using

k-cutting to guarantee the termination of analysis.

5.1 Abstract Parse Stack P̂

Cut parse stack P̄ is introduced to represent a parse stack which

has been cut and only maintains top n states. Special state ‘–’ �∈ Σ
at the bottom of cut parse stack p̄ indicates that it has been cut.

P̄ = {p · – | p ∈ Σ∗}

Abstract parse stack P̂ is defined as a union of concrete parse stack

P and cut parse stack P̄ .

P̂ = P ∪ P̄

Given an abstract parse stack ρ, the function prefix : P̂ → Σ∗

yields the longest prefix of ρ which does not contain special state ‘–’.

prefix(ρ) =

8
><

>:

ρ if ρ ∈ P

s1 . . . sn if ρ = s1 . . . sn–

� (empty string) ρ = –

Then we define partial order � on P̂ as follows.

ρ1 �P̂ ρ2
def
= prefix(ρ1) starts with prefix(ρ2)

5.2 Abstract Domain : D̂

Abstract domain D̂ with its partial order � and join � is defined as

follows.

D̂ = {norm(d̂) | d̂ ∈ 2P̂ }

d̂1 � d̂2
def
= ∀ρ1 ∈ d̂1.∃ρ2 ∈ d̂2.ρ1 �P̂ ρ2

d̂1 � d̂2
def
= norm(d̂1 ∪ d̂2)

Normalization function norm is defined by

norm(d̂) = {ρ ∈ d̂ | ∀ρ� ∈ d̂.ρ ��P̂ ρ�}

to ensure that elements in norm(d̂) are the maximal elements of d̂.

It is necessary to eliminate non-maximal elements for binary rela-

tion � to be anti-symmetric and to be a partial order. For instance,

{–, s1s0–} contains non-maximal element {s1s0–} since we have

s1s0– � –. If we allow {s1s0–, –} in D̂ without normalizing it

into {–}, we have

({s1s0–, –} � {–}) ∧ ({–} � {s1s0–, –})
�⇒ {s1s0–, –} = {–}.

Then partial order � on D̂ becomes preorder since � is not anti-

symmetric anymore.

5.3 Abstract Domain D̂ as an Instance of D�

Abstract domain D̂ is an instance of D�
. To verify this, we need to

show that D̂ satisfies the conditions in Definition 1.

1. �D̂,�,�, φ� is a CPO by definition of D̂.

2. To establish a Galois connection between 2P
and D̂, we first

define the function expand : P̂ → 2P
as follows.

expand(ρ) =

 {ρ} if ρ ∈ P

{prefix(ρ) · p | p ∈ P} if ρ ∈ P̄

It expands an abstract parse stack ρ to all the concrete parse

stacks which ρ can represent. For instance, expand(s1–) =
{s1s0, s1s2, . . . }. Note that we have ∀p ∈ expand(ρ).p �P̂ ρ
and therefore we get expand(ρ) �D̂ {ρ}.

The function Expand : D̂ → 2P
is also defined as the natural

set extension of expand function by

Expand(d̂) =
[

ρ∈d̂

expand(ρ).

From the property of expand , it is clear that Expand(d̂) �D̂ d̂.
Using the Expand function, we define the Galois connection
2P −−→←−−α

γ
D̂ where

α = id

γ = λd̂.Expand(d̂)

Proof. To prove α and γ constitute a Galois connection, it is
sufficient to show that the following properties hold.
(a) Trivially, α = id is monotone.
(b) Monotonicity of γ is immediate from the monotonicity of

expand .

(c) We show that ∀d̂ ∈ D̂.α ◦ γ(d̂) � d̂.

α ◦ γ(d̂) = γ(d̂)

= Expand(d̂)

� d̂

(d) We show that ∀P ∈ 2P .P ⊆ γ ◦ α(P).

γ ◦ α(P) = γ(P)

= Expand(P)

=
[

p∈P

expand(p)

=
[

p∈P

p

= P

3. We first define parsde action : P̂ → Token → P̂ as in Algo-
rithm 2. It is a modified version of the parse action algorithm.
The only modifications are adding lines 2 – 4 and lines 12 –
14 to handle p̄ ∈ P̄ because the action and goto tables do not
have an entry for the special state ‘–’. Note that ∀p ∈ P.∀t ∈
Token.parse action(p, t) = parsde action(p, t).

Algorithm 2 parsde action algorithm
1: procedure parsde action(ρ, t)
2: if ρ = – then

3: return ρ
4: end if

5: stop ← the state on top of stack ρ
6: if ACTION [stop, t] = shift s then

7: push s onto the stack ρ
8: return ρ
9: else if ACTION [stop, t] = reduce A → β then

10: pop |β| symbol off the stack ρ
11: stop ← the state on top of stack ρ
12: if stop = – then

13: return ρ
14: end if

15: push GOTO [stop, A] onto the stack ρ
16: return parsde action(ρ, t)
17: end if

18: end procedure

Parsde action : D̂ → Token → D̂ is defined as the natural
set extension of parsde action as follows.

Parsde action = λd̂.λt.{parsde action(ρ, t) | ρ ∈ d̂}

Parsde action is a sound approximation of Parse action .

Proof. For all P ∈ 2P and t ∈ Token , we have

α2P→D̂(Parse action(P, t)) = Parse action(P, t)

= {parse action(p, t) | p ∈ P}
= {parsde action(p, t) | p ∈ P}
= Parsde action(P, t)

= Parsde action(α2P→D̂(P), t).

5.4 Widening Operator on D̂

The termination of the analysis parameterized with D̂ is not guar-
anteed because D̂ has infinite height. Instead of limiting the height
of the domain, we use the widening method to achieve termination.

We define an operator
�

D̂ : D̂ × D̂ → D̂ such that

A
�

D̂ B = {norm(cutk(ρ)) | ρ ∈ A ∪B}
where cutk is defined by

cutk(ρ) =

ρ if |ρ| ≤ k

s1 . . . sk−1– if ρ = s1 . . . sk−1sk . . . sn.

Theorem 2 shows that
�

D̂ is a widening operator on D̂.

Theorem 2.
�

D̂ : D̂ × D̂ → D̂ is a widening operator.

Proof. We have to check if
�

D̂ operator satisfies the widening
conditions [10, 11, 12]:

(i) ∀x, y ∈ D̂.(x � x
�

D̂ y) ∧ (y � x
�

D̂ y).
(ii) for all increasing chains x0 � x1 . . . , the increasing chain

defined by y0 = x0, . . . , yi+1 = yi
�

D̂ xi+1, . . . is not
strictly increasing.

To prove (i), we observe that ρ �P̂ cutk(ρ) by definition of �P̂
and cutk. Using this we get

x = {ρ | ρ ∈ x}
� {cutk(p) | p ∈ x}
� {cutk(p) | p ∈ x ∪ y}
= x

�
D̂y.

Proof for y � x
�

D̂ y is analogous.
To prove (ii), we observe that the range of

�
D̂ operator is the

finite set P̂ � = {ρ ∈ P̂ | |ρ| ≤ k}. For all i ≥ 1, we have
yi ∈ P̂ �. Therefore the increasing chain y0, . . . , yn, . . . is not
strictly increasing.

Using the widening operator
�

D̂ , we define a widening operator
for V̂ = D̂ → D̂, such that

f
�

V̂ g = λd̂.

(
f(d̂)

�
D̂ g(d̂) if ∀ρ ∈ d̂.|ρ| ≤ l

{–} otherwise.

where l is a constant to bound the set of meaningful entries finitely
fixed in the resulting function. For those finite meaningful entries,
we widen their images using the widening

�
D̂ . This

�
V̂ operator

is a widening operator and the analysis using this widening always
terminates.

The analysis using the widening gives better precision than the
one using the domain with finite height, for instance, D̂� = {d̂ ∈
D̂ | |d̂| ≤ k}. The widening approach only restricts the length of
the parse stack at the loop head. In the loop body, it allows arbitrary
length of parse stacks. Let’s consider the following program.

From the property of expand , it is clear that Expand(d̂) �D̂ d̂.
Using the Expand function, we define the Galois connection
2P −−→←−−α

γ
D̂ where

α = id

γ = λd̂.Expand(d̂)

Proof. To prove α and γ constitute a Galois connection, it is
sufficient to show that the following properties hold.
(a) Trivially, α = id is monotone.
(b) Monotonicity of γ is immediate from the monotonicity of

expand .

(c) We show that ∀d̂ ∈ D̂.α ◦ γ(d̂) � d̂.

α ◦ γ(d̂) = γ(d̂)

= Expand(d̂)

� d̂

(d) We show that ∀P ∈ 2P .P ⊆ γ ◦ α(P).

γ ◦ α(P) = γ(P)

= Expand(P)

=
[

p∈P

expand(p)

=
[

p∈P

p

= P

3. We first define parsde action : P̂ → Token → P̂ as in Algo-
rithm 2. It is a modified version of the parse action algorithm.
The only modifications are adding lines 2 – 4 and lines 12 –
14 to handle p̄ ∈ P̄ because the action and goto tables do not
have an entry for the special state ‘–’. Note that ∀p ∈ P.∀t ∈
Token.parse action(p, t) = parsde action(p, t).

Algorithm 2 parsde action algorithm
1: procedure parsde action(ρ, t)
2: if ρ = – then

3: return ρ
4: end if

5: stop ← the state on top of stack ρ
6: if ACTION [stop, t] = shift s then

7: push s onto the stack ρ
8: return ρ
9: else if ACTION [stop, t] = reduce A → β then

10: pop |β| symbol off the stack ρ
11: stop ← the state on top of stack ρ
12: if stop = – then

13: return ρ
14: end if

15: push GOTO [stop, A] onto the stack ρ
16: return parsde action(ρ, t)
17: end if

18: end procedure

Parsde action : D̂ → Token → D̂ is defined as the natural
set extension of parsde action as follows.

Parsde action = λd̂.λt.{parsde action(ρ, t) | ρ ∈ d̂}

Parsde action is a sound approximation of Parse action .

Proof. For all P ∈ 2P and t ∈ Token , we have

α2P→D̂(Parse action(P, t)) = Parse action(P, t)

= {parse action(p, t) | p ∈ P}
= {parsde action(p, t) | p ∈ P}
= Parsde action(P, t)

= Parsde action(α2P→D̂(P), t).

5.4 Widening Operator on D̂

The termination of the analysis parameterized with D̂ is not guar-
anteed because D̂ has infinite height. Instead of limiting the height
of the domain, we use the widening method to achieve termination.

We define an operator
�

D̂ : D̂ × D̂ → D̂ such that

A
�

D̂ B = {norm(cutk(ρ)) | ρ ∈ A ∪B}
where cutk is defined by

cutk(ρ) =

ρ if |ρ| ≤ k

s1 . . . sk−1– if ρ = s1 . . . sk−1sk . . . sn.

Theorem 2 shows that
�

D̂ is a widening operator on D̂.

Theorem 2.
�

D̂ : D̂ × D̂ → D̂ is a widening operator.

Proof. We have to check if
�

D̂ operator satisfies the widening
conditions [10, 11, 12]:

(i) ∀x, y ∈ D̂.(x � x
�

D̂ y) ∧ (y � x
�

D̂ y).
(ii) for all increasing chains x0 � x1 . . . , the increasing chain

defined by y0 = x0, . . . , yi+1 = yi
�

D̂ xi+1, . . . is not
strictly increasing.

To prove (i), we observe that ρ �P̂ cutk(ρ) by definition of �P̂
and cutk. Using this we get

x = {ρ | ρ ∈ x}
� {cutk(p) | p ∈ x}
� {cutk(p) | p ∈ x ∪ y}
= x

�
D̂y.

Proof for y � x
�

D̂ y is analogous.
To prove (ii), we observe that the range of

�
D̂ operator is the

finite set P̂ � = {ρ ∈ P̂ | |ρ| ≤ k}. For all i ≥ 1, we have
yi ∈ P̂ �. Therefore the increasing chain y0, . . . , yn, . . . is not
strictly increasing.

Using the widening operator
�

D̂ , we define a widening operator
for V̂ = D̂ → D̂, such that

f
�

V̂ g = λd̂.

(
f(d̂)

�
D̂ g(d̂) if ∀ρ ∈ d̂.|ρ| ≤ l

{–} otherwise.

where l is a constant to bound the set of meaningful entries finitely
fixed in the resulting function. For those finite meaningful entries,
we widen their images using the widening

�
D̂ . This

�
V̂ operator

is a widening operator and the analysis using this widening always
terminates.

The analysis using the widening gives better precision than the
one using the domain with finite height, for instance, D̂� = {d̂ ∈
D̂ | |d̂| ≤ k}. The widening approach only restricts the length of
the parse stack at the loop head. In the loop body, it allows arbitrary
length of parse stacks. Let’s consider the following program.

54

γ{s1−} = {s1s2, s1s3, . . . , s1s2s3 . . . }
Example

/62

Instantiation of
 : Abstract Parsing Stack with k-cutting

D�

�D

From the property of expand , it is clear that Expand(d̂) �D̂ d̂.
Using the Expand function, we define the Galois connection
2P −−→←−−α

γ
D̂ where

α = id

γ = λd̂.Expand(d̂)

Proof. To prove α and γ constitute a Galois connection, it is
sufficient to show that the following properties hold.
(a) Trivially, α = id is monotone.
(b) Monotonicity of γ is immediate from the monotonicity of

expand .

(c) We show that ∀d̂ ∈ D̂.α ◦ γ(d̂) � d̂.

α ◦ γ(d̂) = γ(d̂)

= Expand(d̂)

� d̂

(d) We show that ∀P ∈ 2P .P ⊆ γ ◦ α(P).

γ ◦ α(P) = γ(P)

= Expand(P)

=
[

p∈P

expand(p)

=
[

p∈P

p

= P

3. We first define parsde action : P̂ → Token → P̂ as in Algo-
rithm 2. It is a modified version of the parse action algorithm.
The only modifications are adding lines 2 – 4 and lines 12 –
14 to handle p̄ ∈ P̄ because the action and goto tables do not
have an entry for the special state ‘–’. Note that ∀p ∈ P.∀t ∈
Token.parse action(p, t) = parsde action(p, t).

Algorithm 2 parsde action algorithm
1: procedure parsde action(ρ, t)
2: if ρ = – then

3: return ρ
4: end if

5: stop ← the state on top of stack ρ
6: if ACTION [stop, t] = shift s then

7: push s onto the stack ρ
8: return ρ
9: else if ACTION [stop, t] = reduce A → β then

10: pop |β| symbol off the stack ρ
11: stop ← the state on top of stack ρ
12: if stop = – then

13: return ρ
14: end if

15: push GOTO [stop, A] onto the stack ρ
16: return parsde action(ρ, t)
17: end if

18: end procedure

Parsde action : D̂ → Token → D̂ is defined as the natural
set extension of parsde action as follows.

Parsde action = λd̂.λt.{parsde action(ρ, t) | ρ ∈ d̂}

Parsde action is a sound approximation of Parse action .

Proof. For all P ∈ 2P and t ∈ Token , we have

α2P→D̂(Parse action(P, t)) = Parse action(P, t)

= {parse action(p, t) | p ∈ P}
= {parsde action(p, t) | p ∈ P}
= Parsde action(P, t)

= Parsde action(α2P→D̂(P), t).

5.4 Widening Operator on D̂

The termination of the analysis parameterized with D̂ is not guar-
anteed because D̂ has infinite height. Instead of limiting the height
of the domain, we use the widening method to achieve termination.

We define an operator
�

D̂ : D̂ × D̂ → D̂ such that

A
�

D̂ B = {norm(cutk(ρ)) | ρ ∈ A ∪B}
where cutk is defined by

cutk(ρ) =

ρ if |ρ| ≤ k

s1 . . . sk−1– if ρ = s1 . . . sk−1sk . . . sn.

Theorem 2 shows that
�

D̂ is a widening operator on D̂.

Theorem 2.
�

D̂ : D̂ × D̂ → D̂ is a widening operator.

Proof. We have to check if
�

D̂ operator satisfies the widening
conditions [10, 11, 12]:

(i) ∀x, y ∈ D̂.(x � x
�

D̂ y) ∧ (y � x
�

D̂ y).
(ii) for all increasing chains x0 � x1 . . . , the increasing chain

defined by y0 = x0, . . . , yi+1 = yi
�

D̂ xi+1, . . . is not
strictly increasing.

To prove (i), we observe that ρ �P̂ cutk(ρ) by definition of �P̂
and cutk. Using this we get

x = {ρ | ρ ∈ x}
� {cutk(p) | p ∈ x}
� {cutk(p) | p ∈ x ∪ y}
= x

�
D̂y.

Proof for y � x
�

D̂ y is analogous.
To prove (ii), we observe that the range of

�
D̂ operator is the

finite set P̂ � = {ρ ∈ P̂ | |ρ| ≤ k}. For all i ≥ 1, we have
yi ∈ P̂ �. Therefore the increasing chain y0, . . . , yn, . . . is not
strictly increasing.

Using the widening operator
�

D̂ , we define a widening operator
for V̂ = D̂ → D̂, such that

f
�

V̂ g = λd̂.

(
f(d̂)

�
D̂ g(d̂) if ∀ρ ∈ d̂.|ρ| ≤ l

{–} otherwise.

where l is a constant to bound the set of meaningful entries finitely
fixed in the resulting function. For those finite meaningful entries,
we widen their images using the widening

�
D̂ . This

�
V̂ operator

is a widening operator and the analysis using this widening always
terminates.

The analysis using the widening gives better precision than the
one using the domain with finite height, for instance, D̂� = {d̂ ∈
D̂ | |d̂| ≤ k}. The widening approach only restricts the length of
the parse stack at the loop head. In the loop body, it allows arbitrary
length of parse stacks. Let’s consider the following program.

_ _

_
s3
s2
s1

_ _

pop

4. From the property of expand , it is clear that Expand(d̂) �D̂ d̂.
Using the Expand function, we define the Galois connection
2P −−→←−−α

γ
D̂ where

α = id

γ = λd̂.Expand(d̂)

Proof. To prove α and γ constitute a Galois connection, it is
sufficient to show that the following properties hold.
(a) Trivially, α = id is monotone.
(b) Monotonicity of γ is immediate from the monotonicity of

expand .

(c) We show that ∀d̂ ∈ D̂.α ◦ γ(d̂) � d̂.

α ◦ γ(d̂) = γ(d̂)

= Expand(d̂)

� d̂

(d) We show that ∀P ∈ 2P .P ⊆ γ ◦ α(P).

γ ◦ α(P) = γ(P)

= Expand(P)

=
[

p∈P

expand(p)

=
[

p∈P

p

= P

3. We first define parsde action : P̂ → Token → P̂ as in Algo-
rithm 2. It is a modified version of the parse action algorithm.
The only modifications are adding lines 2 – 4 and lines 12 –
14 to handle p̄ ∈ P̄ because the action and goto tables do not
have an entry for the special state ‘–’. Note that ∀p ∈ P.∀t ∈
Token.parse action(p, t) = parsde action(p, t).

Algorithm 2 parsde action algorithm
1: procedure parsde action(ρ, t)
2: if ρ = – then

3: return ρ
4: end if

5: stop ← the state on top of stack ρ
6: if ACTION [stop, t] = shift s then

7: push s onto the stack ρ
8: return ρ
9: else if ACTION [stop, t] = reduce A → β then

10: pop |β| symbol off the stack ρ
11: stop ← the state on top of stack ρ
12: if stop = – then

13: return ρ
14: end if

15: push GOTO [stop, A] onto the stack ρ
16: return parsde action(ρ, t)
17: end if

18: end procedure

Parsde action : D̂ → Token → D̂ is defined as the natural
set extension of parsde action as follows.

Parsde action = λd̂.λt.{parsde action(ρ, t) | ρ ∈ d̂}

Parsde action is a sound approximation of Parse action .

Proof. For all P ∈ 2P and t ∈ Token , we have

α2P→D̂(Parse action(P, t)) = Parse action(P, t)

= {parse action(p, t) | p ∈ P}
= {parsde action(p, t) | p ∈ P}
= Parsde action(P, t)

= Parsde action(α2P→D̂(P), t).

5.4 Widening Operator on D̂

The termination of the analysis parameterized with D̂ is not guar-
anteed because D̂ has infinite height. Instead of limiting the height
of the domain, we use the widening method to achieve termination.

We define an operator
�

D̂ : D̂ × D̂ → D̂ such that

A
�

D̂ B = {norm(cutk(ρ)) | ρ ∈ A ∪B}
where cutk is defined by

cutk(ρ) =

ρ if |ρ| ≤ k

s1 . . . sk−1– if ρ = s1 . . . sk−1sk . . . sn.

Theorem 2 shows that
�

D̂ is a widening operator on D̂.

Theorem 2.
�

D̂ : D̂ × D̂ → D̂ is a widening operator.

Proof. We have to check if
�

D̂ operator satisfies the widening
conditions [10, 11, 12]:

(i) ∀x, y ∈ D̂.(x � x
�

D̂ y) ∧ (y � x
�

D̂ y).
(ii) for all increasing chains x0 � x1 . . . , the increasing chain

defined by y0 = x0, . . . , yi+1 = yi
�

D̂ xi+1, . . . is not
strictly increasing.

To prove (i), we observe that ρ �P̂ cutk(ρ) by definition of �P̂
and cutk. Using this we get

x = {ρ | ρ ∈ x}
� {cutk(p) | p ∈ x}
� {cutk(p) | p ∈ x ∪ y}
= x

�
D̂y.

Proof for y � x
�

D̂ y is analogous.
To prove (ii), we observe that the range of

�
D̂ operator is the

finite set P̂ � = {ρ ∈ P̂ | |ρ| ≤ k}. For all i ≥ 1, we have
yi ∈ P̂ �. Therefore the increasing chain y0, . . . , yn, . . . is not
strictly increasing.

Using the widening operator
�

D̂ , we define a widening operator
for V̂ = D̂ → D̂, such that

f
�

V̂ g = λd̂.

(
f(d̂)

�
D̂ g(d̂) if ∀ρ ∈ d̂.|ρ| ≤ l

{–} otherwise.

where l is a constant to bound the set of meaningful entries finitely
fixed in the resulting function. For those finite meaningful entries,
we widen their images using the widening

�
D̂ . This

�
V̂ operator

is a widening operator and the analysis using this widening always
terminates.

The analysis using the widening gives better precision than the
one using the domain with finite height, for instance, D̂� = {d̂ ∈
D̂ | |d̂| ≤ k}. The widening approach only restricts the length of
the parse stack at the loop head. In the loop body, it allows arbitrary
length of parse stacks. Let’s consider the following program.

55

/62

Instantiation of
 : Abstract Parsing Stack with k-cutting

D�

�D

From the property of expand , it is clear that Expand(d̂) �D̂ d̂.
Using the Expand function, we define the Galois connection
2P −−→←−−α

γ
D̂ where

α = id

γ = λd̂.Expand(d̂)

Proof. To prove α and γ constitute a Galois connection, it is
sufficient to show that the following properties hold.
(a) Trivially, α = id is monotone.
(b) Monotonicity of γ is immediate from the monotonicity of

expand .

(c) We show that ∀d̂ ∈ D̂.α ◦ γ(d̂) � d̂.

α ◦ γ(d̂) = γ(d̂)

= Expand(d̂)

� d̂

(d) We show that ∀P ∈ 2P .P ⊆ γ ◦ α(P).

γ ◦ α(P) = γ(P)

= Expand(P)

=
[

p∈P

expand(p)

=
[

p∈P

p

= P

3. We first define parsde action : P̂ → Token → P̂ as in Algo-
rithm 2. It is a modified version of the parse action algorithm.
The only modifications are adding lines 2 – 4 and lines 12 –
14 to handle p̄ ∈ P̄ because the action and goto tables do not
have an entry for the special state ‘–’. Note that ∀p ∈ P.∀t ∈
Token.parse action(p, t) = parsde action(p, t).

Algorithm 2 parsde action algorithm
1: procedure parsde action(ρ, t)
2: if ρ = – then

3: return ρ
4: end if

5: stop ← the state on top of stack ρ
6: if ACTION [stop, t] = shift s then

7: push s onto the stack ρ
8: return ρ
9: else if ACTION [stop, t] = reduce A → β then

10: pop |β| symbol off the stack ρ
11: stop ← the state on top of stack ρ
12: if stop = – then

13: return ρ
14: end if

15: push GOTO [stop, A] onto the stack ρ
16: return parsde action(ρ, t)
17: end if

18: end procedure

Parsde action : D̂ → Token → D̂ is defined as the natural
set extension of parsde action as follows.

Parsde action = λd̂.λt.{parsde action(ρ, t) | ρ ∈ d̂}

Parsde action is a sound approximation of Parse action .

Proof. For all P ∈ 2P and t ∈ Token , we have

α2P→D̂(Parse action(P, t)) = Parse action(P, t)

= {parse action(p, t) | p ∈ P}
= {parsde action(p, t) | p ∈ P}
= Parsde action(P, t)

= Parsde action(α2P→D̂(P), t).

5.4 Widening Operator on D̂

The termination of the analysis parameterized with D̂ is not guar-
anteed because D̂ has infinite height. Instead of limiting the height
of the domain, we use the widening method to achieve termination.

We define an operator
�

D̂ : D̂ × D̂ → D̂ such that

A
�

D̂ B = {norm(cutk(ρ)) | ρ ∈ A ∪B}
where cutk is defined by

cutk(ρ) =

ρ if |ρ| ≤ k

s1 . . . sk−1– if ρ = s1 . . . sk−1sk . . . sn.

Theorem 2 shows that
�

D̂ is a widening operator on D̂.

Theorem 2.
�

D̂ : D̂ × D̂ → D̂ is a widening operator.

Proof. We have to check if
�

D̂ operator satisfies the widening
conditions [10, 11, 12]:

(i) ∀x, y ∈ D̂.(x � x
�

D̂ y) ∧ (y � x
�

D̂ y).
(ii) for all increasing chains x0 � x1 . . . , the increasing chain

defined by y0 = x0, . . . , yi+1 = yi
�

D̂ xi+1, . . . is not
strictly increasing.

To prove (i), we observe that ρ �P̂ cutk(ρ) by definition of �P̂
and cutk. Using this we get

x = {ρ | ρ ∈ x}
� {cutk(p) | p ∈ x}
� {cutk(p) | p ∈ x ∪ y}
= x

�
D̂y.

Proof for y � x
�

D̂ y is analogous.
To prove (ii), we observe that the range of

�
D̂ operator is the

finite set P̂ � = {ρ ∈ P̂ | |ρ| ≤ k}. For all i ≥ 1, we have
yi ∈ P̂ �. Therefore the increasing chain y0, . . . , yn, . . . is not
strictly increasing.

Using the widening operator
�

D̂ , we define a widening operator
for V̂ = D̂ → D̂, such that

f
�

V̂ g = λd̂.

(
f(d̂)

�
D̂ g(d̂) if ∀ρ ∈ d̂.|ρ| ≤ l

{–} otherwise.

where l is a constant to bound the set of meaningful entries finitely
fixed in the resulting function. For those finite meaningful entries,
we widen their images using the widening

�
D̂ . This

�
V̂ operator

is a widening operator and the analysis using this widening always
terminates.

The analysis using the widening gives better precision than the
one using the domain with finite height, for instance, D̂� = {d̂ ∈
D̂ | |d̂| ≤ k}. The widening approach only restricts the length of
the parse stack at the loop head. In the loop body, it allows arbitrary
length of parse stacks. Let’s consider the following program.

From the property of expand , it is clear that Expand(d̂) �D̂ d̂.
Using the Expand function, we define the Galois connection
2P −−→←−−α

γ
D̂ where

α = id

γ = λd̂.Expand(d̂)

Proof. To prove α and γ constitute a Galois connection, it is
sufficient to show that the following properties hold.
(a) Trivially, α = id is monotone.
(b) Monotonicity of γ is immediate from the monotonicity of

expand .

(c) We show that ∀d̂ ∈ D̂.α ◦ γ(d̂) � d̂.

α ◦ γ(d̂) = γ(d̂)

= Expand(d̂)

� d̂

(d) We show that ∀P ∈ 2P .P ⊆ γ ◦ α(P).

γ ◦ α(P) = γ(P)

= Expand(P)

=
[

p∈P

expand(p)

=
[

p∈P

p

= P

3. We first define parsde action : P̂ → Token → P̂ as in Algo-
rithm 2. It is a modified version of the parse action algorithm.
The only modifications are adding lines 2 – 4 and lines 12 –
14 to handle p̄ ∈ P̄ because the action and goto tables do not
have an entry for the special state ‘–’. Note that ∀p ∈ P.∀t ∈
Token.parse action(p, t) = parsde action(p, t).

Algorithm 2 parsde action algorithm
1: procedure parsde action(ρ, t)
2: if ρ = – then

3: return ρ
4: end if

5: stop ← the state on top of stack ρ
6: if ACTION [stop, t] = shift s then

7: push s onto the stack ρ
8: return ρ
9: else if ACTION [stop, t] = reduce A → β then

10: pop |β| symbol off the stack ρ
11: stop ← the state on top of stack ρ
12: if stop = – then

13: return ρ
14: end if

15: push GOTO [stop, A] onto the stack ρ
16: return parsde action(ρ, t)
17: end if

18: end procedure

Parsde action : D̂ → Token → D̂ is defined as the natural
set extension of parsde action as follows.

Parsde action = λd̂.λt.{parsde action(ρ, t) | ρ ∈ d̂}

Parsde action is a sound approximation of Parse action .

Proof. For all P ∈ 2P and t ∈ Token , we have

α2P→D̂(Parse action(P, t)) = Parse action(P, t)

= {parse action(p, t) | p ∈ P}
= {parsde action(p, t) | p ∈ P}
= Parsde action(P, t)

= Parsde action(α2P→D̂(P), t).

5.4 Widening Operator on D̂

The termination of the analysis parameterized with D̂ is not guar-
anteed because D̂ has infinite height. Instead of limiting the height
of the domain, we use the widening method to achieve termination.

We define an operator
�

D̂ : D̂ × D̂ → D̂ such that

A
�

D̂ B = {norm(cutk(ρ)) | ρ ∈ A ∪B}
where cutk is defined by

cutk(ρ) =

ρ if |ρ| ≤ k

s1 . . . sk−1– if ρ = s1 . . . sk−1sk . . . sn.

Theorem 2 shows that
�

D̂ is a widening operator on D̂.

Theorem 2.
�

D̂ : D̂ × D̂ → D̂ is a widening operator.

Proof. We have to check if
�

D̂ operator satisfies the widening
conditions [10, 11, 12]:

(i) ∀x, y ∈ D̂.(x � x
�

D̂ y) ∧ (y � x
�

D̂ y).
(ii) for all increasing chains x0 � x1 . . . , the increasing chain

defined by y0 = x0, . . . , yi+1 = yi
�

D̂ xi+1, . . . is not
strictly increasing.

To prove (i), we observe that ρ �P̂ cutk(ρ) by definition of �P̂
and cutk. Using this we get

x = {ρ | ρ ∈ x}
� {cutk(p) | p ∈ x}
� {cutk(p) | p ∈ x ∪ y}
= x

�
D̂y.

Proof for y � x
�

D̂ y is analogous.
To prove (ii), we observe that the range of

�
D̂ operator is the

finite set P̂ � = {ρ ∈ P̂ | |ρ| ≤ k}. For all i ≥ 1, we have
yi ∈ P̂ �. Therefore the increasing chain y0, . . . , yn, . . . is not
strictly increasing.

Using the widening operator
�

D̂ , we define a widening operator
for V̂ = D̂ → D̂, such that

f
�

V̂ g = λd̂.

(
f(d̂)

�
D̂ g(d̂) if ∀ρ ∈ d̂.|ρ| ≤ l

{–} otherwise.

where l is a constant to bound the set of meaningful entries finitely
fixed in the resulting function. For those finite meaningful entries,
we widen their images using the widening

�
D̂ . This

�
V̂ operator

is a widening operator and the analysis using this widening always
terminates.

The analysis using the widening gives better precision than the
one using the domain with finite height, for instance, D̂� = {d̂ ∈
D̂ | |d̂| ≤ k}. The widening approach only restricts the length of
the parse stack at the loop head. In the loop body, it allows arbitrary
length of parse stacks. Let’s consider the following program.

5. Widening

From the property of expand , it is clear that Expand(d̂) �D̂ d̂.
Using the Expand function, we define the Galois connection
2P −−→←−−α

γ
D̂ where

α = id

γ = λd̂.Expand(d̂)

Proof. To prove α and γ constitute a Galois connection, it is
sufficient to show that the following properties hold.
(a) Trivially, α = id is monotone.
(b) Monotonicity of γ is immediate from the monotonicity of

expand .

(c) We show that ∀d̂ ∈ D̂.α ◦ γ(d̂) � d̂.

α ◦ γ(d̂) = γ(d̂)

= Expand(d̂)

� d̂

(d) We show that ∀P ∈ 2P .P ⊆ γ ◦ α(P).

γ ◦ α(P) = γ(P)

= Expand(P)

=
[

p∈P

expand(p)

=
[

p∈P

p

= P

3. We first define parsde action : P̂ → Token → P̂ as in Algo-
rithm 2. It is a modified version of the parse action algorithm.
The only modifications are adding lines 2 – 4 and lines 12 –
14 to handle p̄ ∈ P̄ because the action and goto tables do not
have an entry for the special state ‘–’. Note that ∀p ∈ P.∀t ∈
Token.parse action(p, t) = parsde action(p, t).

Algorithm 2 parsde action algorithm
1: procedure parsde action(ρ, t)
2: if ρ = – then

3: return ρ
4: end if

5: stop ← the state on top of stack ρ
6: if ACTION [stop, t] = shift s then

7: push s onto the stack ρ
8: return ρ
9: else if ACTION [stop, t] = reduce A → β then

10: pop |β| symbol off the stack ρ
11: stop ← the state on top of stack ρ
12: if stop = – then

13: return ρ
14: end if

15: push GOTO [stop, A] onto the stack ρ
16: return parsde action(ρ, t)
17: end if

18: end procedure

Parsde action : D̂ → Token → D̂ is defined as the natural
set extension of parsde action as follows.

Parsde action = λd̂.λt.{parsde action(ρ, t) | ρ ∈ d̂}

Parsde action is a sound approximation of Parse action .

Proof. For all P ∈ 2P and t ∈ Token , we have

α2P→D̂(Parse action(P, t)) = Parse action(P, t)

= {parse action(p, t) | p ∈ P}
= {parsde action(p, t) | p ∈ P}
= Parsde action(P, t)

= Parsde action(α2P→D̂(P), t).

5.4 Widening Operator on D̂

The termination of the analysis parameterized with D̂ is not guar-
anteed because D̂ has infinite height. Instead of limiting the height
of the domain, we use the widening method to achieve termination.

We define an operator
�

D̂ : D̂ × D̂ → D̂ such that

A
�

D̂ B = {norm(cutk(ρ)) | ρ ∈ A ∪B}
where cutk is defined by

cutk(ρ) =

ρ if |ρ| ≤ k

s1 . . . sk−1– if ρ = s1 . . . sk−1sk . . . sn.

Theorem 2 shows that
�

D̂ is a widening operator on D̂.

Theorem 2.
�

D̂ : D̂ × D̂ → D̂ is a widening operator.

Proof. We have to check if
�

D̂ operator satisfies the widening
conditions [10, 11, 12]:

(i) ∀x, y ∈ D̂.(x � x
�

D̂ y) ∧ (y � x
�

D̂ y).
(ii) for all increasing chains x0 � x1 . . . , the increasing chain

defined by y0 = x0, . . . , yi+1 = yi
�

D̂ xi+1, . . . is not
strictly increasing.

To prove (i), we observe that ρ �P̂ cutk(ρ) by definition of �P̂
and cutk. Using this we get

x = {ρ | ρ ∈ x}
� {cutk(p) | p ∈ x}
� {cutk(p) | p ∈ x ∪ y}
= x

�
D̂y.

Proof for y � x
�

D̂ y is analogous.
To prove (ii), we observe that the range of

�
D̂ operator is the

finite set P̂ � = {ρ ∈ P̂ | |ρ| ≤ k}. For all i ≥ 1, we have
yi ∈ P̂ �. Therefore the increasing chain y0, . . . , yn, . . . is not
strictly increasing.

Using the widening operator
�

D̂ , we define a widening operator
for V̂ = D̂ → D̂, such that

f
�

V̂ g = λd̂.

(
f(d̂)

�
D̂ g(d̂) if ∀ρ ∈ d̂.|ρ| ≤ l

{–} otherwise.

where l is a constant to bound the set of meaningful entries finitely
fixed in the resulting function. For those finite meaningful entries,
we widen their images using the widening

�
D̂ . This

�
V̂ operator

is a widening operator and the analysis using this widening always
terminates.

The analysis using the widening gives better precision than the
one using the domain with finite height, for instance, D̂� = {d̂ ∈
D̂ | |d̂| ≤ k}. The widening approach only restricts the length of
the parse stack at the loop head. In the loop body, it allows arbitrary
length of parse stacks. Let’s consider the following program.

A. Define widening on �D

B. Define widening on

From the property of expand , it is clear that Expand(d̂) �D̂ d̂.
Using the Expand function, we define the Galois connection
2P −−→←−−α

γ
D̂ where

α = id

γ = λd̂.Expand(d̂)

Proof. To prove α and γ constitute a Galois connection, it is
sufficient to show that the following properties hold.
(a) Trivially, α = id is monotone.
(b) Monotonicity of γ is immediate from the monotonicity of

expand .

(c) We show that ∀d̂ ∈ D̂.α ◦ γ(d̂) � d̂.

α ◦ γ(d̂) = γ(d̂)

= Expand(d̂)

� d̂

(d) We show that ∀P ∈ 2P .P ⊆ γ ◦ α(P).

γ ◦ α(P) = γ(P)

= Expand(P)

=
[

p∈P

expand(p)

=
[

p∈P

p

= P

3. We first define parsde action : P̂ → Token → P̂ as in Algo-
rithm 2. It is a modified version of the parse action algorithm.
The only modifications are adding lines 2 – 4 and lines 12 –
14 to handle p̄ ∈ P̄ because the action and goto tables do not
have an entry for the special state ‘–’. Note that ∀p ∈ P.∀t ∈
Token.parse action(p, t) = parsde action(p, t).

Algorithm 2 parsde action algorithm
1: procedure parsde action(ρ, t)
2: if ρ = – then

3: return ρ
4: end if

5: stop ← the state on top of stack ρ
6: if ACTION [stop, t] = shift s then

7: push s onto the stack ρ
8: return ρ
9: else if ACTION [stop, t] = reduce A → β then

10: pop |β| symbol off the stack ρ
11: stop ← the state on top of stack ρ
12: if stop = – then

13: return ρ
14: end if

15: push GOTO [stop, A] onto the stack ρ
16: return parsde action(ρ, t)
17: end if

18: end procedure

Parsde action : D̂ → Token → D̂ is defined as the natural
set extension of parsde action as follows.

Parsde action = λd̂.λt.{parsde action(ρ, t) | ρ ∈ d̂}

Parsde action is a sound approximation of Parse action .

Proof. For all P ∈ 2P and t ∈ Token , we have

α2P→D̂(Parse action(P, t)) = Parse action(P, t)

= {parse action(p, t) | p ∈ P}
= {parsde action(p, t) | p ∈ P}
= Parsde action(P, t)

= Parsde action(α2P→D̂(P), t).

5.4 Widening Operator on D̂

The termination of the analysis parameterized with D̂ is not guar-
anteed because D̂ has infinite height. Instead of limiting the height
of the domain, we use the widening method to achieve termination.

We define an operator
�

D̂ : D̂ × D̂ → D̂ such that

A
�

D̂ B = {norm(cutk(ρ)) | ρ ∈ A ∪B}
where cutk is defined by

cutk(ρ) =

ρ if |ρ| ≤ k

s1 . . . sk−1– if ρ = s1 . . . sk−1sk . . . sn.

Theorem 2 shows that
�

D̂ is a widening operator on D̂.

Theorem 2.
�

D̂ : D̂ × D̂ → D̂ is a widening operator.

Proof. We have to check if
�

D̂ operator satisfies the widening
conditions [10, 11, 12]:

(i) ∀x, y ∈ D̂.(x � x
�

D̂ y) ∧ (y � x
�

D̂ y).
(ii) for all increasing chains x0 � x1 . . . , the increasing chain

defined by y0 = x0, . . . , yi+1 = yi
�

D̂ xi+1, . . . is not
strictly increasing.

To prove (i), we observe that ρ �P̂ cutk(ρ) by definition of �P̂
and cutk. Using this we get

x = {ρ | ρ ∈ x}
� {cutk(p) | p ∈ x}
� {cutk(p) | p ∈ x ∪ y}
= x

�
D̂y.

Proof for y � x
�

D̂ y is analogous.
To prove (ii), we observe that the range of

�
D̂ operator is the

finite set P̂ � = {ρ ∈ P̂ | |ρ| ≤ k}. For all i ≥ 1, we have
yi ∈ P̂ �. Therefore the increasing chain y0, . . . , yn, . . . is not
strictly increasing.

Using the widening operator
�

D̂ , we define a widening operator
for V̂ = D̂ → D̂, such that

f
�

V̂ g = λd̂.

(
f(d̂)

�
D̂ g(d̂) if ∀ρ ∈ d̂.|ρ| ≤ l

{–} otherwise.

where l is a constant to bound the set of meaningful entries finitely
fixed in the resulting function. For those finite meaningful entries,
we widen their images using the widening

�
D̂ . This

�
V̂ operator

is a widening operator and the analysis using this widening always
terminates.

The analysis using the widening gives better precision than the
one using the domain with finite height, for instance, D̂� = {d̂ ∈
D̂ | |d̂| ≤ k}. The widening approach only restricts the length of
the parse stack at the loop head. In the loop body, it allows arbitrary
length of parse stacks. Let’s consider the following program.

56

{s1s2s3}�D̂ {s4s1s2s3} = {s1s2s3, s4s1−}
Example

/6257

s1: S -> . E s3: E -> id .

s5: E -> or . E E

s8: S -> E .

s10: E -> or E . E

s14: E -> or E E .

id

or

E

id

E

id

or

E
or

Instantiation of
 : Abstract Parsing Stack with k-cutting

D�

�D

re x (`or . ,x) (`,x . b)• Example: k = 3

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0{σ0}

= {a b, or a b, or or a b, or or or a b, . . . }

e ∈ Exp ::= x | let x e1 e2 | or e1 e2 | re x e1 e2 e3

[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= (λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a)� k ◦PA(P, or)))){s1}

[[re x ‘a (‘or . ,x) (‘,x . b)]]0D̂σ0{s1}

= (λP. cPA(P, b) ◦ (fixλk.λP.(cPA(P, a)� k ◦ cPA(P, or)))){s1}

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative
Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-
ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium
on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional
Programming, pages 275–286. ACM, August 2003.

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0{σ0}

= {a b, or a b, or or a b, or or or a b, . . . }

e ∈ Exp ::= x | let x e1 e2 | or e1 e2 | re x e1 e2 e3

[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= (λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a)� k ◦PA(P, or)))){s1}

[[re x ‘a (‘or . ,x) (‘,x . b)]]0D̂σ0{s1}

= (λP. cPA(P, b) ◦ (fixλk.λP.(cPA(P, a)� k ◦ cPA(P, or)))){s1}

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative
Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-
ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium
on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional
Programming, pages 275–286. ACM, August 2003.

{s1} �→ {s8s1}
{s5s1} �→ {s10s5s1}

{s5s5s1} �→ {s5s5−}

1st iteration

/6258

s1: S -> . E s3: E -> id .

s5: E -> or . E E

s8: S -> E .

s10: E -> or E . E

s14: E -> or E E .

id

or

E

id

E

id

or

E
or

Instantiation of
 : Abstract Parsing Stack with k-cutting

D�

�D

re x (`or . ,x) (`,x . b)• Example: k = 3

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0{σ0}

= {a b, or a b, or or a b, or or or a b, . . . }

e ∈ Exp ::= x | let x e1 e2 | or e1 e2 | re x e1 e2 e3

[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= (λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a)� k ◦PA(P, or)))){s1}

[[re x ‘a (‘or . ,x) (‘,x . b)]]0D̂σ0{s1}

= (λP. cPA(P, b) ◦ (fixλk.λP.(cPA(P, a)� k ◦ cPA(P, or)))){s1}

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative
Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-
ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium
on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional
Programming, pages 275–286. ACM, August 2003.

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0{σ0}

= {a b, or a b, or or a b, or or or a b, . . . }

e ∈ Exp ::= x | let x e1 e2 | or e1 e2 | re x e1 e2 e3

[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= (λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a)� k ◦PA(P, or)))){s1}

[[re x ‘a (‘or . ,x) (‘,x . b)]]0D̂σ0{s1}

= (λP. cPA(P, b) ◦ (fixλk.λP.(cPA(P, a)� k ◦ cPA(P, or)))){s1}

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative
Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-
ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium
on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional
Programming, pages 275–286. ACM, August 2003.

{s5s5s1} �→ {s5s5−,−}

2nd iteration

{s1} �→ {s8s1, s10s5−}
{s5s1} �→ {s10s5s1, s5s5−,−}

/6259

s1: S -> . E s3: E -> id .

s5: E -> or . E E

s8: S -> E .

s10: E -> or E . E

s14: E -> or E E .

id

or

E

id

E

id

or

E
or

Instantiation of
 : Abstract Parsing Stack with k-cutting

D�

�D

re x (`or . ,x) (`,x . b)• Example: k = 3

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0{σ0}

= {a b, or a b, or or a b, or or or a b, . . . }

e ∈ Exp ::= x | let x e1 e2 | or e1 e2 | re x e1 e2 e3

[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= (λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a)� k ◦PA(P, or)))){s1}

[[re x ‘a (‘or . ,x) (‘,x . b)]]0D̂σ0{s1}

= (λP. cPA(P, b) ◦ (fixλk.λP.(cPA(P, a)� k ◦ cPA(P, or)))){s1}

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative
Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-
ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium
on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional
Programming, pages 275–286. ACM, August 2003.

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0{σ0}

= {a b, or a b, or or a b, or or or a b, . . . }

e ∈ Exp ::= x | let x e1 e2 | or e1 e2 | re x e1 e2 e3

[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= (λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a)� k ◦PA(P, or)))){s1}

[[re x ‘a (‘or . ,x) (‘,x . b)]]0D̂σ0{s1}

= (λP. cPA(P, b) ◦ (fixλk.λP.(cPA(P, a)� k ◦ cPA(P, or)))){s1}

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative
Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-
ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium
on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional
Programming, pages 275–286. ACM, August 2003.

{s5s5s1} �→ {s5s5−,−}

3rd iteration

{s5s1} �→ {s10s5s1, s5s5−,−}

{s1} �→ {s8s1, s10s5s1, s5s5−,−}

/6260

s1: S -> . E s3: E -> id .

s5: E -> or . E E

s8: S -> E .

s10: E -> or E . E

s14: E -> or E E .

id

or

E

id

E

id

or

E
or

Instantiation of
 : Abstract Parsing Stack with k-cutting

D�

�D

re x (`or . ,x) (`,x . b)• Example: k = 3

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0{σ0}

= {a b, or a b, or or a b, or or or a b, . . . }

e ∈ Exp ::= x | let x e1 e2 | or e1 e2 | re x e1 e2 e3

[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= (λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a)� k ◦PA(P, or)))){s1}

[[re x ‘a (‘or . ,x) (‘,x . b)]]0D̂σ0{s1}

= (λP. cPA(P, b) ◦ (fixλk.λP.(cPA(P, a)� k ◦ cPA(P, or)))){s1}

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative
Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-
ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium
on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional
Programming, pages 275–286. ACM, August 2003.

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold
k = 2 to analyze the program without precision loss. In the loop
body, the length of parse stack increases from one to seven. At the
end of the loop body, however, the parser reduces the parse stack
and its length becomes two. Since the maximum length of the parse
stack at the loop head is two and the widening only occurs at the
loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we
will lose precision while analyzing the loop body. A parse stack
with special state ‘–’ at the bottom will be introduced. To be as
precise as the one using the widening approach, we need to increase
k to seven.

6. Related Work
In this section, we discuss several areas of related work: multi-
staged languages, string analysis, string verification, and code gen-
eration.

Multi-staged Languages According to Sheard [24], there are
three representations for code in multi-staged languages – quasi-
quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve in-
ternal structure of the code and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for
multi-staged languages are reported [2, 4, 5, 6, 13, 14, 15, 21, 22,
23, 25]. The static type system has been matured [18] to support
almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal
structure of the code and opens the syntactic safety problem. Even
if string representation is strongly discouraged in the research com-
munity [24], it is used in most web-programming or scripting lan-
guages such as PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing
technique [16], string analysis works [8, 19, 7] were all “analyze-
then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the
set of generated strings in a program into a regular grammar and
performs a grammar inclusion check between the regular gram-
mar and the reference grammar, which is a context-free grammar
(CFG). Precision loss occurs when the generated strings are ab-
stracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-
free reference grammar is abstracted into a regular grammar by re-
stricting the nesting depth of generated strings. The set of generated
strings is abstracted into a context-free grammar. Then a grammar
inclusion check is performed between the regular grammar and the
context-free grammar. This approach is practical for HTML/XML
document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string anal-
ysis which uses a heuristic widening method and overcomes the
difficulties of handling heap variables and context sensitivity. How-
ever, using a regular grammar as an abstraction results in precision
loss.

String Verification String analysis techniques are used as a basis
in string verification. Christodorescu et al. [9] and Wassermann et
al. [26] present string verifiers based on the Christensen et al.’s
string analysis [8]. Wassermann and Su [27] and Minamide and
Tozawa [20] present string verifiers based on the Minamide’s string
analysis [19].

Code Generation There are many researches to achieve syntax
safety of generated code other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe
code. Having the grammar for the template, it statically checks the
template and its sub-templates to detect possible syntactic errors
in the generated code. However, it still requires evaluating the
template with the model to guarantee the generated code is syntax
safe.

Engler et al. presents ‘C [17], an extension of ANSI C which
allows dynamic code generation. They employ a version of quasi-
quote system and type annotation to achieve a type safety in the
generated code. This setting does not allow the generated code to
have a syntactic error.

7. Conclusion
We have presented a static analysis technique for checking the syn-
tax of generated code in two-staged languages with concatenation.
Formulating abstract parsing in the abstract interpretation frame-
work, we derive abstract semantics which is composed by atomic
parse stack transition functions defined in LR(k) parser. This for-
mulation not only gives us a more concise and elegant explanation
of the original idea but also decouples the core idea of abstract pars-
ing from its implementation. The provided framework allows us to
choose the abstract domain of abstract parsing and control the pre-
cision and cost of analysis.

8. TEMP
[[re x ‘a (‘or . ,x) (‘,x . b)]]0{σ0}

= {a b, or a b, or or a b, or or or a b, . . . }

e ∈ Exp ::= x | let x e1 e2 | or e1 e2 | re x e1 e2 e3

[[re x ‘a (‘or . ,x) (‘,x . b)]]0P̂ σ0{s1}

= (λP.PA(P, b) ◦ (fixλk.λP.(PA(P, a)� k ◦PA(P, or)))){s1}

[[re x ‘a (‘or . ,x) (‘,x . b)]]0D̂σ0{s1}

= (λP. cPA(P, b) ◦ (fixλk.λP.(cPA(P, a)� k ◦ cPA(P, or)))){s1}

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] D. Ancona and E. Moggi. A fresh calculus for name management.
In Proceedings of the International Conference on Generative
Programming and Component Engineering, October 2004.

[3] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a
syntax-safe template engine. In Proceedings of the International Con-
ference on Generative Programming and Component Engineering,
pages 25–32, New York, NY, USA, 2007. ACM.

[4] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[5] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium
on Programming, pages 79–93. Springer, 2004.

[6] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ACM International Conference on Functional
Programming, pages 275–286. ACM, August 2003.

4th iteration

Fixed Point!

{s5s5s1} �→ {s5s5−,−}

{s5s1} �→ {s10s5s1, s5s5−,−}

{s1} �→ {s8s1, s10s5s1, s5s5−,−}

/62

• We formalize and generalize abstract parsing in
the abstract interpretation framework.

• Apply abstract parsing to the two-staged
languages.

Conclusion

61

However the following program generates “a” (after zero itera-
tions), “(or a b)” (after one iteration), “(or (or a b) b)” (af-
ter two iterations), and so on,

re x ‘a ‘(or . ,x . b) x

and all of them are syntactically correct.

2.3 Collecting Semantics and its Abstraction Plan
The collecting semantics of the language is defined as follows. This
semantics is the natural set extension for the sets of environments.
The fix operator is the usual least fixpoint operator to capture all
the iteration results from loops.

Code = Token sequence

σ ∈ Env = Var → Code

[[e]]0 ∈ 2Env → 2Code

[[f]]1 ∈ 2Env → 2Code

[[x]]0Σ = {σ(x) | σ ∈ Σ}

[[let x e1 e2]]
0Σ =

[

σ∈Σ

[

c∈[[e1]]0{σ}

[[e2]]
0{σ[x �→ c]}

[[or e1 e2]]
0Σ = [[e1]]

0Σ ∪ [[e2]]
0Σ

[[re x e1 e2 e3]]
0Σ =

[

σ∈Σ

[[e3]]
0{σ[x �→ c] | c ∈

fixλC.[[e1]]
0{σ} ∪ [[e2]]

0{σ[x �→ c�] | c� ∈ C}}
[[‘f]]0Σ = [[f]]1Σ

[[x]]1Σ = {x}
[[let]]1Σ = {let}
[[or]]1Σ = {or}
[[re]]1Σ = {re}
[[(]]1Σ = {(}
[[)]]1Σ = {)}

[[f1.f2]]
1Σ =

[

σ∈Σ

{xy | x ∈ [[f1]]
1{σ} ∧ y ∈ [[f2]]

1{σ}}

[[,e]]1Σ = [[e]]0Σ

From the collecting semantics above, we derive a series of ab-
stract semantics. From the collecting semantics’ semantic domain

2Var→Code → 2Code ,

the powerset environment 2Var→Code is abstracted into Var →
2Code , i.e., the semantic domain becomes

(Var → 2Code)→ 2Code .

Now the abstraction of 2Code becomes the essential part of the ab-
stract interpretation design. Before we abstract 2Code , we formu-
late a code fragment as a function that maps a parse stack to a parse
stack. We call this formulation “concrete parsing” (Section 3). That
is, 2Code becomes 2P→P (where P is the set of parse stacks). Then
we abstract 2P→P into 2P → 2P (Section 4). Lastly, we present
an abstract-parsing abstract interpretation that parameterizes an ab-
stract domain D� of 2P .

In summary, this series of abstraction steps for the value domain
in the semantics is:

2Code

−→

2P → 2P2P→P D� → D�

−→ −→Collecting
Semantics

Concrete
Parsing

Semantics

First Step
Abstraction
Semantics

Parameterized
Abstract
Parsing

Semantics

3. Concrete Parsing
3.1 Analyze-and-parse Strategy
We take the analyze-and-parse strategy in abstract parsing [16] into
our semantics. The semantics simulates the parsing operations. It
is compared to the analyze-then-parse strategy which analyzes the
program, calculates approximated set of code, then parses them.

Analyze-and-parse strategy is more efficient than analyze-then-
parse strategy as reported in [16]. In analyze-then-parse strategy,
code is abstracted into a grammar. Then it checks whether the
abstracted grammar is included in the reference grammar or not.
However, grammar inclusion check is more expensive than parsing.
In addition, analyze-and-parse directly computes parsing informa-
tion without approximating the code into the grammar.

We formulate the analyze-and-parse strategy in our semantics.
The parsing domain is constructed as an abstract domain where
code is abstracted into parsing information. We abstract the parsing
domain into an abstract parsing domain to control the precision and
cost of analysis and to make sure the analysis terminates.

Since our semantics uses an LR(k) parser as a component, it is
essential to review its key concepts.

3.2 LR Parsing
The LR(k) parsing technique [1] is an efficient way to determine
whether the string conforms to the given grammar or not. An LR
parser is a state machine which consists of a parse stack, an action
table, and a goto table. The set of parse states Σ = {s1, s2, . . . , sn}
is defined by parser generator from the given grammar. Parse stack
p ∈ P = Σ+ is a sequence of parse states which it has been in.
Two special parse stacks pinit and pacc are defined. Parsing starts
with the initial parse stack pinit . Successful parsing should stop at
the accept parse stack pacc . Otherwise it indicates that the parsed
string does not conform to the given grammar. String representation
“stop . . . sbot” denotes a parse stack whose top state is stop and
bottom state is sbot. The action table decides which operation
(shift/reduce) to perform from the current state and current token.
The goto table determines the state to push after we pop states in
the reduce operation.

The process of parsing is a composition of the atomic function
parse action : P → Token → P which is described in Algo-
rithm 1. It returns the parse stack from the given parse stack p and
input token t.

Algorithm 1 parse action algorithm
1: procedure parse action(p, t)
2: stop ← the state on top of stack p
3: if ACTION [stop, t] = shift s then
4: push s onto the stack p
5: return p
6: else if ACTION [stop, t] = reduce A→ β then
7: pop |β| symbol off the stack p
8: stop ← the state on top of stack p
9: push GOTO [stop, A] onto the stack p

10: return parse action(p, t)
11: end if
12: end procedure

Abstraction Steps for the Value Domain

/62

Thank you

62

