
Survey on
Malware Detection on Binary

2009. 7. 9~11

Hyunik Na
PLLab @ KAIST

ROSAEC 2nd Workshop

Contents

n Introduction
q Semantics approach to malware detection
q Theoretical Limit in handling program semantics

n Two Existing Works Based on Semantics Signature
q Template based
q Model checking based

n Our Interest and Direction
n Q & A

ROSAEC 2nd Workshop 2

Malware Detection

n What is malware?
q Software containing malicious code

n e.g. Virus, Worm, Trojan, Back door, Spyware

q Spread through executable, script, or document, etc.

n Conventional malware detection
q Syntactic (bit-pattern) signature matching
q State of the art for most commercial detectors

ROSAEC 2nd Workshop 3

E800 0000 005B 8D4B 4251 5050
0F01 4C24 FE5B 83C3 1CFA 8B2B

E8 00000000 call 0h
5B pop ebx
8D 4B 42 lea ecx, [ebx+42h]
51 push ecx
50 push eax
50 push eax
… …
8B 2B mov ebp, [ebx]

a bit-pattern in
Chernobyl/CIH virus

Malwares Are Obfuscating

n Obfuscating Methods
q dead code insertion
q code transposition
q register reassignment
q instruction substitution

n More powerful generation: polymorphic virus
q Morphs every time it infects another program

n Failure of famous commercial detectors
q Norton®, McAfee®, Command® (Christodorescu03)

n So, new Semantics (Behavioral) approach is required
q What they do will not change even after the obfuscations

ROSAEC 2nd Workshop 4

Ideal Solution

n Can we decide the following?

n Unfortunately, no (Rice theorem)

n So, we have to find meaningful sub-domain of the problem or a
inaccurate but sound solution

ROSAEC 2nd Workshop 5

Two programs P and Q do the same things

Whether a program’s behavior satisfies a nontrivial
property or not è Undecidable

Current Approaches

ROSAEC 2nd Workshop 6

Semantic

Signature
(S)

malware
(M)

suspicious
program (P)

manually extract

check if P╞ S

Template-based

or

CTL-based

Template-based Approach

n Christodorescu et al, 2005

n Template
q A Simple programming language with instruction, variable and symbolic

constants
q Expressive enough to describe the behavior of a binary program

n Assignment to variable
n Memory read/write
n Unary/Binary operations
n Jump, Branch

n Def-use path for a template variable A
q A possible execution path (ND, N1, N2, N3, …, Nk, NU) s.t.

n A is defined in node ND and used in NU

n N1, N2, N3, …, Nk do not redefine A

ROSAEC 2nd Workshop 7

Template-based Approach

ROSAEC 2nd Workshop 8

B = const_addr2

A = const_addr1

B = B + d

A = A + c

mem[B] = mem[A] ^ key

A > const_addr3

jump const_addr2

true

false

e.g.
n Def-use path for A

n (1,2,3)
n (1,2,3,4)
n (5,6,3)
n (5,6,3,4)

4

5

1

3

2

6

7

Template-based Approach

n Definition of P╞ T
q Cond. 1 : If template updates a memory location, program also updates

there with the same value
q Cond. 2 : Program’s event sequence subsumes Template’s
q Cond. 3 : If template ends at updated memory area, program does too

ROSAEC 2nd Workshop 9

Template-based Approach

n The algorithm
q First, tries to unify template and program nodes
q Then, check value preservation on def-use paths

n Two program expressions unified to a template variable on the ends of a path
have the same value

n By Decision procedure; identifying actual nop, symbolic execution, theorem
proving

n They prove this is sound to prove that ‘P╞ T’

ROSAEC 2nd Workshop 10

Template-based Approach

ROSAEC 2nd Workshop 11

B = const_addr2

A = const_addr1

B = B + d

A = A + c

mem[B] = mem[A] ^ key

A > const_addr3

jump const_addr2

true

false

ecx = eax + 1

nop

ebx = 0x400000

eax = 0x403000

ebx = ebx + 2

eax = eax + 1

mem[ebx] = mem[eax] ^ 5

eax = ecx - 1

ecx – 1 > 0x406000

jump 0x400000

true

false

CTL-based (model checking) Approach

n Kinder et al, 2005

n See a binary executable as a Kripke system, and use CTL variation
to describe and check malicious behavior

n Kripke system : finite state automata labeled with propositions
q triple <S,R,L> and set of propositions P
q S : set of states
q R : subset of S * S, transitions
q L : S à 2P , called labeling function

n If p is in L(S), then we say ‘p is satisfied in S’

ROSAEC 2nd Workshop 12

CTL-based (model checking) Approach

n Kinder et al, 2005

n View a binary executable as a Kripke system

n Kripke system :
q finite state automata labeled with sets of predicates
q triple <S,R,L> and a set of predicates P

n S : states
n R : subset of S*S, transitions
n L : S à 2P, labeling function

q If a predicate p(r1,r2,…,rn) ∊ L(s), then we say ‘p(r1,r2,…,rn) is
satisfied in state s’

ROSAEC 2nd Workshop 13

CTL-based (model checking) Approach

n View a binary executable as a Kripke system
q S : instructions
q R : control flows
q P : obtained from each instruction

n Instruction opcode à predicate name
n Instruction operand à predicate operand
n e.g. cmp ebx, [bp-4] à cmp(ebx, [bp-4])

n Then, use CTL to describe and check malicious behavior
q Use CTL temporal operators: A, E, X, F, G, U
q Allow quantifiers ∀, ∃ for predicate operands

ROSAEC 2nd Workshop 14

EF(mov(eax,937) ∧ AF(push(eax)) ∨

EF(mov(ebx,937) ∧ AF(push(ebx)) ∨

EF(mov(ecx,937) ∧ AF(push(ecx))

∃r. EF(mov(r,937) ∧
AF(push(r))

CTL-based (model checking) Approach

n Examples
q “Set a register to 0 and push this onto the stack in the next instruction”

à ∃r. EF(mov(r,0) ∧ EX(push(r))

q “Set a register to 0 and push this onto the stack in the future instruction”
à ∃r. EF(mov(r,0) ∧ EF(push(r))

q “In the above, disallow intermediate update of r until push”
à ∃r. EF(mov(r,0) ∧ E(¬∃t.mov(r,t) U push(r)))

ROSAEC 2nd Workshop 15

CTL-based (model checking) Approach

ROSAEC 2nd Workshop 16

<A CTL formula corresponding to Klez.h infection routine>

Our Interest and Direction

n Our Interest
q Checking arbitrary program semantics
q What is not my interest

n specific behaviors of some malwares

n Our Direction
q Further improvement of existing solutions?

n Flaws in the definition of template behavior containment
n More effective and concise way of expressing specification and dependency

in model checking approach
n Optimize. Improve performance and scalability of existing solutions

q Automatic or computer-aided semantic signature extraction

q Or …

ROSAEC 2nd Workshop 17

Our Hope?

n Restricting the domain and find meaningful sub-problem
q E.g. can we state program semantics elegantly if we use well-designed

programming language?
n Like the case of Termination Analysis

q Automatic semantics extraction

ROSAEC 2nd Workshop 18

Quick Sort Algorithm Bubble Sort Algorithm

Pre-condition:

Inputs <a1,a2,a3,… an> are integers

Post-condition:

Outputs <b1,b2,b3,… bn> are sorted permutation of input

Semantics extracted automatically

So, we can safely conclude they do the same thing

Thank you
Q & A

ROSAEC 2nd Workshop 19

CTL-based (model checking) Approach

n A trick to express dependency or order
q For a label L, use #loc(L) predicates

n Example
q “Call a function that takes two parameters, where the second one takes

0”
à ∃L.∃r2. (EF(mov(r2,0) ∧ EF#loc(L)) ∧

∃r1. EF(push(r1) ∧EF(push(r2) ∧ #loc(L)∧EF(call(func)))))

ROSAEC 2nd Workshop 20

C: push r2 & #loc(L)

A or B: push r1 B or A : mov r2,
0

A B C

