Survey on
Malware Detection on Binary

Hyunik Na
PLLab @ KAIST

ROSAEC 2nd Workshop
2009. 7. 9~11

Contents

Introduction

0 Semantics approach to malware detection

o Theoretical Limit in handling program semantics

Two Existing Works Based on Semantics Signature
o Template based

o Model checking based

Our Interest and Direction
Q&A

ROSAEC 2nd Workshop

Malware Detection

What is malware?

o Software containing malicious code
e.g. Virus, Worm, Trojan, Back door, Spyware

o Spread through executable, script, or document, etc.

Conventional malware detection
o Syntactic (bit-pattern) signature matching
o State of the art for most commercial detectors

e a bit-pattern in

E8 00000000 call Oh

5B pop ebx Chernobyl/CIH virus
8D 4B 42 lea ecx, [ebx+42h]
51 push ecx E800 0000 005B 8D4B 4251 5050
50 push eax OF01 4C24 FESB 83C3 1CFA 8B2B
50 push eax

\\fB 2B mov ebp, [ebx] 4//;////’

ROSAEC 2nd Workshop

Malwares Are Obfuscating

Obfuscating Methods
o dead code insertion

0 code transposition

o register reassignment
o instruction substitution

More powerful generation: polymorphic virus
o Morphs every time it infects another program

Failure of famous commercial detectors
o Norton®, McAfee®, Command® (Christodorescu03)

So, new Semantics (Behavioral) approach is required
o What they do will not change even after the obfuscations

ROSAEC 2nd Workshop

|deal Solution

Can we decide the following?

[Two programs P and Q do the same things]

Unfortunately, no (Rice theorem)

Whether a program’s behavior satisfies a nontrivial
property or not = Undecidable

So, we have to find meaningful sub-domain of the problem or a
inaccurate but sound solution

ROSAEC 2nd Workshop

Current Approaches

manually extract

g)

Semantic

(M)

malware
or

} | Template-based

Signature

&) . CTL-based

check ifP S

Q.)
suspicious
program (P)

ROSAEC 2nd Workshop

Template-based Approach

Christodorescu et al, 2005

Template

o A Simple programming language with instruction, variable and symbolic
constants
o Expressive enough to describe the behavior of a binary program
Assignment to variable
Memory read/write
Unary/Binary operations
Jump, Branch

Def-use path for a template variable A
o A possible execution path (Np, N4, N,, N, ..., N, N) s.t.

A is defined in node Ny and used in N,
N4, Ny, N3, ..., N, do not redefine A

ROSAEC 2nd Workshop

Template-based Approach

1

©.9. A = const_addr1

2

v

B = const_addr2

3

\ 4

A > const_addr3

4

A 4

false

mem([B] = mem[A] * key

5 v
A=A+c
6 v
B=B+d
7 v

jump const_addr2

ROSAEC 2nd Workshop

true

Def-use path for A
(1,2,3)
(1,2,3,4)
(5,6,3)
(5,6,3,4)

Template-based Approach

Definition of P T

o Cond. 1 : If template updates a memory location, program also updates
there with the same value

o Cond. 2 : Program’s event sequence subsumes Template’s
o Cond. 3 : If template ends at updated memory area, program does too

ROSAEC 2nd Workshop

Template-based Approach

The algorithm

o First, tries to unify template and program nodes
o Then, check value preservation on def-use paths

Two program expressions unified to a template variable on the ends of a path
have the same value

By Decision procedure; identifying actual nop, symbolic execution, theorem
proving

They prove this is sound to prove that ‘P F T’

ROSAEC 2nd Workshop 10

A = const_addr1

y

B = const_addr2

A 4

A > const_addr3

false

A 4

mem[B] = mem[A] * key

v
A=A+c

v
B=B+d

v

jump const_addr2

ROSAEC 2nd Workshop

true

Template-based Approach

11 1 1

eax = 0x403000

v
ebx = 0x400000
v
nop
v
ecx = eax + 1
v
ecx — 1 > 0x406000
v false
eax = ecx - 1
v
mem[ebx] = mem[eax] * 5
v
eax =eax + 1
v
ebx = ebx + 2
v
jump 0x400000

true

11

CTL-based (model checking) Approach

Kinder et al, 2005

See a binary executable as a Kripke system, and use CTL variation

to describe and check malicious behavior

Kripke system : finite state automata labeled with propositions
o triple <S,R,L> and set of propositions P

0 S :setof states

o R:subsetof S * S, transitions

a

L :S > 2P, called labeling function
If pisin L(S), then we say ‘p is satisfied in S’

ROSAEC 2nd Workshop

12

CTL-based (model checking) Approach

Kinder et al, 2005
View a binary executable as a Kripke system

Kripke system :
o finite state automata labeled with sets of predicates
o triple <S,R,L> and a set of predicates P

S : states

R : subset of S*S, transitions
L : S > 2P, labeling function

o If a predicate p(ry,r,,....r,) € L(s), then we say ‘p(r,,r,...

satisfied in state s’

ROSAEC 2nd Workshop

) is

13

CTL-based (model checking) Approach

View a binary executable as a Kripke system
o S :instructions
o R :control flows

o P : obtained from each instruction
Instruction opcode - predicate name
Instruction operand - predicate operand
e.g. cmp ebx, [bp-4] - cmp(ebx, [bp-4])

Then, use CTL to describe and check malicious behavior
o Use CTL temporal operators: A, E, X, F, G, U
o Allow quantifiers V', 3 for predicate operands

EF(mov(eax,937) A AF(push(eax)) V

EF(mov(ebx,937) A AF(push(ebx)) vV | T [ar. EF(mov(r,937) A

EF(mov(ecx,937) A AF(push(ecx)) AF{pushi(r))

ROSAEC 2nd Workshop

14

CTL-based (model checking) Approach

Examples

“Set a register to 0 and push this onto the stack in the next instruction”
3 r. EF(mov(r,0) A EX(push(r))

o “Set a register to 0 and push this onto the stack in the future instruction”
3r. EF(mov(r,0) N EF(push(r))

o “In the above, disallow intermediate update of r until push”
- dr. EF(mov(r,0) A E(~Jt.mov(r,t) U push(r)))

ROSAEC 2nd Workshop 15

CTL-based (model checking) Approach

AL m3LeFvrie(
3"3'{33?‘134{@31}13(‘{}(
EF(lea(ro, vrie) N EX E(—3t(mov(ry,t) V 1lea(ro,t)))U#loc(Lg))A
EF (mov(r1,0) A EX E(—3t(mov(ry,t) V lea(ry, t)))U#loc(Lq1))A
EF (push(co) A EX E(—3#(push(t) V pop(t)))
U(push(ro) A #loc(Lo) A EX E(—3t(push(t) V pop(t)))
U(push(ry) A #loc(L1) A EX E(—3t(push(t) V pop(t)))
U(call(GetModuleFileNameA) A #loc(L,,)))))
)
!’\(3?‘{}31;1](
EF (lea(ro, vpie) N EX E(=3t(mov(rg,t) V 1lea(ro,t)))U#loc(Lo))A
EF (push(rg) A #loc(Lo) AN EX E(—3t(push(t) V pop(t)))
U(call(CopyFileA) A #loc(L.)))
)
AEF (#loc(Lm) A EF#loc(L.))

<A CTL formula corresponding to Klez.h infection routine>

ROSAEC 2nd Workshop

Our Interest and Direction

Our Interest
o Checking arbitrary program semantics

o What is not my interest
specific behaviors of some malwares

Our Direction

o Further improvement of existing solutions?
Flaws in the definition of template behavior containment

More effective and concise way of expressing specification and dependency
in model checking approach

Optimize. Improve performance and scalability of existing solutions

o Automatic or computer-aided semantic signature extraction

o Or...

ROSAEC 2nd Workshop 17

Our Hope?

Restricting the domain and find meaningful sub-problem

o E.g. can we state program semantics elegantly if we use well-designed
programming language?
Like the case of Termination Analysis

o Automatic semantics extraction

[Quick Sort Algorithm } [Bubble Sort Algorithm]

\ /

b

re-condition;

Inputs <a,,a,,a,,... a,> are integers

Post-condition:

_ Outputs <b,,b,,b,,... b > are sorted permutation of input)

Semantics extracted automatically

So, we can safely conclude they do the same thing

ROSAEC 2nd Workshop 18

ROSAEC 2nd Workshop

Thank you
Q&A

19

CTL-based (model checking) Approach

A trick to express dependency or order
o Foralabel L, use #loc(L) predicates

Example

o “Call a function that takes two parameters, where the second one takes
O”

JL.3r2. (EF(mov(r2,0) N EF#loc(L)) N
3r1. EF(push(r1) AEF(push(r2) N #loc(L) N EF(call(func)))))

A B C [AorB push r1 BorA mov r2,]

\ £

C push r2 & #loc(L)

ROSAEC 2nd Workshop 20

