
Context Sensitive Pointer Analysis
with Hash-Consed Forest

2009. 7. 9~11

Woongsik Choi
KAIST

ROSAEC 2nd Workshop

ROSAEC 2nd Workshop 2

Context Sensitive Pointer Analysis

void main()
{

f(&a)1;
f(&b)2;
f(&a)3;

}

void f(int *x)
{

g(x,&c)4;
}

[x={a}]1

void g(int *y, int *z)
{

return;
}

[x={b}]2 [x={a}]3
[x={a1,b2,a3}]
[x={a{1,3},b2}]

[y={a4•{1,3},b4•2} z={c4}]

n Forest for context representation
n Sometimes partial context is enough

int a,b,c;

ROSAEC 2nd Workshop 3

Call Forest

n Program is context free
q Values defined directly from program are context free

g(x,&c)4;
q Top context for context free values
q Every context end with top

n First child, next sibling forest

ROSAEC 2nd Workshop 4

Hash-Consing

n Traditional technique from Lisp
q Share all structurally equal values
q Through identity map implemented as hash table

type t = Nil | Cons of int*t
let x = Cons(2,Cons(1,Nil))
let y = Cons(3,Cons(1,Nil))

type t = Nil | Cons of int*t*id
let hcons (hd,tl) =

try Hash.find table (hd,getid(tl))
with Notfound ->

let new = Cons(hd,tl,newid()) in
Hash.add table (hd,getid(tl)) new;
new

let x = hcons(2,hcons(1,Nil))
let y = hcons(3,hcons(1,Nil))

ROSAEC 2nd Workshop 5

Maximal Sharing

n Canonical representation
q Exactly one representation for semantically equal values

n Hash-consing + canonical representation
q Maximal sharing
q All semantically equal values are shared

n x=[1,2,3] y=[2,1,3]
q x and y are not shared by hash-consing
q For list semantics, it is maximal sharing
q For set semantics, it is not maximal sharing

n Canonical representation for set semantics
q Simple solution : sorted list
q Sorted siblings in call forest
q Benefit from maximal sharing must be larger than sorting overhead

ROSAEC 2nd Workshop 6

Canonical Representation for Top Context

n Many representations for semantically top context
1.
2. Fully explicit context where is used only for main
3. 2 with some subtrees replaced by

n Reduce all top contexts to
1. Before analysis, put one level unfolded top context into hash table

e.g.) function called at 1,2,3 :
2. Save it for each function
3. During analysis, compare hash lookup result with saved top.

If equal, return instead

n Call forest vs. Binary Decision Diagram (BDD)
q BDD is hash-consing on bit level decision tree
q Call forest can be useful if entire analysis is not represented as BDD

