
임베디드시스템의성능및오류검증임베디드시스템의성능및오류검증

YUNHEUNG PAEK
SOC OPTIMIZATIONS AND RESTRUCTURING RESEARCH GROUP
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
SEOUL NATIONAL UNIVERSITY2009

Contents
2 1. Introduction2. Two Topics1. 멀티프로세서디버깅1. MPSoC source level debugger의필요성2. 진행상황 : Source level debugger for ADRES, with S.A.I.T3. 연구확장 : MPSoC debugger, runtime error detection

A Compiler Infrastructure for MPSoC

3. 연구확장 : MPSoC debugger, runtime error detection2. 임베디드소프트웨어/하드웨어 (통합) 설계검증1. 배경및필요성2. 진행상황및연구계획1. Based on hybrid simulation : 독일 Aachen 공대와공동연구추진중2. Based on VM simulation : Virtual Assembly Compiled Simulator
3. 결론

MPSoC ERA

¨ 응용프로그램의복잡도증가 vs. H/W 성능증가
¤ 단일 CPU만으로고성능응용프로그램의수행제한적

¨ 집적도한계와 기하급수적전력소모증가

¤ 단일 CPU 성능향상한계도달
¨ CPU대안인 ASIC설계기술발전속도 해결방안

äMPSoC
Log #

transistors

Time

Technology
59% / year

Design

Design
gap

Log #
transistors

Time

Technology

Design
25% / year

Design
gap

59% / year

¨ CPU대안인 ASIC설계기술발전속도
¤ 집적도향상으로 NRE 비용상승 & Time-to-market 저하

Parallel Programming as a hot issue
4

¨ From PLDI `09 accepted paper list

A Compiler Infrastructure for MPSoC

멀티프로세서디버깅5

A Compiler Infrastructure for MPSoC

Necessity of an MPSoC source level
debugger

6

A Compiler Infrastructure for MPSoC

MPSoC nightmare
7

¨ MPSoC nightmares – runtime errors are important

A Compiler Infrastructure for MPSoC

Source Level Debugger
8

¨ Programmer의 semantic과저수준의 error를연결SomeObject *objPtr = NULL;if (a certain condition)objPtr = new Object;else

A Compiler Infrastructure for MPSoC

; // in this case, NULL pointerobjPtr -> do_some_job();…… (gdb) print objPtr0

Even if...
9

¨ Tools are not so perfect

A Compiler Infrastructure for MPSoC
CAD tool Automatically Synthesized code

We need aSource level debuggerfor MPSoC

Development of a re-targetable source level debugger for ADRES, with S.A.I.T
What we have done…10

debugger for ADRES, with S.A.I.T

A Compiler Infrastructure for MPSoC

Reconfigurable Processor(ADRES)
11

개요 : Re-targetable Debugger
12

Independent part of a debugger :

Target Dependent codes for x86 Windows:….….
Target Dependent codes for MIPS :debugger :Source Level Symbol Table, Logical breakpoint manager, Target abstraction layer, …
MIPS :….….….

Target Dependent codes for Adres :….….….

전체그림 - Debugger 구조
13

Frontend :Visual Studio 2008
PSIM : processor simulatorDebuggerEngine : SNU 구현

Personal Computer, x86 windows

Data inspection
14

¨ Data inspection
¤ Operands

n Scope
n Static global, local variables
n External global variables
n Auto local variables
n Function parameters
n Nested scope supported

n Data type
n Arrays, struct variables, pointers
n Union variables not yet.

Data inspection – cont’d
15

¨ Operation
¤ Almost every operations but function call

n Arrow operator (->) and assign operator(=) included
n Array index operator([]), dot operator included
n Dereference operator(*), Address operator(&) includedn Dereference operator(*), Address operator(&) included
n Basic binary, unary operators

n +, -, <<, >>, /, %, etc included
¤ Long and complex C expression supported

n Ex) N[3] -> next . array_field[2] . second_field

Control execution
16

¨ Control execution
¤ Removing/Setting breakpoints
¤ Step in/over/out
¤ Run, continue execution

MPSoC debugger, Runtime error detection연구주제확장17

A Compiler Infrastructure for MPSoC

Multi-process debugger example - DDT
18

¨ 1. menu bar
¨ 2. process controls
¨ 3. process groups
¨ 4. project

A Compiler Infrastructure for MPSoC

¨ 4. project navigator
¨ 5. source code
¨ 6. variables and stack
¨ 7. parallel stack, IO, Breakpoints
¨ 8. evaluate window
¨ 9 status bar

Conditional breakpoints for multiple
processes

19

A Compiler Infrastructure for MPSoC

DDT – Message Queues
20

A Compiler Infrastructure for MPSoC

Basically
21

¨ MPSoC debugger looks like DDT
¨ Including runtime error detection modules such as

¤ Race condition detectionData race detection

A Compiler Infrastructure for MPSoC

¤ Data race detection
¤ Deadlock detection
¤ etc

임베디드소프트웨어/하드웨어검증22

A Compiler Infrastructure for MPSoC

Problems

¨ Use different languages for modeling and implementation
¤ Cannot verify the desired functions directly

¨ Hardware designers have to restart the design process by capturing the designs using the HDLs
¤ May have unmatched problems

¨ Require many experts in system architecture for the partition of ¨ Require many experts in system architecture for the partition of software and hardware parts
¤ The partition may not be the optimal solution

¨ Hardware and software integration is often painful
¤ Hardware and software cannot work together
¤ Co-verification of hardware and software is inefficient

¨ Long design time and high-cost
¨ Verification and Debugging is painful

Needs of New Methodology

¨ [1] Kurt Keutzer, et. al. “System-Level Design: Orthogonalization of Concerns and Platform-Based Design," IEEE TCAD, 19(12), December 2000.
“we believe that the lack of appropriate
methodology and tool support for modeling of
concurrency in its various forms is an essential concurrency in its various forms is an essential
limiting factor in the use of both RTL and commonly
used programming languages to express design
complexity”

Meet-in-the-middle methodology
25

mapping

SoC Optimizations and Restructuring
Set of architectures(platform) Implementation-independent application specifications

Timing in real-time systems
26

¨ Specify-Exploration-Refinement design methodology
¤ Verification is very important
¤ Timing is key factor for verification between specification before refinement and that after refinemen

A Compiler Infrastructure for MPSoC

¨ With SER methodology, high level estimation of execution time is important
¤ To improve performance
¤ To reduce runtime errors related with timing

Wrong estimation
27

Estimation Actual execution
time

Task 1 Task 2

A Compiler Infrastructure for MPSoC

timeTask 1 100 50Task 2 50 50Deadline = 120
Since the estimation was wrong, we need one more processor to meet the deadline

Wrong estimation
28

Estimation Actual execution
time

Task 1 Task 2

A Compiler Infrastructure for MPSoC

timeTask 1 50 100Task 2 50 50Deadline = 120
Since the estimation was wrong, verification fails or unexpected runtime error occurs

Co-work with Aachen
29

¨ They developed high level estimation scheme and publish the paper, “Multiprocessor performance estimation using hybrid simulation”, Lei Gao, et al
¤ http://portal.acm.org/citation.cfm?id=1391469.1391552

A Compiler Infrastructure for MPSoC

¨ We have the environment that we can compile source code into ISA of a certain virtual machine, simulate and profile
¤ By comparing these two method, and complementing, we expect getting more precise high level estimation method

결론30

A Compiler Infrastructure for MPSoC

멀티프로세서디버깅
31

¨ MPSoC programming
¤ It becomes more important to detect or avoid runtime errors
¤ Connecting low level error and user-level semantic is getting crucial

A Compiler Infrastructure for MPSoC

¤ Connecting low level error and user-level semantic is getting crucial
¤ Necessity of a source level debugger increases drastically

임베디드소프트웨어/하드웨어검증
32

¨ High level performance estimation is the key for
¤ Design space exploration
¤ Improve performance of the synthesized system

A Compiler Infrastructure for MPSoC

¤ Improve performance of the synthesized system
¤ Avoiding runtime errors, especially related to timing in real-time systems

