A module system independent of
base languages

(St 2010 =2 NQ EaA[AE

-] AL
AL oA

2nd ROSAEC Center Workshop
9 — 11 July 2009

The ML module system

Structures (or modules)

— Collections of related declarations such as definitions of datatypes and associated
operations

Functors (or parameterized modules)

— Functions from structures to structures
Signatures and functor signatures

— Specify interfaces to structures and functors.
Nested modules

— Allows modules as components.
Higher-order functors

— Takes functors as arguments.

Abstract types
— Hide the implementation details of types.

Facilitates modular programming: flexible program construction, code reuse,
data abstraction, and information hiding

Examples in Objective Caml

module type ORD =

sig

type t;
val compare: t -> t -> bool

(* abstract *)

end

module type SETFUN =
functor (Elt: ORD) ->

sig

type element = Elt.t (* concrete *)

type set (* abstract *)
val empty : set

val add : element -> set -> set

val member : element -> set -> bool

end

module Ord_Int : ORD =
struct type t = int ... end
module Ord_String : ORD =
struct type t = string ... end
module Ord_ADT : ORD =
struct type t = user_defined_ADT ... end

module SetList : SETFUN =
functor (Elt : ORD) ->
struct
type element = Elt.t
type set = element list

end
module SetArray : SETFUN = ...
module SetWhatever : SETFUN = ...

Examples in Objective Caml

module MakeSet (SetFun : SETFUN) (Elt : ORD) = SetFun (Elt)
module intListSet = MakeSet (SetList) (Ord_Int)
Module stringListSet = MakeSet (SetList) (Ord_String)

* By implementing only three modules of type ORD and three functors
of type SETFUN,

we have 3 x 3 = 9 set modules!!

Now suppose you are implementing
a language of your own

Want to incorporate wonderful modular programming constructs in
the ML module system into your language.

But how??

Mfy experience says that it is hard to understand the underlying theory
of the ML module system... OTL

Because of the interdependence of module and base languages:
— the interaction between modules and abstract types

Most previous work on the ML module system assume that the base
language consists of terms and types.

— What if you want to include some additional interesting features such as
logical properties, dataflow graphs, ...

A module system independent of
base languages

Base language = abstract declarations + abstract specifications
Only a few assumptions on the base language

Trade abstract t{;pes for the independence between the module
system and the base language

— Still, we provide a restricted form of abstract types, which we
believe useful enough in practice.

Ideally, our module system aims to support any base language.

For details, ...

