
A module system independent of
base languages

(하위언어에독립적인모듈시스템)

임현승 박성우

2nd ROSAEC Center Workshop
9 – 11 July 2009

The ML module system
• Structures (or modules)

– Collections of related declarations such as definitions of datatypes and associated
operations

• Functors (or parameterized modules)
– Functions from structures to structures

• Signatures and functor signatures
– Specify interfaces to structures and functors.

• Nested modules • Nested modules
– Allows modules as components.

• Higher-order functors
– Takes functors as arguments.

• Abstract types
– Hide the implementation details of types.

• Facilitates modular programming: flexible program construction, code reuse,
data abstraction, and information hiding

Examples in Objective Caml
module type ORD =
sig

type t; (* abstract *)
val compare: t -> t -> bool

end

module type SETFUN =

module Ord_Int : ORD =
struct type t = int … end

module Ord_String : ORD =
struct type t = string … end

module Ord_ADT : ORD =
struct type t = user_defined_ADT … end

module type SETFUN =
functor (Elt: ORD) ->
sig

type element = Elt.t (* concrete *)
type set (* abstract *)
val empty : set
val add : element -> set -> set
val member : element -> set -> bool

end

module SetList : SETFUN =
functor (Elt : ORD) ->
struct

type element = Elt.t
type set = element list
…

end
module SetArray : SETFUN = …
module SetWhatever : SETFUN = …

Examples in Objective Caml
module MakeSet (SetFun : SETFUN) (Elt : ORD) = SetFun (Elt)
module intListSet = MakeSet (SetList) (Ord_Int)
Module stringListSet = MakeSet (SetList) (Ord_String)

…

• By implementing only three modules of type ORD and three functors
of type SETFUN,

we have 3 x 3 = 9 set modules!!

Now suppose you are implementing
a language of your own

• Want to incorporate wonderful modular programming constructs in
the ML module system into your language.

• But how??

• My experience says that it is hard to understand the underlying theory
of the ML module system… OTLof the ML module system… OTL

• Because of the interdependence of module and base languages:
– the interaction between modules and abstract types

• Most previous work on the ML module system assume that the base
language consists of terms and types.
– What if you want to include some additional interesting features such as

logical properties, dataflow graphs, …

A module system independent of
base languages

• Base language = abstract declarations + abstract specifications

• Only a few assumptions on the base language

• Trade abstract types for the independence between the module
system and the base language system and the base language
– Still, we provide a restricted form of abstract types, which we

believe useful enough in practice.

• Ideally, our module system aims to support any base language.

• For details, …

