Corpus-based Abduction

Kihong Heo Suwon Jang

Programming Research Laboratory
Seoul National University

ROSAEC Workshop
July 11, 2009

@ Importance of heap memory analysis
e dangling pointer
o NULL dereference
e memory leak
e Difficulty
o ...
e guessing pre-condition
o ...

Previous Approach

Bi-abduction
A—B B
° A

@ fuction body — preconditions
e (preconditions, function body) — postconditions

@ Calcagno, Cristiano and Distefano, Dino and O’Hearn, Peter and Yang, Hongseok.

Compositional shape analysis by means of Bi-Abduction
In POPL '09: Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 289-300, 2009

@ Bi-abduction is NOT always safe.

@ Only list can be analyzed.

[Program [MLOC [Procs # [Proven Procs | Procs Coverage % | Time(1) | Time(8) |
Linux kernel 2.6.25.4 2.473 101330 59215 58.4 6869.09 1739.28
Gimp 2.4.6 0.708 15114 6364 42.1 3601.16 1067.60
OpenSSL 0.9.8g 0.214 4818 2967 61.6 605.36 446.60
Sendmail 8.14.3 0.108 684 353 51.6 184.50 184.83
Apache 2.2.8 0.102 1870 881 47.1 294.67 104.48
OpenSSH 5.0 0.073 1135 519 45.7 142.56 30.24
Spin 5.1.6 0.019 357 197 55.2 772.82 253.96

@ Preconditions found only for 42 ~ 62 % of total procedures.

Our approach

Observations
@ Most analyzer have NO knowledge which data structures are
frequently used.
e Common data structures are not so complex. (e.g. linked-list,
circular linked-list with linked-list, tree, graph, ...)
Key idea
o Collect real-world data structures.

@ Don't abduct, just enumerate and check.

/* [list(1), 1list(1)],
[dlist(1), ?77] */
list_one_more(1l) {
t = 1;
while (t.tl != NULL){
t = t.tl;
}

main () {

p = (S.L.L.) or (D.L.L.)

t.tl := malloc;
t = t.tl;
t.tl = NULL;

}

list_one_more(p);

dlist_prev(p);
}

/* [list(1), XXX, [dlist(l), dlist(1)] =/
dlist_prev(1){

1 :=1.hd
}

6/7

@ Loop invariant

@ Large survey on frequently used data structures.

