
1

Semi-Automatic Verification
for Heap-Allocated Data Structures,

Focusing on the Perl Interpreter

11th of July, 2009
Will Klieber, Jeehoon Kang

2

Overview

• Motivation
• Description of our Approach
• Example of our Approach
• Comparison to TVLA
• Conclusion

3

General Motivation

• Many programs use heap-allocated data structures.
• It is often important to verify properties involving such data

structures (e.g., memory safety).
• However, existing shape analysis tools (e.g, TVLA) don’t seem to

scale well to large, messy, real-world programs.

4

Specific Motivation

We aim to develop a domain-specific analyzer, specialized for
the Perl Interpreter, that can verify:
• “Shape” properties of the Perl Interpreter’s data structures
• In particular, memory safety

• Null pointer dereference.
• Dereference of a dangling pointer.
• Calling free on an address that wasn’t allocated via malloc or that

has already been freed.
• Accessing memory past the bounds of a struct or an array.

5

Overview of Our Approach

• We use the Abstract Interpretation framework.
• The memory is represented in terms of predicates.

• E.g., M = {“ListSeg(p1, p2)” : true, “IsValidPtr(p3)” : true, ...}
• Summarization and Focusing:

• We summarize the memory state at the bottom of loops and
recursive functions.

• We “bring into focus” (create a concrete representation of) a
summarized memory cell whenever we read from it or write to it.

6

Abstract Representation of Memory

• We represent memory states in terms of predicates.
• Concretely-represented portions of memory.

These preds are built into the analyzer.
• Abstractly-represented (summarized) portions of memory.

These preds are defined by the user.
• Simple memory state: Each predicate mapped to a logical value.
• Complex memory state: Conceptually, a collection of simple

memory states, as in collecting semantics.
• For function summarization, the memory state is parameterized

by the input memory state at entry to the function.

7

Summarization and Focusing

• At the bottom of loops and recursive functions, we verify that
the user-supplied predicates hold true of the data structures.
• These predicates summarize the data structure.

• When we need to create a concrete representation of a
summarized memory cell, we do so by using the Focusing
operation supplied by the user.

• The Focus and Verify operations are defined directly in terms of
the abstract memory representation.

8

Example: Singly-Linked List

In a simple memory state M,
the predicate

 ListSeg(pA, pB)

signifies that there is a list
segment from pA to pB (or
pA==pB in the base case),
with no aliasing except as
entailed by other predicates
true in the simple mem state.
Let us write “p1@L1” to
denote the value of p1 at
program point L1.

9

Example: Singly-Linked List

In a simple memory state M,
the predicate

 ListSeg(pA, pB)

signifies that there is a list
segment from pA to pB (or
pA==pB in the base case),
with no aliasing except as
entailed by other predicates
true in the simple mem state.
Let us write “p1@L1” to
denote the value of p1 at
program point L1.

struct node {

 node *pNext;

};

void main() {

 node *p1 = 0;

 node *p2 = malloc(4);

 while (non_det()) {

L1: node *pTmp = malloc(4);

 pTmp->pNext = p1;

 p1 = pTmp;

L2: verify(ListSeg(p1, 0));

 }

 p2->pNext = 0xDEADBEEF;

X: verify(ListSeg(p1, 0));

}

10

Example: Singly-Linked List

To focus on pA for
 ListSeg(pA, pB)

we split the memory into
two simple mem states:
(1) replace the original
predicate with pA==pB,
(2) replace it with
pA->pNext == pX and
ListSeg(pX, pB),
where pX is a pointer to a
new representation of a
concrete cell.
In the 2nd case, pX is only
aliased where entailed by
other predicates.

struct node {

 node *pNext;

};

void main() {

 node *p1 = 0;

 node *p2 = malloc(4);

 while (non_det()) {

L1: node *pTmp = malloc(4);

 pTmp->pNext = p1;

 p1 = pTmp;

L2: verify(ListSeg(p1, 0));

 }

 p2->pNext = 0xDEADBEEF;

X: verify(ListSeg(p1, 0));

}

11

Example: Singly-Linked List

To verify
 ListSeg(pA, pB)

we check that one of the
following holds true:
(1) pA == pB, or
(2) pA == pX and
ListSeg(pX, pB) for some pX.
In the second case, we also
check that pX is not aliased
except where entailed by
other predicates.

struct node {

 node *pNext;

};

void main() {

 node *p1 = 0;

 node *p2 = malloc(4);

 while (non_det()) {

L1: node *pTmp = malloc(4);

 pTmp->pNext = p1;

 p1 = pTmp;

L2: verify(ListSeg(p1, 0));

 }

 p2->pNext = 0xDEADBEEF;

X: verify(ListSeg(p1, 0));

}

12

Related Work: T VLA
(Three-Valued Logic Analyzer)

• Tom Reps and Mooly Sagiv

• TVLA is a state-of-the-art shape analysis engine.
• TVLA’s motivation:

• Parametric framework for developing new shape analysis techniques.
“A yacc for shape analysis”.

• Tries to discover which data structures have a given shape.

13

Our Approach vs TVLA (1)

• Unlike TVLA, our approach aims only to verify the shape
properties of data structures, not to discover them.

• We rely on user annotations and heuristics to determine which
shape properties should hold true of which data structures.

• This should greatly reduce the computational costs and allow us
to scale up to messy real-world programs like the Perl
interpreter.

14

Our Approach vs TVLA (2)

• In TVLA, the user defines a predicate by a formula in
First-Order Logic with Transitive Closure (FO+TC).

• Example for singly-linked list:
• Suppose the predicate next describes the forward ptr of a node.
• Specifically, next(v1, v2) means v1->next == v2.
• The transitive closure of next, written “next+”, signifies reachability

via the next field.
• Specifically, “next+(arg1, arg2)” signifies that arg2 is reachable by

one or more pointer hops from arg1 via the next field.
• User must also supply an update relation (transfer function) for

each predicate.
• Indicates effect of a single stmt on the value of the predicate.

15

Our Approach vs TVLA (3)

• TVLA preds: First-Order Logic with Transitive Closure (FO+TC).
• TVLA's restriction to FO+TC makes it difficult to cleanly express

properties of mutually co-recursive data structures.
• E.g.: In Perl, a CMD may have a pointer to a STAB (“Symbol Table”),

and a STAB may have a pointer to another CMD.

struct cmd_t {
 cmd_t *pNext;
 stab_t *pStab;
 ...
};

struct stab_t {
 cmd_t *pCmd;
 ...
};

16

What about Aliasing/Sharing Within a Data Structure?

• For aliasing within a data structure (i.e., the type of aliasing that
occurs in a DAG but not in a tree), the user must explicitly specify
the nature of the aliasing in the definition of the predicates and
the focusing operations.

17

Conclusion

• We believe our handling of predicates is more flexible than
TVLA's and better suited to messy real-world programs.

• For computational scalability, we require the user to annotate
the program to specify which properties hold true of which data
structures.
• We can use heuristics to propagate or guess this information to

minimize the burden on the user.
• We hope to verify memory safety and shape properties of the

Perl interpreter using this method.

http://www.hacksomnia.com/wp-content/uploads/2009/03/computer-bug.jpg

18

THE END!

19

Extra Example: Singly-Linked List
void main() {

 node *p1 = 0;

 node *p2 = malloc(4);

 node *pMid = 0;

 while (non_det()) {

L1: node *pTmp = malloc(4);

 if (rand()) {pMid = p1;}

 pTmp->pNext = p1;

 p1 = pTmp;

L2: verify(ListSeg(p1, pMid));

 verify(ListSeg(p1, 0));

 }

 p2->pNext = 0xDEADBEEF;

X:verify(ListSeg(p1, pMid));

 verify(ListSeg(p1, 0));

}

At beginning of iteration:
ListSeg(p1@L1, 0)
p2 != p1, pTmp is uninitialized

At end of iteration:
pTmp->pNext@L2 == p1@L1
ListSeg(pTmp->pNext@L2, 0)
p1->pNext@L2 == pTmp@L2
ListSeg(p1@L2, 0)

