
1

Semi-Automatic Verification 
for Heap-Allocated Data Structures,

Focusing on the Perl Interpreter

11th of July, 2009
Will Klieber,  Jeehoon Kang



2

Overview

• Motivation
• Description of our Approach
• Example of our Approach
• Comparison to TVLA
• Conclusion 
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General Motivation

• Many programs use heap-allocated data structures.
• It is often important to verify properties involving such data 

structures (e.g., memory safety).
• However, existing shape analysis tools (e.g, TVLA) don’t seem to 

scale well to large, messy, real-world programs.
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Specific Motivation

We aim to develop a domain-specific analyzer, specialized for
the Perl Interpreter, that can verify:
• “Shape” properties of the Perl Interpreter’s data structures
• In particular, memory safety

• Null pointer dereference.
• Dereference of a dangling pointer.
• Calling free on an address that wasn’t allocated via malloc or that 

has already been freed.
• Accessing memory past the bounds of a struct or an array.
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Overview of Our Approach

• We use the Abstract Interpretation framework.
• The memory is represented in terms of predicates.

• E.g.,  M = {“ListSeg(p1, p2)” : true,  “IsValidPtr(p3)” : true, ...}
• Summarization and Focusing:

• We summarize the memory state at the bottom of loops and 
recursive functions.

• We “bring into focus” (create a concrete representation of) a 
summarized memory cell whenever we read from it or write to it.
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Abstract Representation of Memory

• We represent memory states in terms of predicates.
• Concretely-represented portions of memory.

These preds are built into the analyzer.
• Abstractly-represented (summarized) portions of memory.

These preds are defined by the user.
• Simple memory state: Each predicate mapped to a logical value.
• Complex memory state:  Conceptually, a collection of simple 

memory states, as in collecting semantics.
• For function summarization, the memory state is parameterized 

by the input memory state at entry to the function.
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Summarization and Focusing

• At the bottom of loops and recursive functions, we verify that 
the user-supplied predicates hold true of the data structures.
• These predicates summarize the data structure.

• When we need to create a concrete representation of a 
summarized memory cell, we do so by using the Focusing 
operation supplied by the user.

• The Focus and Verify operations are defined directly in terms of 
the abstract memory representation.
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Example: Singly-Linked List

In a simple memory state M, 
the predicate

 ListSeg(pA, pB)

signifies that there is a list 
segment from pA to pB (or 
pA==pB in the base case), 
with no aliasing except as 
entailed by other predicates 
true in the simple mem state.
Let us write “p1@L1” to 
denote the value of p1 at 
program point L1.
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Example: Singly-Linked List

In a simple memory state M, 
the predicate

 ListSeg(pA, pB)

signifies that there is a list 
segment from pA to pB (or 
pA==pB in the base case), 
with no aliasing except as 
entailed by other predicates 
true in the simple mem state.
Let us write “p1@L1” to 
denote the value of p1 at 
program point L1.

struct node {

  node *pNext;

};

void main() {

    node *p1 = 0;

    node *p2 = malloc(4);

    while (non_det()) {

L1:   node *pTmp = malloc(4);

      pTmp->pNext = p1;

      p1 = pTmp;

L2:   verify(ListSeg(p1, 0));

    }

    p2->pNext = 0xDEADBEEF;

X:  verify(ListSeg(p1, 0)); 

}
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Example: Singly-Linked List

To focus on pA for
 ListSeg(pA, pB)

we split the memory into 
two simple mem states: 
(1) replace the original 
predicate with pA==pB, 
(2) replace it with
pA->pNext == pX  and
ListSeg(pX, pB),
where pX is a pointer to a 
new representation of a  
concrete cell.
In the 2nd case, pX is only 
aliased where entailed by 
other predicates.

struct node {

  node *pNext;

};

void main() {

    node *p1 = 0;

    node *p2 = malloc(4);

    while (non_det()) {

L1:   node *pTmp = malloc(4);

      pTmp->pNext = p1;

      p1 = pTmp;

L2:   verify(ListSeg(p1, 0));

    }

    p2->pNext = 0xDEADBEEF;

X:  verify(ListSeg(p1, 0)); 

}
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Example: Singly-Linked List

To verify
 ListSeg(pA, pB)

we check that one of the 
following holds true:
(1) pA == pB, or
(2) pA == pX and
ListSeg(pX, pB) for some pX.
In the second case, we also 
check that pX is not aliased 
except where entailed by 
other predicates.

struct node {

  node *pNext;

};

void main() {

    node *p1 = 0;

    node *p2 = malloc(4);

    while (non_det()) {

L1:   node *pTmp = malloc(4);

      pTmp->pNext = p1;

      p1 = pTmp;

L2:   verify(ListSeg(p1, 0));

    }

    p2->pNext = 0xDEADBEEF;

X:  verify(ListSeg(p1, 0)); 

}
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Related Work: T VLA
(Three-Valued Logic Analyzer)

•   Tom Reps     and     Mooly Sagiv

• TVLA is a state-of-the-art shape analysis engine.
• TVLA’s motivation: 

• Parametric framework for developing new shape analysis techniques.  
“A yacc for shape analysis”.

• Tries to discover which data structures have a given shape.
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Our Approach vs TVLA (1)

• Unlike TVLA, our approach aims only to verify the shape 
properties of data structures, not to discover them.

• We rely on user annotations and heuristics to determine which 
shape properties should hold true of which data structures.

• This should greatly reduce the computational costs and allow us 
to scale up to messy real-world programs like the Perl 
interpreter.
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Our Approach vs TVLA (2)

• In TVLA, the user defines a predicate by a formula in 
First-Order Logic with Transitive Closure (FO+TC).

• Example for singly-linked list:
• Suppose the predicate next describes the forward ptr of a node.
• Specifically,  next(v1, v2) means  v1->next == v2.
• The transitive closure of next, written “next+”, signifies reachability 

via the next field. 
• Specifically, “next+(arg1, arg2)” signifies that arg2 is reachable by 

one or more pointer hops from arg1 via the next field.
• User must also supply an update relation (transfer function) for 

each predicate.
• Indicates effect of a single stmt on the value of the predicate.
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Our Approach vs TVLA (3)

• TVLA preds: First-Order Logic with Transitive Closure (FO+TC).
• TVLA's restriction to FO+TC makes it difficult to cleanly express 

properties of mutually co-recursive data structures.
• E.g.: In Perl, a CMD may have a pointer to a STAB (“Symbol Table”), 

and a STAB may have a pointer to another CMD.

struct cmd_t {
    cmd_t  *pNext;
    stab_t *pStab;
    ...
};

struct stab_t {
    cmd_t  *pCmd;
    ...
};
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What about Aliasing/Sharing Within a Data Structure?

• For aliasing within a data structure (i.e., the type of aliasing that 
occurs in a DAG but not in a tree), the user must explicitly specify 
the nature of the aliasing in the definition of the predicates and 
the focusing operations.
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Conclusion

• We believe our handling of predicates is more flexible than 
TVLA's and better suited to messy real-world programs.

• For computational scalability, we require the user to annotate 
the program to specify which properties hold true of which data 
structures.
• We can use heuristics to propagate or guess this information to 

minimize the burden on the user.
• We hope to verify memory safety and shape properties of the 

Perl interpreter using this method.

http://www.hacksomnia.com/wp-content/uploads/2009/03/computer-bug.jpg
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THE END!
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Extra Example: Singly-Linked List
void main() {

  node *p1 = 0;

  node *p2 = malloc(4);

  node *pMid = 0;

  while (non_det()) {

L1: node *pTmp = malloc(4);

    if (rand()) {pMid = p1;}

    pTmp->pNext = p1;

    p1 = pTmp;

L2: verify(ListSeg(p1, pMid));

    verify(ListSeg(p1, 0));

  }

  p2->pNext = 0xDEADBEEF;

X:verify(ListSeg(p1, pMid));

  verify(ListSeg(p1, 0));

}

  

At beginning of iteration:
ListSeg(p1@L1, 0)
p2 != p1,  pTmp is uninitialized

At end of iteration:
pTmp->pNext@L2 == p1@L1
ListSeg(pTmp->pNext@L2, 0)
p1->pNext@L2 == pTmp@L2
ListSeg(p1@L2, 0)
  


