Semi-Automatic Verification
for Heap-Allocated Data Structures,
Focusing on the Perl Interpreter

11th of July, 2009
Will Klieber, Jeehoon Kang



Overview

Motivation

Description of our Approach
Example of our Approach
Comparison to TVLA
Conclusion



General Motivation

e Many programs use heap-allocated data structures.

e [t is often important to verify properties involving such data
structures (e.g., memory safety).

* However, existing shape analysis tools (e.g, TVLA) don’t seem to
scale well to large, messy, real-world programs.




Specific Motivation

We aim to develop a domain-specific analyzer, specialized for
the Perl Interpreter, that can verify:

* “Shape” properties of the Perl Interpreter’s data structures

* In particular, memory safety

Null pointer dereference.
Dereference of a dangling pointer.

Calling free on an address that wasn’t allocated via malloc or that
has already been freed.

Accessing memory past the bounds of a struct or an array.



Overview of Our Approach

 We use the Abstract Interpretation framework.

 The memory is represented in terms of predicates.
 E.g, M ={"ListSeg(p1, p2)" : true, “IsValidPtr(p3)” : true, ...}
* Summarization and Focusing:

* We summarize the memory state at the bottom of loops and
recursive functions.

* We “bring into focus” (create a concrete representation of) a
summarized memory cell whenever we read from it or write to it.



Abstract Representation of Memory

We represent memory states in terms of predicates.

* Concretely-represented portions of memory.
These preds are built into the analyzer.

* Abstractly-represented (summarized) portions of memory.
These preds are defined by the user.

Simple memory state: Each predicate mapped to a logical value.

Complex memory state: Conceptually, a collection of simple
memory states, as in collecting semantics.

For function summarization, the memory state is parameterized
by the input memory state at entry to the function.



Summarization and Focusing

At the bottom of loops and recursive functions, we verify that
the user-supplied predicates hold true of the data structures.

* These predicates summarize the data structure.
When we need to create a concrete representation of a

summarized memory cell, we do so by using the Focusing
operation supplied by the user.

The Focus and Verify operations are defined directly in terms of
the abstract memory representation.



Example: Singly-Linked List

In a simple memory state M,
the predicate

ListSeg(pA, pB)

signifies that there is a list
segment from pA to pB (or
pA==pB in the base case),
with no aliasing except as
entailed by other predicates
true in the simple mem state.

Let us write “p1@L1" to
denote the value of p1 at
program point L1.



Example: Singly-Linked List

struct node {
node *pNext;

}s

void main() {
node *pl = 0;
node *p2 = malloc(4);
while (non_det()) {
L1: node *pTmp = malloc(4);
pTmp->pNext = pl;
pl = pTmp;
L2: verify(ListSeg(pl, 0));
by
p2->pNext = OxDEADBEEF;
X: verify(ListSeg(pl, 0));

In a simple memory state M,
the predicate

ListSeg(pA, pB)

signifies that there is a list
segment from pA to pB (or
pA==pB in the base case),
with no aliasing except as
entailed by other predicates
true in the simple mem state.

Let us write “p1@L1" to
denote the value of p1 at
program point L1.



Example: Singly-Linked List

struct node {

}s

node *pNext;

void main() {

L1:

L2:

node *pl = 0;
node *p2 = malloc(4);
while (non_det()) {
node *pTmp = malloc(4);
pTmp->pNext = pl;
pl = pTmp;
verify(ListSeg(pl, 0));
by
p2->pNext = OxXDEADBEEF;
verify(ListSeg(pl, 0));

To focus on pA for
ListSeg(pA, pB)

we split the memory into
two simple mem states:
(1) replace the original
predicate with pA==pB,
(2) replace it with
pA->pNext == pX and
ListSeg(pX, pB),

where pX is a pointer to a
new representation of a
concrete cell.

In the 2nd case, pX is only
aliased where entailed by
other predicates.

10



Example: Singly-Linked List

struct node {

}s

node *pNext;

void main() {

L1:

L2:

node *pl = 0;
node *p2 = malloc(4);
while (non_det()) {
node *pTmp = malloc(4);
pTmp->pNext = pl;
pl = pTmp;
verify(ListSeg(pl, 0));
by
p2->pNext = OxXDEADBEEF;
verify(ListSeg(pl, 0));

To verify
ListSeg(pA, pB)

we check that one of the
following holds true:

(1) pA==pB,or

(2) pA==pXand
ListSeg(pX, pB) for some pX.
In the second case, we also
check that pX is not aliased
except where entailed by
other predicates.

11



Related Work: TVLA
(Three-Valued Logic Analyzer)

e TVLA is a state-of-the-art shape analysis engine.

e TVLA’s motivation:

e Parametric framework for developing new shape analysis techniques.
“A yacc for shape analysis”.

* Tries to discover which data structures have a given shape.

e TomReps and Mooly Sagiv

12



Our Approach vs TVLA (1)

* Unlike TVLA, our approach aims only to verify the shape
properties of data structures, not to discover them.

* Werely on user annotations and heuristics to determine which
shape properties should hold true of which data structures.

* This should greatly reduce the computational costs and allow us
to scale up to messy real-world programs like the Perl
interpreter.

13



Our Approach vs TVLA (2)

In TVLA, the user defines a predicate by a formula in
First-Order Logic with Transitive Closure (FO+TC).
Example for singly-linked list:
* Suppose the predicate next describes the forward ptr of a node.
* Specifically, next(vi, vZ) means vl->next ==v2.

* The transitive closure of next, written “next™, signifies reachability
via the next field.

» Specifically, “next*(arg1, argZ2)” signifies that argZ is reachable by
one or more pointer hops from arg1 via the next field.

User must also supply an update relation (transfer function) for
each predicate.

* Indicates effect of a single stmt on the value of the predicate.

14



Our Approach vs TVLA (3)

* TVLA preds: First-Order Logic with Transitive Closure (FO+TC).
* TVLA's restriction to FO+TC makes it difficult to cleanly express
properties of mutually co-recursive data structures.

* E.g.: In Perl, a CMD may have a pointer to a STAB (“Symbol Table”),
and a STAB may have a pointer to another CMD.

struct cmd_t {
cmd_t *pNext;

stab_t *pStab;

}s
struct stab_t {
cmd_t *pCmd;

T

»
: : ¢



What about Aliasing/Sharing Within a Data Structure?

* For aliasing within a data structure (i.e., the type of aliasing that
occurs in a DAG but not in a tree), the user must explicitly specify
the nature of the aliasing in the definition of the predicates and

the focusing operations.

16



Conclusion

* We believe our handling of predicates is more flexible than
TVLA's and better suited to messy real-world programs.

* For computational scalability, we require the user to annotate

the program to specify which properties hold true of which data
structures.

* We can use heuristics to propagate or guess this information to
minimize the burden on the user.

* We hope to verify memory safety and shape properties of the
Perl interpreter using this method.

http://www.hacksomnia.com/wp-content/uploads/2009/03/computer-bug.jpg

17



THE END!

18



Extra Example: Singly-Linked List

void main() { At beginning of iteration:

node *pl = 0; _
node *p2 = malloc(4); Listseg(pl@L1, 0)
node *pMid = 0; p2 !=pl, pTmp is uninitialized
while (non_det()) {
L1: node *pTmp = malloc(4); At end of iteration:
if (rand()) {pMid = pl;} pTmp->pNext@L2 == p1@L1

pTmp->pNext = pl; _
pl = pTmp: ListSeg(pTmp->pNext@L2, 0)

L2: verify(ListSeg(pl, pMid)); p1l->pNext@LZ == pTmp@L2
verify(ListSeg(pl, 0)); ListSeg(pl@L2, 0)
by
p2->pNext = OxXDEADBEEF;
X:verify(ListSeg(pl, pMid));
verify(ListSeg(pl, 0));
by

19



