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Motivation

What is the key to proving a program

Program invariants

correctness?

They often require explicit and expensive

programmer annotations.
Automatic inference of program invariants

This method generates a set of constraints from the

program text.

Its solution provides an inductive invariant proof of

program correctness.
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Motivation

Approach
Abstract interpretation based
Counterexample-guided abstraction refinement
Constraint-based

Each technique by itself often fails to verify
programes.

This paper uses the combination of these
techniques.
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Comparison of invariant-based verification tools

File State-of-the-art techmaques This paper
NTERPROC|BLAST|INVGEN|INVGEN+L]
SEq . diverge| 233 ls (.55
Seq-z3 ¥ diverge| 23s Ug 0.55
Seq-len ¥ diverge| T/O T/0 285
nested ¥ 1.2s | T/O T/0 238
svd{light) ¥ 505 10 T/0 14.25
heapsort ¥ Jds | T/O T/0 1335
mergesort ¥ 183 10 325 1705
SpamAssassin-loop™ v 225 10 35 0.4s
apache-get-tag® ¥ 35 0.4s 10z 0.7s
sendmail-fromgp*® ¥ diverge| 0.3 il 0.3s
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Main idea

To scale the invariant generation engine by using

static and dynamic information

Step 1 (static information)

Obtain invariant template map by techniques based on

abstract interpretation

Step 2 (static information)

The output of step 1 is used as an initial to support constraint

based invariant generation

Step 3 (dynamic information)
Collect dynamic information by executing the

i

program
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Main idea

Two approaches for dynamic information
Direct approach
. use program states to compute additional constraints
Symbolic approach
. use symbolic execution to collect sets of states
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Key definitions

Transition system
P=(X.1,T1)
X . aset of variables
£ :asetof control loctions
1, initial location, 1 , €L
1. :error location, 1. €L
T': a set of transitions
t:(1,p, 1), 7€7 1,1'EC
o - transition relation
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Key definitions

Computation of the program P
a sequence of pair <1, 55>, <1y, $7>, ...
lo=1,ler
s;: a valuation of the variables X, also called a state

A state s is reachable
if <1, s> appears in some computation.

The program is safe
if the error location 1, does not appear in any computation
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Key definitions

Path of the program P

a sequence of transitions

T = (101 ,Oo, 11)1 (111 pl’ 12)’
lo=1, Ler

p; . transition relation

Error path (or Counterexample path)
A path that ends at the error location.
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Remind main idea

Step 1 (static information)

Obtain invariant template map by techniques based on
abstract interpretation

Step 2 (static information)

Step 1's output is used as an initial to support constraint
based invariant generation

Step 3 (dynamic information)
Collect dynamic information by executing the program
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Constraint-based Invariant Generation

Basic algorithm

input

P : program; # : invariant template map with parameters P
vars

¥ . static constraint
begin

.= InvGenSystem(P,7)
[* algorithm for constraint simplification in here*/

if P* := Solve(¥) succeeds then
return “inductive invariant map 5[P*/P]”
else
return “no invariant map for given template”
end
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Constraint-based Invariant Generation

A function InvGenSystem
(1, p, 1)
p=(Xx<y I xX=x+11y=y)
¢=(atax+ay<00 g+pXx+pYy<0) atlocation 1
y=(y+pX+yy<0) atlocation 1’
starting point: ¢ [ p — y'
eliminate the prime : @ [I1x<y— y[x+1/X]
rewrite in the matrix form :

ox Qy —

B B @s o w)ms—y

1 -1 0
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Constraint-based Invariant Generation

A function InvGenSystem
obtain the constraint :

ox Oy —a
AL 204 B By |=(raam)Ad | =p < —y
1 -1 0
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Constraint Simplification

Use additional dynamic information to restrict the
search space.

INVGEN + TEST : Simplification from tests

Create additional constraints by using program executions.

INVGEN + SYMB : Simplification from symbolic
execution

Create additional constraints by performing symbolic
execution along a collection of program paths.
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INVGEN + TEST : Simplification from tests

O NO OTPh~WDNPE

o

input

P : program; # : invariant template map with parameters P

vars
' . static constraint; @ : dynamic constraint
begin
¥ .= InvGenSystem(P,7)
& = true
repeat
Sy, ..., Sy := GenerateAndRunTest(P)
if s, (pc) = 1.then
return “counterexample S, ...., S,
else
@ :=® [ A (5.5(pc))[s; / X]
until no more tests
If P* := Solve(¥, @) succeeds then
return “inductive invariant map #[P*/P]”
else
return “no invariant map for given template”
end
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INVGEN + TEST : Simplification from tests

An example about dynamic constraint
t(x,y) :ax+ fy+y<0atlocation 1
concrete state : x =35,y = -9
obtain the constraint : 35a - 96 +y <0
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INVGEN + SYMB : Simplification from symbolic

execution

3 repeat

4.1 7 .= GeneratePath(P)

4.2 (* 7 = (4i, pi Lis)) TOr1<i<n™)
5 if /,,=1.and z is feasible then
6 return “counterexample z”

7 else

8.1 @ = 3AX pye... ep)[XIX]

8.2 @ := @ [ Encode(p — #.1,,1)
9 until no more paths
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INVGEN + SYMB : Simplification from symbolic execution

An example about dynamic constraint
txy2)ia taxX tay+az<00 g+ x +BYy+p,2<0
asetofstates: ¢ =(-x<00-y<0x+y-z<0)
the encoding of the implication ¢ — t obtains the constraint :

-1 0 O 0

ox Oy Oz —
dJA>0.A]0 -1 O =[ j/\A 0 S( j
11 1 B B b 0 p
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Conclusion

If Algorithm INVGEN+TEST or INVGEN+SYMB on
input program P and invariant template map n
returns

(a) “counterexample s, ... s,

there is an execution of the program that reaches the error
location.

(b) “inductive invariant map n*"

n* is an invariant map for program P, and the program P is
safe.

(c) "no invariants with template n”

there is no invariant map for program P with the given
Invariant template map n.

"
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Conclusion

Relation between this paper and our corpus
project

What is the method that can use the dynamic information
like this paper’s approach?
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Q&A

Thank you!
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