‘ests To Proofs

IHeejung Kim

Aug| 31, 2009

mailto:hjkim@ropas.snu.ac.kr

Reference

o “From Tests To Proofs”

Ashutosh Gupta, Rupak Majumdar, and Andrey
Rybalchenko

2 Programming Research Laboratory
Seoul National University

Contents

Motivation
Key Definitions
Constraint-based Invariant Generation

Constraint Simplification
Simplification from tests
Simplification from symbolic execution

Conclusion

3 Programming Research Laboratory
Seoul National University

Motivation

What is the key to proving a program

Program invariants

correctness?

They often require explicit and expensive

programmer annotations.
Automatic inference of program invariants

This method generates a set of constraints from the

program text.

Its solution provides an inductive invariant proof of

program correctness.

i

Programming Research Laboratory
Seoul National University

Motivation

Approach
Abstract interpretation based
Counterexample-guided abstraction refinement
Constraint-based

Each technique by itself often fails to verify
programes.

This paper uses the combination of these
techniques.

Programming Research Laboratory
Seoul National University

Comparison of invariant-based verification tools

File State-of-the-art techmaques This paper
NTERPROC|BLAST|INVGEN|INVGEN+L]
SEq . diverge| 233 ls (.55
Seq-z3 ¥ diverge| 23s Ug 0.55
Seq-len ¥ diverge| T/O T/0 285
nested ¥ 1.2s | T/O T/0 238
svd{light) ¥ 505 10 T/0 14.25
heapsort ¥ Jds | T/O T/0 1335
mergesort ¥ 183 10 325 1705
SpamAssassin-loop™ v 225 10 35 0.4s
apache-get-tag® ¥ 35 0.4s 10z 0.7s
sendmail-fromgp*® ¥ diverge| 0.3 il 0.3s

Programming Research Laboratory
Seoul National University

Main idea

To scale the invariant generation engine by using

static and dynamic information

Step 1 (static information)

Obtain invariant template map by techniques based on

abstract interpretation

Step 2 (static information)

The output of step 1 is used as an initial to support constraint

based invariant generation

Step 3 (dynamic information)
Collect dynamic information by executing the

i

program

Programming Research Laboratory
Seoul National University

Main idea

Two approaches for dynamic information
Direct approach
. use program states to compute additional constraints
Symbolic approach
. use symbolic execution to collect sets of states

Programming Research Laboratory
Seoul National University

Key definitions

Transition system
P=(X.1,T1)
X . aset of variables
£ :asetof control loctions
1, initial location, 1 , €L
1. :error location, 1. €L
T': a set of transitions
t:(1,p, 1), 7€7 1,1'EC
o - transition relation

Programming Research Laboratory
Seoul National University

Key definitions

Computation of the program P
a sequence of pair <1, 55>, <1y, $7>, ...
lo=1,ler
s;: a valuation of the variables X, also called a state

A state s is reachable
if <1, s> appears in some computation.

The program is safe
if the error location 1, does not appear in any computation

Programming Research Laboratory
Seoul National University

Key definitions

Path of the program P

a sequence of transitions

T = (101 ,Oo, 11)1 (111 pl’ 12)’
lo=1, Ler

p; . transition relation

Error path (or Counterexample path)
A path that ends at the error location.

Programming Research Laboratory
Seoul National University

Remind main idea

Step 1 (static information)

Obtain invariant template map by techniques based on
abstract interpretation

Step 2 (static information)

Step 1's output is used as an initial to support constraint
based invariant generation

Step 3 (dynamic information)
Collect dynamic information by executing the program

Programming Research Laboratory
Seoul National University

Constraint-based Invariant Generation

Basic algorithm

input

P : program; # : invariant template map with parameters P
vars

¥ . static constraint
begin

.= InvGenSystem(P,7)
[* algorithm for constraint simplification in here*/

if P* := Solve(¥) succeeds then
return “inductive invariant map 5[P*/P]”
else
return “no invariant map for given template”
end

Programming Research Laboratory
Seoul National University

Constraint-based Invariant Generation

A function InvGenSystem
(1, p, 1)
p=(Xx<y I xX=x+11y=y)
¢=(atax+ay<00 g+pXx+pYy<0) atlocation 1
y=(y+pX+yy<0) atlocation 1’
starting point: ¢ [p — y'
eliminate the prime : @ [I1x<y— y[x+1/X]
rewrite in the matrix form :

ox Qy —

B B @s o w)ms—y

1 -1 0

Programming Research Laboratory
Seoul National University

Constraint-based Invariant Generation

A function InvGenSystem
obtain the constraint :

ox Oy —a
AL 204 B By |=(raam)Ad | =p < —y
1 -1 0

Programming Research Laboratory
Seoul National University

Constraint Simplification

Use additional dynamic information to restrict the
search space.

INVGEN + TEST : Simplification from tests

Create additional constraints by using program executions.

INVGEN + SYMB : Simplification from symbolic
execution

Create additional constraints by performing symbolic
execution along a collection of program paths.

Programming Research Laboratory
Seoul National University

INVGEN + TEST : Simplification from tests

O NO OTPh~WDNPE

o

input

P : program; # : invariant template map with parameters P

vars
' . static constraint; @ : dynamic constraint
begin
¥ .= InvGenSystem(P,7)
& = true
repeat
Sy, ..., Sy := GenerateAndRunTest(P)
if s, (pc) = 1.then
return “counterexample S,, S,
else
@ :=® [A (5.5(pc))[s; / X]
until no more tests
If P* := Solve(¥, @) succeeds then
return “inductive invariant map #[P*/P]”
else
return “no invariant map for given template”
end

29

Programming Research Laboratory
Seoul National University

INVGEN + TEST : Simplification from tests

An example about dynamic constraint
t(x,y) :ax+ fy+y<0atlocation 1
concrete state : x =35,y = -9
obtain the constraint : 35a - 96 +y <0

Programming Research Laboratory
Seoul National University

INVGEN + SYMB : Simplification from symbolic

execution

3 repeat

4.1 7 .= GeneratePath(P)

4.2 (* 7 = (4i, pi Lis)) TOr1<i<n™)
5 if /,,=1.and z is feasible then
6 return “counterexample z”

7 else

8.1 @ = 3AX pye... ep)[XIX]

8.2 @ := @ [Encode(p — #.1,,1)
9 until no more paths

Programming Research Laboratory
Seoul National University

INVGEN + SYMB : Simplification from symbolic execution

An example about dynamic constraint
txy2)ia taxX tay+az<00 g+ x +BYy+p,2<0
asetofstates: ¢ =(-x<00-y<0x+y-z<0)
the encoding of the implication ¢ — t obtains the constraint :

-1 0 O 0

ox Oy Oz —
dJA>0.A]0 -1 O =[j/\A 0 S(j
11 1 B B b 0 p

Programming Research Laboratory
Seoul National University

Conclusion

If Algorithm INVGEN+TEST or INVGEN+SYMB on
input program P and invariant template map n
returns

(a) “counterexample s, ... s,

there is an execution of the program that reaches the error
location.

(b) “inductive invariant map n*"

n* is an invariant map for program P, and the program P is
safe.

(c) "no invariants with template n”

there is no invariant map for program P with the given
Invariant template map n.

"

Programming Research Laboratory
Seoul National University

Conclusion

Relation between this paper and our corpus
project

What is the method that can use the dynamic information
like this paper’s approach?

Programming Research Laboratory
Seoul National University

Q&A

Thank you!

Programming Research Laboratory
Seoul National University

