
From Tests To Proofs

Heejung Kim

hjkim@ropas.snu.ac.kr

Aug 31, 2009

mailto:hjkim@ropas.snu.ac.kr

Programming Research Laboratory

Seoul National University

Reference

¤ “From Tests To Proofs”

Ashutosh Gupta, Rupak Majumdar, and Andrey
Rybalchenko

2

Programming Research Laboratory

Seoul National University

Contents

¤ Motivation

¤ Key Definitions

¤ Constraint-based Invariant Generation

¤ Constraint Simplification
• Simplification from tests

• Simplification from symbolic execution

¤ Conclusion

3

Programming Research Laboratory

Seoul National University

Motivation

¤ What is the key to proving a program correctness?
 Program invariants

¤ They often require explicit and expensive
programmer annotations.
 Automatic inference of program invariants

¤ This method generates a set of constraints from the
program text.

¤ Its solution provides an inductive invariant proof of
program correctness.

Programming Research Laboratory

Seoul National University

Motivation

¤ Approach
• Abstract interpretation based

• Counterexample-guided abstraction refinement

• Constraint-based

¤ Each technique by itself often fails to verify
programs.

¤ This paper uses the combination of these
techniques.

Programming Research Laboratory

Seoul National University

Comparison of invariant-based verification tools

Programming Research Laboratory

Seoul National University

Main idea

¤ To scale the invariant generation engine by using
static and dynamic information

¤ Step 1 (static information)
• Obtain invariant template map by techniques based on

abstract interpretation

¤ Step 2 (static information)
• The output of step 1 is used as an initial to support constraint

based invariant generation

¤ Step 3 (dynamic information)
• Collect dynamic information by executing the program

Programming Research Laboratory

Seoul National University

Main idea

¤ Two approaches for dynamic information
• Direct approach

: use program states to compute additional constraints

• Symbolic approach

: use symbolic execution to collect sets of states

Programming Research Laboratory

Seoul National University

Key definitions

¤ Transition system
• P = (X, L, lI, T, lε)

• X : a set of variables

• L : a set of control loctions

• lI : initial location, lI∈L

• lε : error location, lε∈L

• T : a set of transitions

• τ : (l, ρ, l „), τ∈T, l, l „∈L

• ρ : transition relation

Programming Research Laboratory

Seoul National University

Key definitions

¤ Computation of the program P
• a sequence of pair <l0, s0>, <l1, s1>, …

• l0 = lI , li∈L

• si : a valuation of the variables X, also called a state

¤ A state s is reachable
• if <l, s> appears in some computation.

¤ The program is safe
• if the error location lε does not appear in any computation

Programming Research Laboratory

Seoul National University

Key definitions

¤ Path of the program P
• a sequence of transitions

• π = (l0, ρ0, l1), (l1, ρ1, l2), …

• l0 = lI , li∈L

• ρi : transition relation

¤ Error path (or Counterexample path)
• A path that ends at the error location.

Programming Research Laboratory

Seoul National University

Remind main idea

¤ Step 1 (static information)
• Obtain invariant template map by techniques based on

abstract interpretation

¤ Step 2 (static information)
• Step 1‟s output is used as an initial to support constraint

based invariant generation

¤ Step 3 (dynamic information)
• Collect dynamic information by executing the program

Programming Research Laboratory

Seoul National University

Constraint-based Invariant Generation

¤ Basic algorithm

input

P : program; η : invariant template map with parameters P
vars

Ψ : static constraint

begin

Ψ:= InvGenSystem(P,η)

/* algorithm for constraint simplification in here*/

if P* := Solve(Ψ) succeeds then

return “inductive invariant map η[P*/P]”

else

return “no invariant map for given template”

end

Programming Research Laboratory

Seoul National University

Constraint-based Invariant Generation

¤ A function InvGenSystem
• τ : (l, ρ, l „)

• ρ = (x ≤ y ˄ x' = x + 1 ˄ y' = y)

• φ= (α + αxx + αyy ≤ 0 ˄ β + βxx + βyy ≤ 0) at location l

• ψ = (γ + γxx + γyy ≤ 0) at location l „

• starting point : φ ˄ ρ → ψ '

• eliminate the prime : φ ˄ x ≤ y → ψ[x + 1 / x]

• rewrite in the matrix form :

y

x
β

α

y

x
ββ yxyx

yx

1

011

Programming Research Laboratory

Seoul National University

Constraint-based Invariant Generation

¤ A function InvGenSystem
• obtain the constraint :

011

.0 1 βββ yxyx

yx

Programming Research Laboratory

Seoul National University

Constraint Simplification

¤ Use additional dynamic information to restrict the
search space.

¤ INVGEN + TEST : Simplification from tests
• Create additional constraints by using program executions.

¤ INVGEN + SYMB : Simplification from symbolic
execution

• Create additional constraints by performing symbolic
execution along a collection of program paths.

Programming Research Laboratory

Seoul National University

input

P : program; η : invariant template map with parameters P
vars

Ψ : static constraint; Φ : dynamic constraint

begin

1 Ψ := InvGenSystem(P,η)

2 Φ := true

3 repeat

4 s1, …., sn := GenerateAndRunTest(P)

5 if sn (pc) = lε then

6 return “counterexample s1, …., sn”

7 else

8 Φ := Φ ˄ Λ (η.si(pc))[si / X]

9 until no more tests

10 if P* := Solve(Ψ, Φ) succeeds then

11 return “inductive invariant map η[P*/P]”

12 else

13 return “no invariant map for given template”

end

INVGEN + TEST : Simplification from tests

n

i=1

Programming Research Laboratory

Seoul National University

INVGEN + TEST : Simplification from tests

¤ An example about dynamic constraint
• t(x,y) : α x + β y + γ ≤ 0 at location l

• concrete state : x = 35, y = -9

• obtain the constraint : 35α - 9β + γ ≤ 0

Programming Research Laboratory

Seoul National University

INVGEN + SYMB : Simplification from symbolic
execution

3 repeat

4.1 π := GeneratePath(P)

4.2 (* πi = (li, ρi, li+1) for 1 ≤ i ≤ n *)

5 if ln+1 = lε and π is feasible then

6 return “counterexample π”

7 else

8.1 φ := (∃X. ρ1 ◦ … ◦ ρn)[X/X′]

8.2 Φ := Φ ˄ Encode(φ → η.ln+1)

9 until no more paths

Programming Research Laboratory

Seoul National University

¤ An example about dynamic constraint

• t(x,y,z) : α + αxx + α yy + α zz ≤ 0 ˄ β + β xx + β yy + β zz ≤ 0

• a set of states : φ = (-x ≤ 0 ˄ -y ≤ 0 ˄x + y - z ≤ 0)

• the encoding of the implication φ → t obtains the constraint :

INVGEN + SYMB : Simplification from symbolic execution

0

0

0

111

010

001

.0
Ζ

Ζ

yx

yx

Programming Research Laboratory

Seoul National University

Conclusion

¤ If Algorithm INVGEN+TEST or INVGEN+SYMB on
input program P and invariant template map η
returns

• (a) “counterexample s1, … sn”

○ there is an execution of the program that reaches the error

location.

• (b) “inductive invariant map η*”

○ η* is an invariant map for program P, and the program P is

safe.

• (c) “no invariants with template η”

○ there is no invariant map for program P with the given

invariant template map η.

Programming Research Laboratory

Seoul National University

Conclusion

¤ Relation between this paper and our corpus
project

• What is the method that can use the dynamic information
like this paper‟s approach?

Programming Research Laboratory

Seoul National University

Q&A

Thank you!

