
A Hoare Logic for the Coinductive
Trace-Based Big-Step Semantics of While

Keiko Nakata
Institute of Cybernetics, Tallinn University of Technology

Joint work with Tarmo Uustalu

November 2009



Motivation

There are important programs that are not supposed to
terminate, e.g. operating systems and data base systems.

Our motivation is to set up a foundational framework that
accounts for both terminating and non-terminating program
runs.

Applications include

• certified compilers, program transformations
• information flow analysis



Results, so far

We study the While language.

We have devised:

• trace-based big-step relational semantics, as well as
small-step relational and big-step & small-step functional.
They are all defined coinductively and equivalent
constructively.

(Appeared in TPHOLs 2009)
• Hoare logic, proved sound and complete.

All results are formalized in a fully constructive setting of Coq.



My talk

Today I will present

• the big-step relational semantics
• the Hoare logic



The While language

x , y , z ∈ Variables
e ∈ Expressions
v ∈ Integers
σ ∈ Variables → Integers

statement s ::= skip | s0; s1 | x := e
| if e then st else sf | while e do st



Notations
The While language

σ[x 7→ v ] denotes the update of σ with v at x .

JeKσ evaluates e in the state σ.
E.g. Jx + yK{x 7→ 2, x 7→ 2} = 4

σ |= e denotes that e evaluates to truth (non-zero) in σ.
E.g {x 7→ 2, x 7→ 2} |= x + y

σ 6|= e denotes that e evaluates to falsity (zero) in σ.
E.g {x 7→ 2, x 7→ 2} 6|= x − y



Traces

Traces τ ∈ trace are possibly infinite non-empty sequences of
states, defined coinductively by:

〈σ〉 ∈ trace
τ ∈ trace

σ :: τ ∈ trace

We define bisimilarity (equivalence relation) between traces,
τ ≈ τ ′, coinductively by:

〈σ〉 ≈ 〈σ〉
τ ≈ τ ′

σ :: τ ≈ σ :: τ ′

We think of bisimilar traces as equal, i.e. traces as a setoid with
bisimilarity as the equivalence relation.



Finiteness and infiniteness
Traces

We define convergence of τ at σ, τ ↓ σ, inductively:

〈σ〉 ↓ σ
τ ↓ σ

σ′ :: τ ↓ σ

Finiteness of τ , finite τ , is defined as

finite τ if ∃σ.τ ↓ σ

We define infiniteness of τ , infinite τ , coinductively:

infinite τ
infinite σ :: τ



Finiteness and infiniteness (2)
Traces

Working in a constructive logic, our trace predicates have a rich
structure.

• ¬ finite |= infinite
• ¬ infinite |= finite is not probable constructively.

(But is provably classically.)

where P |= Q abbreviates ∀τ.P τ ⇒ Q τ .

In particular we do not have

∀τ.finite τ ∨ infinite τ

(I.e. finiteness is undecidable.)



Big-step semantics
The judgment forms

The evaluation (s, σ)⇒ τ expresses that running a statement s
from a state σ produces a trace τ .

E.g.

(x := 1 + 3; y := 2, (0,0))⇒ (0,0) :: (4,0) :: 〈(4,2)〉

(x := 1; while true do x := x + 1, (0))⇒
(0) :: (1) :: (1) :: (2) :: (2) :: (3) :: (3) . . .

(s, σ)⇒ τ is defined by mutual coinduction together with the
extended evaluation (s, τ) ∗⇒ τ ′.



The judgment forms
Big-step semantics

(s, τ) ∗⇒ τ ′ expresses that running a statement s from the last
state (if it exists) of an already accumulated trace τ results in a
total trace τ ′. Or:

(s, σ)⇒ τ

(s, 〈σ〉) ∗⇒ τ

(s, τ) ∗⇒ τ ′

(s, σ :: τ)
∗⇒ σ :: τ ′

E.g.

(x := 1 + 3; y := 2, (0,0) :: 〈(0,1)〉) ∗⇒
(0,0) :: (0,1) :: (4,1) :: 〈(4,2)〉



Inference rules
Big-step semantics

(x := e, σ)⇒ σ :: 〈σ[x 7→ JeKσ]〉

(skip, σ)⇒ 〈σ〉
(s0, σ)⇒ τ (s1, τ)

∗⇒ τ ′

(s0; s1, σ)⇒ τ ′

σ |= e (st , σ :: 〈σ〉) ∗⇒ τ

(if e then st else sf , σ)⇒ τ

σ 6|= e (sf , σ :: 〈σ〉) ∗⇒ τ

(if e then st else sf , σ)⇒ τ

σ |= e (st , σ :: 〈σ〉) ∗⇒ τ (while e do st , τ)
∗⇒ τ ′

(while e do st , σ)⇒ τ ′

σ 6|= e

(while e do st , σ)⇒ σ :: 〈σ〉

(s, σ)⇒ τ

(s, 〈σ〉) ∗⇒ τ

(s, τ) ∗⇒ τ ′

(s, σ :: τ)
∗⇒ σ :: τ ′



The effect of the extended evaluation (s, τ) ∗⇒ τ ′

(s, τ) ∗⇒ τ ′ is carefully crafted so that

• if τ is finite, then s is run from the last state of τ and τ ′ is
obtained from τ by appending the trace produced by s;

• if τ is infinite, then (s, τ) ∗⇒ τ ′ is derivable for any τ ′

bisimilar to τ , in particular for τ .

This design has the desirable consequence that, if (s0, σ)⇒ τ

and τ is infinite, then (s1, τ)
∗⇒ τ is derivable and further so is

(s0; s1, σ)⇒ τ .

So, s1 is not run when s0 diverges.

Moreover we need not decide if τ is finite or infinite, which we
cannot decide constructively.



Design issues

Testing guards of the if- and while-statements augments the
trace, but skip does not.

This is good for several reasons:

• skip is a unit of sequential composition.

∀s, σ, τ , (s; skip, σ)⇒ τ iff (skip; s, σ)⇒ τ iff (s, σ)⇒ τ

• A notion of small steps that fully agrees with the
textbook-style inductive small-step semantics.

• Any while-loop always progresses.

(while true do skip, σ)⇒ σ :: σ :: σ :: . . .



What if ... (1)
Design issues

If we give up progress of loops and modify the rules for the
while-loop to take the forms

σ |= e (st , σ)⇒ τ (while e do st , τ)
∗⇒ τ ′

(while e do st , σ)⇒ τ ′
σ 6|= e

(while e do st , σ)⇒ 〈σ〉

then we get anomalies.

E.g.

(while true do skip, σ)⇒ 〈σ〉

(while true do skip; x := 17, σ)⇒ σ :: 〈σ[x 7→ 17]〉

Indeed we have (while true do skip, σ)⇒ τ for any τ !



What if ... (2)
Design issues

∀τ.finite τ ∨ infinite τ

is not provable constructively.

If the semantics is given as the sum of

- an inductive trace-based semantics for terminating runs, and

- a coinductive trace-based semantics for non-terminating runs,

then we would stumble upon the halting problem.



Technical results (1)

The evaluation relation is a setoid predicate (insensitive to
bisimilarity):

Lemma
For any σ, s, τ, τ ′, if (s, σ)⇒ τ and τ ≈ τ ′ then (s, σ)⇒ τ ′.

It is deterministic (up to bisimilarity):

Lemma
For any σ, s, τ and τ ′, if (s, σ)⇒ τ and (s, σ)⇒ τ ′ then τ ≈ τ ′.



Technical results (2)

It is equivalent to the textbook-style coinductive small-step
counterpart:

Proposition
For any s, σ and τ , (s, σ)⇒ τ iff (s, σ) τ .

It agrees with the standard inductive state-based semantics.

Proposition
For any s, σ, σ′, existence of τ such that (s, σ)⇒ τ and τ ↓ σ′ is
equivalent to (s, σ)⇒ind σ′.



Hoare logic

Our Hoare-triple {U} s {P} consists of

U : predicate on states
s : statement
P : predicate on traces

{U} s {P} means that running a statement s from a initial state
σ satisfying U produces a total trace τ satisfying P.



Notations

U,V : state predicates
P,Q : trace predicates

σ |= U expresses that σ satisfies U.
τ |= P expresses that τ satisfies P.

Logical consequences and equivalence:

∀σ (σ |= U → σ |= V )

U |= V
∀τ (τ |= P → τ |= Q)

P |= Q
P |= Q Q |= P

P ⇔ Q



Assertions

σ |= U
〈σ〉 |= 〈U〉

σ |= U
σ :: 〈σ〉 |= 〈U〉2

σ |= U
σ :: (σ[x 7→ e]) |= U[x 7→ e]

〈σ〉 |= P
〈σ〉 |=〈σ〉 P

σ :: τ |= P
σ :: τ |=〈σ〉 P

τ ′ |=τ P

σ :: τ ′ |=σ::τ P

τ ′ |= P τ |=τ ′ Q
τ |= P ∗∗Q

τ |= 〈true〉
τ |= P†

τ ′ |= P τ |=τ ′ P†

τ |= P†



Singleton operator 〈U〉
Assertions

〈U〉 is a trace predicate that is true of a singleton trace given by
a state satisfying U:

σ |= U
〈σ〉 |= 〈U〉



Doubleton operator 〈U〉2
Assertions

〈U〉2 is a trace predicate that is true of a doubleton trace of an
identical state satisfying U:

σ |= U
σ :: 〈σ〉 |= 〈U〉2



Update operator U[x 7→ e]
Assertions

U[x 7→ e] is a trace predicate that is the strong postcondition of
x := e for the precondition U:

σ |= U
σ :: 〈σ[x 7→ e]〉 |= U[x 7→ e]



Chop operator P ∗∗Q
Assertions

Roughly, τ |= P ∗∗Q holds when τ is split into two parts τ ′ and
τ ′′ such that the last state of τ ′ is the first state of τ ′′ and the
prefix τ ′ (resp. the postfix τ ′′) satisfies P (resp. Q):

τ ′ |= P τ |=τ ′ Q
τ |= P ∗∗Q

τ |=τ ′ P first traverses τ ′, which must be a prefix of τ , then
checks validity of P against the postfix:

〈σ〉 |= P
〈σ〉 |=〈σ〉 P

σ :: τ |= P
σ :: τ |=〈σ〉 P

τ ′ |=τ P

σ :: τ ′ |=σ::τ P



Chop operator P ∗∗Q (2)
Assertions

〈σ〉 |= P
〈σ〉 |=〈σ〉 P

σ :: τ |= P
σ :: τ |=〈σ〉 P

τ ′ |=τ P

σ :: τ ′ |=σ::τ P

Importantly τ |=τ ′ P necessarily holds when τ ′ is infinite.

But we need not decide if τ ′ is infinite or not.

Intuitively we delay checking of P until the last state of τ ′ is hit.

Consequently τ |= P ∗∗Q has the desirable property that if
infinite τ and τ |= P then τ |= P ∗∗Q for any Q.



Iteration operator P†
Assertions

P† is a trace predicate that is true of a trace that is zero or
possibly infinite concatenations of traces, each of which
satisfies P:

τ |= 〈true〉
τ |= P†

τ ′ |= P τ |=τ ′ P†

τ |= P†

In particular we have

P† ⇔ 〈true〉 ∨ (P ∗∗ P†)



Inference rules of the Hoare logic

{U} x := e {U[x 7→ e]} {U} skip {〈U〉}

{U} s0 {P ∗∗ 〈V 〉} {V} s1 {Q}
{U} s0; s1 {P ∗∗Q}

{e ∧ U} st {P} {¬e ∧ U} sf {P}
{U} if e then st else sf {〈U〉2 ∗∗ P}

U |= I {e ∧ I} st {P ∗∗ 〈I〉}
{U} while e do st {〈U〉2 ∗∗ (P ∗∗ 〈I〉2)† ∗∗ 〈¬e〉}

U |= U ′ {U ′} s {P ′} P ′ |= P
{U} s {P}

∀z. {U} s {P}
{∃z.U} s {∃z.P}



Soundness and Completeness

Proposition (Soundness)
For any s,U,P, σ, τ , if {U} s {P} and σ |= U and (s, σ)⇒ τ ,
then τ |= P.

Proposition (Completeness)
For any s,U,P, if for all σ, τ , σ |= U and (s, σ)⇒ τ imply τ |= P,
then {U} s {P}.



Embedding of the standard Hoare logics

Proposition (Partial correctness)
For any U, s and V if {U} s {V} is derivable in the partial
correctness Hoare logic, then {U} s {true ∗∗ 〈V 〉}.

Proof.
By induction on the derivation of {U} s {V}.

Proposition (Total correctness)
For any U, s and V if {U} s {V} is derivable in the total
correctness Hoare logic, then {U} s {finite ∗∗ 〈V 〉}.

Proof.
By induction on the derivation of {U} s {V}.



Example

Our logic is expressive enough to perform the same analyses
that the partial and total correctness Hoare logics can perform
without additional verification overhead.

The expressivity of our logic goes beyond that of these
standard logics.

E.g. we distinguish between termination and nondivergent.

Unbounded total search fails to be terminating but is still
nondivergent.



Unbounded total search
Example

Variable B : nat → bool
Axiom B_noncontradictory: ¬(∀n.¬B n)

Search ≡ x := 0; while ¬(B x) do x := x + 1

Search fails to be terminating, but is nondivergent.

cf.
Markov’s principle: (¬(∀x ,¬B x))⇒ ∃x ,B x
is a classical tautology, but is not valid constructively.



Proof sketch
Unbounded total search is nondivergent

σ x = n B n
σ :: 〈σ〉 |= cofinally n

σ x = n ¬B n τ |= cofinally (n + 1)

σ :: σ :: τ |= cofinally n

Lemma
cofinally 0 |= ¬infinite.



Proof sketch (2)
Unbounded total search is nondivergent

{true} x := 0 {true[x 7→ 0]}

{¬B x} x := x + 1 {(¬B x)[x 7→ x + 1]}
{x = 0} while ¬B x do x := x + 1
{〈x = 0〉2 ∗∗ ((¬B x)[x 7→ x + 1] ∗∗ 〈true〉2)† ∗∗ 〈B x〉}

EE

{x = 0}while ¬B x do x := x + 1
{cofinally 0}

{true}x := 0; while ¬B x do x := x + 1
{true[x 7→ 0] ∗∗ cofinally 0}
{true}x := 0; while ¬B x do x := x + 1
{(true ∗∗ 〈B x〉) ∧ ¬infinite}



Summary & Future work

I have presented
• a trace-based coinductive big-step semantics
• a Hoare logic

Extending our framework with function calls and exceptions is
straightforward, as found in the literature.

We are now working on language-based information flow
analysis, to exploit the extra expressivity of our framework.


