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Introduction



Arian 5 (1996) - $500 million 



Orbiter (1999) - $125 million



Blaster (2003) - $1.3 billion



Blackout (2003) - $6 billion



Program verification is important!



Techniques for program verification

 Testing

 Abstract interpretation 

 Model checking

 Deductive verification

 ……



Deductive verification?

 A program verification technique using theorem 

proving

Program

Specification

Satisfy?
• Yes

• No



Problem?

 Difficult specification

 Lots of user effort

P
ro

fi
ci

e
n
cy

Spent time



Then, why?

 Can formalize and prove far-reaching properties of 

programs

 Can model the semantics of program language 

precisely

 No abstraction from unbounded data structures



Especially…

 For some small software, we need to prove complex 

properties very precisely

 A garbage collector only collects unused objects?

 A device driver always returns a valid value for every 

request?

 Important for embedded software!

 A controller always sends a control signal for physically 

possible actions?



Goal

 Develop a deductive verification tool for realistic 

programs!

 Support pointers, dynamic allocations, recursive data 

structures, ……

 Less user effort!



Previous work?



JESSIE

 A plug-in for deductive verification in Frama-C 

based on Hoare Logic [1]

 Prove that C functions satisfy specification as 

expressed in ACSL

 Automation!

 Automatic annotation generation

 Automatic proving by external tools

 Support pointer, dynamic allocation, recursive data 

structures, ……



An example: JESSIE



An example: JESSIE



JESSIE is good, but



Problem?

 Memory assertion?

 Complex proof!

 Handling alias [2]

 Solution?

 Separation Logic!



Separation Logic

 An extension of Hoare Logic by John C. Reynolds [3] 

with separating connectives

 Allow specification about heap

 Capture the insight of informal argument by “Local 

reasoning”



An example: Memory assertion

{ … }

int* create_int_cell() {

…

}

{ ∃n : int. \ret → n }

Does create_int_cell only allocate memory for an 

integer?



An example: List reverse

b := nil

while a != nil do

k := [a + 1];

[a + 1] := b;

b := a;

a := k;

end while

a

b

k

……

……

Reverse (hd::tl) l = Reverse tl (hd::l)



Loop invariant:

No sharing between a, b

while a != nil do

k := [a + 1];

[a + 1] := b;

b := a;

a := k;

end while

a

b

……

k

Cycle!



Hoare Logic vs. Separation Logic

while a != nil do

k := [a + 1];

[a + 1] := b;

b := a;

a := k;

end while

Hoare Logic:

(∃α, β. List α a ∧ List β b ∧ α0
R = αR． β) ∧

(∀k. Reach(a, k) ∧ Reach(b, k) ⇒ k = nil)

Separation Logic:

(∃α, β. List α a * List β b ∧ α0
R = αR． β)



Hoare Logic vs. Separation Logic

while a != nil do

k := [a + 1];

[a + 1] := b;

b := a;

a := k;

end while

Hoare Logic:

(∃α, β. List α a ∧ List β b ∧ α0
R = αR． β) ∧ List γ x

(∀k. Reach(a, k) ∧ Reach(b, k) ⇒ k = nil) ∧
(∀k. Reach(x, k) ∧ (Reach(a, k) ∨ Reach(b, k)) 

⇒ k = nil)
Separation Logic:

(∃α, β. List α a * List β b * List γ x ∧ α0
R = αR． β) 

What happens there exists another list x unrelated to list a, b?

(∃α, β. List α a * List β b ∧ α0
R = αR． β)

Frame rule!



Goal (refined)

 Develop a deductive verification tool for realistic 

programs

 Use the idea of Separation Logic



Related works

 Interactive program verification with Separation 

Logic [4, 5]

 Embed separation logic in existing interactive theorem 

prover such as Coq and HOL/Isabelle

 Automated program verification with Separation 

Logic

 Support limited data structures such as linked lists and 

trees [6]

 Support limited form of specifications [7]



Currently……

 Automation!

 Develop a theoretic foundation for automated proving 

using the idea of Separation Logic, which is  a model of 

Boolean BI [8]



Current roadmap

Cut-free sequent calculus for BI [9]

Contraction-free sequent calculus for weak 
BI

Cut-free sequent calculus for Boolean BI

Cut-free sequent calculus for Boolean BI-
like Logic 

A variant of Separation Logic for program 
verification



Cut-free contraction-free sequent calculus for 

weak BI





Cut-free sequent calculus for Boolean BI-like 

logic







Question?
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