
A deductive verification tool for realistic programs

ROSEAC 2010 Workshop @ Jeju

POSTECH Programming Language Laboratory

Jonghyun Park

Introduction

Arian 5 (1996) - $500 million

Orbiter (1999) - $125 million

Blaster (2003) - $1.3 billion

Blackout (2003) - $6 billion

Program verification is important!

Techniques for program verification

 Testing

 Abstract interpretation

 Model checking

 Deductive verification

 ……

Deductive verification?

 A program verification technique using theorem

proving

Program

Specification

Satisfy?
• Yes

• No

Problem?

 Difficult specification

 Lots of user effort

P
ro

fi
ci

e
n
cy

Spent time

Then, why?

 Can formalize and prove far-reaching properties of

programs

 Can model the semantics of program language

precisely

 No abstraction from unbounded data structures

Especially…

 For some small software, we need to prove complex

properties very precisely

 A garbage collector only collects unused objects?

 A device driver always returns a valid value for every

request?

 Important for embedded software!

 A controller always sends a control signal for physically

possible actions?

Goal

 Develop a deductive verification tool for realistic

programs!

 Support pointers, dynamic allocations, recursive data

structures, ……

 Less user effort!

Previous work?

JESSIE

 A plug-in for deductive verification in Frama-C

based on Hoare Logic [1]

 Prove that C functions satisfy specification as

expressed in ACSL

 Automation!

 Automatic annotation generation

 Automatic proving by external tools

 Support pointer, dynamic allocation, recursive data

structures, ……

An example: JESSIE

An example: JESSIE

JESSIE is good, but

Problem?

 Memory assertion?

 Complex proof!

 Handling alias [2]

 Solution?

 Separation Logic!

Separation Logic

 An extension of Hoare Logic by John C. Reynolds [3]

with separating connectives

 Allow specification about heap

 Capture the insight of informal argument by “Local

reasoning”

An example: Memory assertion

{ … }

int* create_int_cell() {

…

}

{ ∃n : int. \ret → n }

Does create_int_cell only allocate memory for an

integer?

An example: List reverse

b := nil

while a != nil do

k := [a + 1];

[a + 1] := b;

b := a;

a := k;

end while

a

b

k

……

……

Reverse (hd::tl) l = Reverse tl (hd::l)

Loop invariant:

No sharing between a, b

while a != nil do

k := [a + 1];

[a + 1] := b;

b := a;

a := k;

end while

a

b

……

k

Cycle!

Hoare Logic vs. Separation Logic

while a != nil do

k := [a + 1];

[a + 1] := b;

b := a;

a := k;

end while

Hoare Logic:

(∃α, β. List α a ∧ List β b ∧ α0
R = αR． β) ∧

(∀k. Reach(a, k) ∧ Reach(b, k) ⇒ k = nil)

Separation Logic:

(∃α, β. List α a * List β b ∧ α0
R = αR． β)

Hoare Logic vs. Separation Logic

while a != nil do

k := [a + 1];

[a + 1] := b;

b := a;

a := k;

end while

Hoare Logic:

(∃α, β. List α a ∧ List β b ∧ α0
R = αR． β) ∧ List γ x

(∀k. Reach(a, k) ∧ Reach(b, k) ⇒ k = nil) ∧
(∀k. Reach(x, k) ∧ (Reach(a, k) ∨ Reach(b, k))

⇒ k = nil)
Separation Logic:

(∃α, β. List α a * List β b * List γ x ∧ α0
R = αR． β)

What happens there exists another list x unrelated to list a, b?

(∃α, β. List α a * List β b ∧ α0
R = αR． β)

Frame rule!

Goal (refined)

 Develop a deductive verification tool for realistic

programs

 Use the idea of Separation Logic

Related works

 Interactive program verification with Separation

Logic [4, 5]

 Embed separation logic in existing interactive theorem

prover such as Coq and HOL/Isabelle

 Automated program verification with Separation

Logic

 Support limited data structures such as linked lists and

trees [6]

 Support limited form of specifications [7]

Currently……

 Automation!

 Develop a theoretic foundation for automated proving

using the idea of Separation Logic, which is a model of

Boolean BI [8]

Current roadmap

Cut-free sequent calculus for BI [9]

Contraction-free sequent calculus for weak
BI

Cut-free sequent calculus for Boolean BI

Cut-free sequent calculus for Boolean BI-
like Logic

A variant of Separation Logic for program
verification

Cut-free contraction-free sequent calculus for

weak BI

Cut-free sequent calculus for Boolean BI-like

logic

Question?

Reference

1. Multi-prover verification of C programs, Filliâtre J.C and

Marché, C.

2. Proving pointer programs in Hoare logic, Bornat, R.

3. Separation logic: A logic for shared mutable data structures,

Reynolds, J.C.

4. Types, bytes, and separation logic, Tuch, H. and Klein, G. and

Norrish, M

5. Practical Tactics for Sepration Logic, McCreight, A.

6. Smallfoot: Modular automatic assertion checking with

separation logic, Berdine, J. and Calcagno, C. and O’Hearn

P.W.

Reference

7. Separation Logic Verication of C Programs with an SMT

Solver, Matko, B. and Matthew, P. and Wolfram, S.

8. BI as an assertion language for mutable data structures,

Ishtiaq, S.S. and O'Hearn, P.W.

9. The logic of bunched implications, O’Hearn, P.W. and Pym,

D.J.

