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- Introduction
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Program verification is important!

Thiz spstem iz shutting down, Please save all
work, in progresz and log off. Any unsaved
changes will be lozt. This shutdown waz
initiated by MT AUTHORITYSYS TEM

Time before shutdown ;- 00:00:42

Message

“indows must now restart because the
Fiemoate Procedure Call [RPC) service
terminated unexpectediy




Techniques for program verification
N I —

01 Testing

0 Abstract interpretation

-1 Model checking

1 Deductive verification



Deductive verification?
B

o A program verification technique using theorem
proving

Satisfy?

* Yes

* No




Problem?
N

1 Difficult specification

Proficiency

Spent time

1 Lots of user effort



Then, why?

Can formalize and prove far-reaching properties of
programs

Can model the semantics of program language
precisely

No abstraction from unbounded data structures



Especially...

For some small software, we need to prove complex
properties very precisely

A garbage collector only collects unused objects?

A device driver always returns a valid value for every
request?

Important for embedded software!

A controller always sends a control signal for physically

possible actions?




Goal

Develop a deductive verification tool for realistic
programs!

Support pointers, dynamic allocations, recursive data

structures, ......

Less user effort!



- Previous work?



JESSIE

A plug-in for deductive verification in Frama-C
based on Hoare Logic [1]

Prove that C functions satisfy specification as
expressed in ACSL

Automation!

Automatic annotation generation

Automatic proving by external tools

Support pointer, dynamic allocation, recursive data
structures, ......




An example: JESSIE
—

/*@ predicate min_over array{int *arr, int len, int min) =
@ “forall integer i; 0 <= i < len ==> arr[min] <= arr([i];

@* /

/*@ requires 0 < len && ‘valid rangef{arr,Q,len-1);
@ ensures 0 <= ‘result < len;
@ ensures min over arraviarr,len, \result);

@* /
int get_min{(int* arr, int len) {
int min = 0;

/*@ loop invariant 0 <= i <= len && 0 <= min < len;
@ loop invariant min over array(arr,i,min);

@ loop wariant len - 1i;
@*/
for (int i = 0; i < len; ++i) {
if {(arr[i] < arr[min]) { min = i; }

return min;



An example: JESSIE

Yice‘

lAIt-Ergo Simplify| Simplify| Z3
Proof obligations 0.8 154 |154 (1.3 |10
[ (Graph) (ss)| (ss
Function get_min s ' :
Default behavior :
1. initialization of loop invariant & = = : = _—
2. initialization of loop invariant P = ) : L =
3. initialization of loop invariant & = = e
4. initialization of loop invariant & = = R 1 R
5, initialization of loop invariant & = o =
6. preservation of loop invariant =~ ¢ = Q : Q -
7. preservation of loop invariant ¢ = L = = =
8. preservation of loop invariant = ¢ = &8 = P
9. preservation of loop invariant ¢ = =
10. preservation of loop invariant = o e S
11, variant decrease & o = oo o
12. variant decrease & = =
13. preservation of loop invariant [} = LY L =
14. preservation of loop invariant [} = Y i e
15. preservation of loop invariant [} = L g =
16. preservation of loop invariant [} = & i -
17. preservation of loop invariant [} = LY i -
18, variant decrease = = = = @@=




- JESSIE is good, but



Problem?
N

1 Memory assertion?

1 Complex proof!
=1 Handling alias [2]
1 Solution?

o Separation Logic!



Separation Logic

An extension of Hoare Logic by John C. Reynolds [3]
with separating connectives

Allow specification about heap

Capture the insight of informal argument by “Local
reasoning”



An example: Memory assertion
N

(..}

int* create_int_cell() {

}

{ dn:int. \ret > n}

Does create_int_cell only allocate memory for an
integer?



An example: List reverse
N
b := nil
while a = nil do K
k:=[a+ 1];
[a+ 1] := b;

b:= q;

a:— k;

end while Reverse (hd:tl) | = Reverse tl (hd::l)



Loop invariant:

No sharing between q, b
-h

while a = nil do K
k:=[a+ 1];
[a+ 1]:= b;
b := a; b Cycle!
a:= k;

end while



Hoare Logic vs. Separation Logic
N

Hoare Logic:
(da, B.Listaa A ListBb Aot =ak- B) A

i = ni
while a 1=nil do - "2 " i k0 A Reachib, k) = k = nil

k := [d + ]];

[q + ]] = b; Separation Logic:

b:= a: (Ja, B.Listaa *List b A agt = af - P)
¢ ’

a:— k;

end while



Hoare Logic vs. Separation Logic

Hoare Logic:
(Ja,B.Listaa A ListBb A af=af - B) A Listy x
(V k. Reach(q, k) /A Reach(b, k) = k = nil) A
k .= [q + ]], (V' k. Reach(x, k) /\ (Reach(a, k) VV Reach(b, k))
= k = nil)

while a 1= nil do

[a+ 1] := b; Separation Logic:
(da, B. Listaa*List Bb *Listy x A ot =ar - B)

b = d; ﬁ Frame rulel
qQ := k; (Jo, B. Listaoa * List Bb A aR=af - B)
end while

What happens there exists another list x unrelated to list a, b?



Goal (refined)

Develop a deductive verification tool for realistic
programs

Use the idea of Separation Logic




Related works

Interactive program verification with Separation
Logic [4, 5]

Embed separation logic in existing interactive theorem
prover such as Coq and HOL/Isabelle

Automated program verification with Separation
Logic

Support limited data structures such as linked lists and
trees [6]

Support limited form of specifications [7]



Currently......

Automation!

Develop a theoretic foundation for automated proving
using the idea of Separation Logic, which is a model of

Boolean Bl [8]



Current roadmap
N

Cut-free sequent calculus for Bl [?]

Contraction-free sequent calculus for weak
BI

Cut-free sequent calculus for Boolean B

Cut-free sequent calculus for Boolean BI-
like Logic 3

A variant of Separation Logic for program
verification




Cut-free contraction-free sequent calculus for

weak Bl
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Cut-free sequent calculus for Boolean Bl-like

logic
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Theorem 2.2 (cut elimination).

If WA —pg A; V] and w[A"; A —g V'], then w[A; A" —p ;U]



Question?
] —
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