A deductive verification tool for realistic programs

ROSEAC 2010 Workshop @ Jeju
POSTECH Programming Language Laboratory
Jonghyun Park

- Introduction

Arian 5 (1996) - $500 million

Orbiter (1999) - $125 million

Blaster (2003) - $1.3 billion

N

|f55rstem Shutdown B

work in progrezs and log off. Any unzaved
changes will be logt. Thig shutdown waz
initiated by MT AUTHORITYSYS TEM

0 Thiz system iz shutting down. Pleaze zave all

Time before shutdown : 00:00; 42

Mesrzage
Windows must now restart becauze the
Remaote Procedure Call [RPC) zervice
terminated unexpectedly

Blackout (2003) - $6 billion

5eH AT ACATIICS AZCHCY

"DMSP F15 ‘
15 August 2003

0114Z -~ |

~T7 hrs after'{a,Blaokout

Montreal

Boston is
55

~
unchanged

-. Long Island is

MUCH reduced

Program verification is important!

Thiz spstem iz shutting down, Please save all
work, in progresz and log off. Any unsaved
changes will be lozt. This shutdown waz
initiated by MT AUTHORITYSYS TEM

Time before shutdown ;- 00:00:42

Message

“indows must now restart because the
Fiemoate Procedure Call [RPC) service
terminated unexpectediy

Techniques for program verification
N I —

01 Testing

0 Abstract interpretation

-1 Model checking

1 Deductive verification

Deductive verification?
B

o A program verification technique using theorem
proving

Satisfy?

* Yes

* No

Problem?
N

1 Difficult specification

Proficiency

Spent time

1 Lots of user effort

Then, why?

Can formalize and prove far-reaching properties of
programs

Can model the semantics of program language
precisely

No abstraction from unbounded data structures

Especially...

For some small software, we need to prove complex
properties very precisely

A garbage collector only collects unused objects?

A device driver always returns a valid value for every
request?

Important for embedded software!

A controller always sends a control signal for physically

possible actions?

Goal

Develop a deductive verification tool for realistic
programs!

Support pointers, dynamic allocations, recursive data

structures,

Less user effort!

- Previous work?

JESSIE

A plug-in for deductive verification in Frama-C
based on Hoare Logic [1]

Prove that C functions satisfy specification as
expressed in ACSL

Automation!

Automatic annotation generation

Automatic proving by external tools

Support pointer, dynamic allocation, recursive data
structures,

An example: JESSIE
—

/*@ predicate min_over array{int *arr, int len, int min) =
@ “forall integer i; 0 <= i < len ==> arr[min] <= arr([i];

@* /

/*@ requires 0 < len && ‘valid rangef{arr,Q,len-1);
@ ensures 0 <= ‘result < len;
@ ensures min over arraviarr,len, \result);

@* /
int get_min{(int* arr, int len) {
int min = 0;

/*@ loop invariant 0 <= i <= len && 0 <= min < len;
@ loop invariant min over array(arr,i,min);

@ loop wariant len - 1i;
@*/
for (int i = 0; i < len; ++i) {
if {(arr[i] < arr[min]) { min = i; }

return min;

An example: JESSIE

Yice‘

lAIt-Ergo Simplify| Simplify| Z3
Proof obligations 0.8 154 |154 (1.3 |10
[(Graph) (ss)| (ss
Function get_min s ' :
Default behavior :
1. initialization of loop invariant & = = : = _—
2. initialization of loop invariant P =) : L =
3. initialization of loop invariant & = = e
4. initialization of loop invariant & = = R 1 R
5, initialization of loop invariant & = o =
6. preservation of loop invariant =~ ¢ = Q : Q -
7. preservation of loop invariant ¢ = L = = =
8. preservation of loop invariant = ¢ = &8 = P
9. preservation of loop invariant ¢ = =
10. preservation of loop invariant = o e S
11, variant decrease & o = oo o
12. variant decrease & = =
13. preservation of loop invariant [} = LY L =
14. preservation of loop invariant [} = Y i e
15. preservation of loop invariant [} = L g =
16. preservation of loop invariant [} = & i -
17. preservation of loop invariant [} = LY i -
18, variant decrease = = = = @@=

- JESSIE is good, but

Problem?
N

1 Memory assertion?

1 Complex proof!
=1 Handling alias [2]
1 Solution?

o Separation Logic!

Separation Logic

An extension of Hoare Logic by John C. Reynolds [3]
with separating connectives

Allow specification about heap

Capture the insight of informal argument by “Local
reasoning”

An example: Memory assertion
N

(..}

int* create_int_cell() {

}

{ dn:int. \ret > n}

Does create_int_cell only allocate memory for an
integer?

An example: List reverse
N
b := nil
while a = nil do K
k:=[a+ 1];
[a+ 1] := b;

b:= q;

a:— k;

end while Reverse (hd:tl) | = Reverse tl (hd::l)

Loop invariant:

No sharing between q, b
-h

while a = nil do K
k:=[a+ 1];
[a+ 1]:= b;
b := a; b Cycle!
a:= k;

end while

Hoare Logic vs. Separation Logic
N

Hoare Logic:
(da, B.Listaa A ListBb Aot =ak- B) A

i = ni
while a 1=nil do - "2 " i k0 A Reachib, k) = k = nil

k := [d +]];

[q +]] = b; Separation Logic:

b:= a: (Ja, B.Listaa *List b A agt = af - P)
¢ ’

a:— k;

end while

Hoare Logic vs. Separation Logic

Hoare Logic:
(Ja,B.Listaa A ListBb A af=af - B) A Listy x
(V k. Reach(q, k) /A Reach(b, k) = k = nil) A
k .= [q +]], (V' k. Reach(x, k) /\ (Reach(a, k) VV Reach(b, k))
= k = nil)

while a 1= nil do

[a+ 1] := b; Separation Logic:
(da, B. Listaa*List Bb *Listy x A ot =ar - B)

b = d; ﬁ Frame rulel
qQ := k; (Jo, B. Listaoa * List Bb A aR=af - B)
end while

What happens there exists another list x unrelated to list a, b?

Goal (refined)

Develop a deductive verification tool for realistic
programs

Use the idea of Separation Logic

Related works

Interactive program verification with Separation
Logic [4, 5]

Embed separation logic in existing interactive theorem
prover such as Coq and HOL/Isabelle

Automated program verification with Separation
Logic

Support limited data structures such as linked lists and
trees [6]

Support limited form of specifications [7]

Currently......

Automation!

Develop a theoretic foundation for automated proving
using the idea of Separation Logic, which is a model of

Boolean Bl [8]

Current roadmap
N

Cut-free sequent calculus for Bl [?]

Contraction-free sequent calculus for weak
BI

Cut-free sequent calculus for Boolean B

Cut-free sequent calculus for Boolean BI-
like Logic 3

A variant of Separation Logic for program
verification

Cut-free contraction-free sequent calculus for

weak Bl

A atomic i A atomic

A— A it Aa— 4 Init
5(A) = C 5(A) = C
W.’ WH
SA)—C "V 5(A (k) — C
A=T B sy =ctt
AASB=A JAMADBB)—C AA=B
5(AADSB)— C A —=a-B -k
0(A; B AN B) = C / A=A A— B
SANB) —C A—anp M
S(A,AVB) = C §(B;AV B) = C
(A;) (B;) v A=A _p _A=B .
5(AV B) — C A— AVB A— AV B
A=A §NB)=C 1=4 SAB=C A=A §B)=C)
SWCA AN AB) —C W A=B) =¢ L swep aoB)—=c ¢
A, A— B S(A4B)=C
A—A—=+B " §(A+B)—C "

A= A &I’:}Btﬂ | — A A—2D5 A=— A |—8

WC[A, A — A« B A— AxB T T A= AxB *B

Cut-free sequent calculus for Boolean Bl-like

logic

A atomie

P E—
W[A —pg U] WA —pg VU] o wAAAT —p U c wlA —p U A A]
W[A;A" —g U] WA —p U; 4] w[A; A" ——pg V] WA —p T; 4]
w[A —p V] w[A —pg A; V] w[A; A —p V]
1L 1R - L -R
w[l —p | WA —g U; 1] w[A;—A —p V] wW[A —g —A; P
w[A; A; B —g ¥ WA —p ;¥ w[A ——p B; V]
WA} ANDB —p V] N WA ——g AN B; ;0] N
WA Dy —p ¥
[1 ¥m B] L IR
W[A;] —g V] W[l —g]

WA g T3 A), (A —g U); A" —sg U] W[B; A" —g U]
W[(A" —p V'), (A;A B —pg ¥); A” —p V"]
(A —pg V), (A —p-)—p B
W[(A —p A —B;¥), (A" —pg ¥'); A" —pg U]
w[A; (A —p), (B —g) —8 V|
w[A; Ax B —pg VU]
WA (A —p ¥; A), (A" —p V') —p V'] wA";(A —p V), (A" —p ¥';B) —p ¥
w[&”; [& —R ‘I’)] [,&" —R "I") —B A% B: "I'”]

—x [

— I

* L

xR

Theorem 2.2 (cut elimination).

If WA —pg A; V] and w[A"; A —g V'], then w[A; A" —p ;U]

Question?
] —

Reference

Multi-prover verification of C programs, Filligtre J.C and
Marché, C.

Proving pointer programs in Hoare logic, Bornat, R.

Separation logic: A logic for shared mutable data structures,
Reynolds, J.C.

Types, bytes, and separation logic, Tuch, H. and Klein, G. and
Norrish, M

Practical Tactics for Sepration Logic, McCreight, A.

Smallfoot: Modular automatic assertion checking with

separation logic, Berdine, J. and Calcagno, C. and O’Hearn
P.W.

Reference

Separation Logic Verication of C Programs with an SMT
Solver, Matko, B. and Matthew, P. and Wolfram, S.

Bl as an assertion language for mutable data structures,
Ishtiag, S.S. and O'Hearn, P.W.

The logic of bunched implications, O’Hearn, PW. and Pym,
D.J.

