Pattern-driven Concurrency Bug Detection

for Operating System Kernel

Hong, Shin

Provable Software Laboratory
CS Dept. KAIST

2010-01-07 Concurrency Bug Detection through Improved Pattern Matching Using Semantic Information

Motivation

e Concurrent programs are Wlde|y Ex. A function from Linux MTD/UBI device driver in

ver. 2.6.27.22 (Simplified)

spread in these days.
int ubi_thread(void * u) {

for (535) {
« However, assuring correctness 1'bektE"ead-Shoﬂd-StOP(D
. . . rea .
of an md_ustr_la}l-s,lzed concurrent ST K e _ad) -
program is difficult. if (list_empty(&ubi->works) ||
: ubi->ro_mode ||
= State eXpIOS|On prObIem 'Ub-| —>thread_enab1 ed) {
. spin_unTock (&ubi->wl_lock) ;
« Operating system kernel scheduleQ) :
- High concurrency ; CLUNETILR ¢
- Large size program spin_unlock(&ubi->wl_lock) ;
- Complex data structures (?][_j"(= dg—\:[vork(ubi) ;
. . . . 1 err
- Various synchronization mechanisms if (failures++ > WL_MAX_FAILURES)
« Barriers, Instructions, etc break ;
+ 30~40% synchronization operations ¥
are not conventional binary locks. } SEMELTESERR) £
}

Concurrency Bug Detection through Improved Pattern Matching

2010-01-07 Hong,Shin @ PSWLAB

Using Semantic Information

Approach

« Verification technigues

Precision A

Model
Checking oy

approach
Lo

analysis

Scalability
 Related works

- Lock-based static analysis techniques

: RacerX, RELAY =>» Lock discipline, Partial order among locks
- Pattern-based bug detection
. Metal, FindBugs =>» Low precision (Too many false alarms)

Concurrency Bug Detection through Improved Pattern Matching

2010-01-07 Hong,Shin @ PSWLAB

Using Semantic Information

Classification of Concurrency Bugs

« We survey previous concurrency bugs from Linux file systems
— Search Linux Change Log 2.6.1 ~ 2.6.28
— Keyword: concurrency, data race, deadlock, livelock, file system, ext, etc.
— In almost 300 documents, we found 40 bug reports (patches) related to both
file system and concurrency bugs.

« We construct concurrency bug classification to analyze the bug reports.
— 5 different aspects
e Symptom:

— Data race (machine exception), Data race (Faulty state), Deadlock, Livelock.
Fault :

— Design decision violations, Incorrect use of synch. idioms, Program logic error
Resolution:

— {Insert, Remove, Change, Reorder} x {Sync. operation, Data operation, Control operation}

Related synchronization mechanism:
— Instruction, Barrier, Thread operations, Conditional variable, Lock, Complex lock,
Semaphore
Synchronization granularity:
— Kernel-level, File system-level, File-level, Inode-level

— 27 bugs are classified

Concurrency Bug Detection through Improved Pattern Matching

2010-01-07 Hong,Shin @ PSWLAB

Using Semantic Information

Concurrency Bug Patterns

 Based on the bug analysis result by the classification, we define the 10

concurrency bug patterns in order to detect unrevealed bugs
automatically by code pattern matching.
\Symptom
Sync. Race condition Deadlock Livelock
mechanism
Barrier * No Memory Barrier After Object Busy-waiting on variable
Initializations without memory barrier
: * Use atomic instructions in Non-
Instruction .
atomic ways
Thread » Unsynchronized Data Passing to |- Waiting Already Finished
operation Child Thread Thread
Conditional . .
variable Waiting with Lock Held
Binary Lock |- BU99Y Test and Test-and-Set) Roeulte;str:)%s nd Re-taking
U * Unlock before I/O Operations
* Unintended Big Kernel Lock
Complex lock .
Releasing

2010-01-07

Concurrency Bug Detection through Improved Pattern Matching

Using

Semantic Information

Hong,Shin @ PSWLAB

Semantics Augmented Pattern Matching

« Syntactic bug pattern matching results false positives for the following reasons:

— No parallel thread to be scheduled < Thread sensitive analysis

— Synchronized by other locks < Lock analysis

— Shared variable initializations without holding locks {simple points-to analysis

State space Bug pattern®l

Bu attern”l with

(reachable states)

Safe states (no error)

Bug patt

Bdg pattern
with semanti

 We improve the bug pattern matching using semantic information to refine
the bug detection results.

Concurrency Bug Detection through Improved Pattern Matching

2010-01-07 Hong,Shin @ PSWLAB

Using Semantic Information

COBET Framework

 We build a COncurrency Bug pattErn maTching framework (COBET) to support
programming template for effective bug pattern detector generation upon EDG
C/C++ parser.

e T,
Bug Pattern Detector
« Pattern*1 Detector - Average
- Pattern”2 Detector 100 LOC Bug detection result
» Pattern*3 Detector per a pattern

Abstract Syntax Tree

1
|
|
1
|
|
1
|
|
1
|
|
= 1
Semantic Info. Augmented :
1
|
|
1
|
|
1
|
|
1
|
|

Static Analysis
* Thread analysis - 53 functions [Linux Configuration
* Lock analysis - 2,900 LOC L
* Points-to analysis
B e B S)

GCC Linux Kernel
Pre-processor Source Code

EDG C Parser

Concurrency Bug Detection through Improved Pattern Matching

2010-01-07 Hong,Shin @ PSWLAB

Using Semantic Information

Semantic Information

 Thread sensitive analysis Lock analysis
([/ / R 7 / A
/ \ Lock(A) /
Lock(B) N\
AN hd AN - Lock®)
Lock(C)
! T !
/ ~ ' Unlock(C) 1/
Code Code g
tt
Match#1 P e 2 O
L J _ J

« Simple points-to analysis

s

0: proc_alloc_inode() {

1: o Non-shared: {}
2: ei = kmem_cache_alloc(... -
3: if (lei) return NULL ; Non-shared: {€1}
4: ei-gRid = NULL ; Non-shared: {e1}

No other thread can access ei->pid.

2010-01-07 Concurrency Bug Detection through Improved Pattern Matching

. . . H hi PSWLAB
Using Semantic Information ong,shin @ PS

Experiment Result

Bug pattern matching result: Buggy Test and Test-and-Set pattern

— 9 file systems in Linux kernel 2.6.30.4.
— Every file system code is analyzed together with virtual file system code

Ext2 Ext3 | Ext4 | NFS R‘;i;er Proc | SysFS | UDF | BtFS | Total

Syntactic 13 19 18 15 18 18 12 15 17 145

+ Multiple 9 14 14 9 13 11 7 10 14 101
+ Multiple

o Lol 9 11 11 9 13 11 7 10 13 94
+ Multiple

ITEEE . 6 11 11 6 10 8 4 7 11 74
+ Multiple

+ Lockset 6 8 8 6 10 7 4 7 9 65
+ Points-to

2010-01-07

Concurrency Bug Detection through Improved Pattern Matching

Using Semantic Information

Hong,Shin @ PSWLAB

70%

65%

51%

45%

Conclusion

« Current progress
- We detect and confirmed 8 unrevealed bugs from a recent Linux

Bug_patterns

Device Drivers (mtd/ubi) Unsynchronized Data Passing to Child Thread
File Systems (btrfs) Unsynchronized Data Passing to Child Thread
Device Drivers (scsi/gladxxx) Use Atomic Instructions in Non-atomic Ways
Network Stacks (atm) Buggy Test and Test-and-Set

Network Stacks (ax25) Buggy Test and Test-and-Set

Network Stacks (netfilter/ipvs) Use Atomic Instructions in Non-atomic Ways
Network Stacks (rds) Use Atomic Instructions in Non-atomic Ways
File Systems (btrfs) Waiting Already Finished Threads

* Further works
— Formal pattern description defining over both syntax and semantics
— Ultilizing analysis results for further programming and analysis
— Apply mining techniques to associate similar bug reports in order to assist

pattern extraction.

Concurrency Bug Detection through Improved Pattern Matching

2010-01-07 Hong,Shin @ PSWLAB

Using Semantic Information

