
/ 10Hong,Shin @ PSWLAB

Pattern-driven Concurrency Bug Detection

for Operating System Kernel

Hong, Shin

Provable Software Laboratory

CS Dept. KAIST

2010-01-07 1Concurrency Bug Detection through Improved Pattern Matching Using Semantic Information

/ 10Hong,Shin @ PSWLAB

Motivation

2010-01-07
Concurrency Bug Detection through Improved Pattern Matching

Using Semantic Information
2

Ex. A function from Linux MTD/UBI device driver in

ver. 2.6.27.22 (Simplified)

int ubi_thread(void * u) {

for (;;) {

if (kthread_should_stop())

break ;

spin_lock(&ubi->wl_lock) ;

if (list_empty(&ubi->works) ||

ubi->ro_mode ||

!ubi->thread_enabled) {

...

spin_unlock(&ubi->wl_lock) ;

schedule() ;

continue ;

}

spin_unlock(&ubi->wl_lock) ;

err = do_work(ubi) ;

if (err) {

if (failures++ > WL_MAX_FAILURES)

break ;

}

cond_resched() ;

}

}

• Concurrent programs are widely

spread in these days.

• However, assuring correctness

of an industrial-sized concurrent

program is difficult.

- State explosion problem

• Operating system kernel

- High concurrency

- Large size program

- Complex data structures

- Various synchronization mechanisms

• Barriers, Instructions, etc

• 30~40% synchronization operations

are not conventional binary locks.

/ 10Hong,Shin @ PSWLAB

Approach
• Verification techniques

2010-01-07
Concurrency Bug Detection through Improved Pattern Matching

Using Semantic Information
3

Model
Checking

Testing

Lock-based
static
analysis Pattern-

based
analysis

Precision

Scalability

Pattern
matching

Semantic
Information

Our
approach

• Related works

- Lock-based static analysis techniques
: RacerX, RELAY  Lock discipline, Partial order among locks

- Pattern-based bug detection
: MetaL, FindBugs  Low precision (Too many false alarms)

/ 10Hong,Shin @ PSWLAB

Classification of Concurrency Bugs

• We survey previous concurrency bugs from Linux file systems
– Search Linux Change Log 2.6.1 ~ 2.6.28

– Keyword: concurrency, data race, deadlock, livelock, file system, ext, etc.

– In almost 300 documents, we found 40 bug reports (patches) related to both

file system and concurrency bugs.

• We construct concurrency bug classification to analyze the bug reports.
– 5 different aspects

• Symptom:
– Data race (machine exception), Data race (Faulty state), Deadlock, Livelock.

• Fault :
– Design decision violations, Incorrect use of synch. idioms, Program logic error

• Resolution:
– {Insert, Remove, Change, Reorder} £ {Sync. operation, Data operation, Control operation}

• Related synchronization mechanism:
– Instruction, Barrier, Thread operations, Conditional variable, Lock, Complex lock,

Semaphore

• Synchronization granularity:
– Kernel-level, File system-level, File-level, Inode-level

– 27 bugs are classified

2010-01-07
Concurrency Bug Detection through Improved Pattern Matching

Using Semantic Information
4

/ 10Hong,Shin @ PSWLAB

Concurrency Bug Patterns

• Based on the bug analysis result by the classification, we define the 10

concurrency bug patterns in order to detect unrevealed bugs

automatically by code pattern matching.

2010-01-07
Concurrency Bug Detection through Improved Pattern Matching

Using Semantic Information
5

\Symptom

Sync.

mechanism
Race condition Deadlock Livelock

Barrier
• No Memory Barrier After Object

Initializations

• Busy-waiting on variable

without memory barrier

Instruction
• Use atomic instructions in Non-

atomic ways

Thread

operation

• Unsynchronized Data Passing to

Child Thread

• Waiting Already Finished

Thread

Conditional

variable
• Waiting with Lock Held

Binary Lock
• Buggy Test and Test-and-Set

• Unlock before I/O Operations

• Releasing and Re-taking

Outer Lock

Complex lock
• Unintended Big Kernel Lock

Releasing

/ 10Hong,Shin @ PSWLAB

Semantics Augmented Pattern Matching

• We improve the bug pattern matching using semantic information to refine

the bug detection results.

2010-01-07
Concurrency Bug Detection through Improved Pattern Matching

Using Semantic Information
6

Program behavior
(reachable states)

Safe states (no error)

State space Bug pattern#1

Bug pattern#2

Bug pattern#2

with semantics

Bug pattern#1 with

semantics

• Syntactic bug pattern matching results false positives for the following reasons:

– No parallel thread to be scheduled

– Synchronized by other locks

– Shared variable initializations without holding locks

Thread sensitive analysis

Lock analysis

Simple points-to analysis

/ 10Hong,Shin @ PSWLAB

COBET Framework
• We build a COncurrency Bug pattErn maTching framework (COBET) to support

programming template for effective bug pattern detector generation upon EDG

C/C++ parser.

2010-01-07
Concurrency Bug Detection through Improved Pattern Matching

Using Semantic Information
7

EDG C Parser

Static Analysis
• Thread analysis

• Lock analysis

• Points-to analysis

Linux Configuration

Bug Pattern Detector
• Pattern#1 Detector

• Pattern#2 Detector

• Pattern#3 Detector

…

Bug detection result

Linux Kernel

Source Code

GCC

Pre-processor

Abstract Syntax Tree

Semantic Info. Augmented

Abstract Syntax Tree

- 53 functions

- 2,900 LOC

- Average

100 LOC

per a pattern

/ 10Hong,Shin @ PSWLAB

Semantic Information
• Thread sensitive analysis

2010-01-07
Concurrency Bug Detection through Improved Pattern Matching

Using Semantic Information
8

Code

pattern

match#1

Code

pattern

match #2

Lock(A)

Lock(C)

Lock(A)

LS = {A}

LS = {A,B}

Lock(B)

Unlock(C)

• Lock analysis

0: proc_alloc_inode() {
1: ...
2: ei = kmem_cache_alloc(...
3: if (!ei) return NULL ;
4: ei->pid = NULL ;

...

Non-shared: {ei}

Non-shared: {}

Non-shared: {ei}

No other thread can access ei->pid.

• Simple points-to analysis

/ 10Hong,Shin @ PSWLAB

Experiment Result
• Bug pattern matching result: Buggy Test and Test-and-Set pattern

– 9 file systems in Linux kernel 2.6.30.4.

– Every file system code is analyzed together with virtual file system code

2010-01-07
Concurrency Bug Detection through Improved Pattern Matching

Using Semantic Information
9

Ext2 Ext3 Ext4 NFS
Reiser

FS
Proc SysFS UDF BtrFS Total

Syntactic 13 19 18 15 18 18 12 15 17 145

+ Multiple 9 14 14 9 13 11 7 10 14 101

+ Multiple

+ Lockset
9 11 11 9 13 11 7 10 13 94

+ Multiple

+ Points-to
6 11 11 6 10 8 4 7 11 74

+ Multiple

+ Lockset

+ Points-to

6 8 8 6 10 7 4 7 9 65

70%

51%

65%

45%

/ 10Hong,Shin @ PSWLAB

Conclusion

• Further works

– Formal pattern description defining over both syntax and semantics

– Utilizing analysis results for further programming and analysis

– Apply mining techniques to associate similar bug reports in order to assist

pattern extraction.

2010-01-07
Concurrency Bug Detection through Improved Pattern Matching

Using Semantic Information
10

• Current progress
- We detect and confirmed 8 unrevealed bugs from a recent Linux

Location Bug patterns

Device Drivers (mtd/ubi) Unsynchronized Data Passing to Child Thread

File Systems (btrfs) Unsynchronized Data Passing to Child Thread

Device Drivers (scsi/qla4xxx) Use Atomic Instructions in Non-atomic Ways

Network Stacks (atm) Buggy Test and Test-and-Set

Network Stacks (ax25) Buggy Test and Test-and-Set

Network Stacks (netfilter/ipvs) Use Atomic Instructions in Non-atomic Ways

Network Stacks (rds) Use Atomic Instructions in Non-atomic Ways

File Systems (btrfs) Waiting Already Finished Threads

