
Context-sensitive Pointer Analysis with

Cycle Elimination and Hash-consing

2010. 1. 7

Woongsik Choi

KAIST

ROSAEC 3rd Workshop

2

Cycle Elimination



 All have same solution

 They can be merged into single representative

 No precision is lost

 Pointer analysis

 New edges are added as more pointer values get known

 Dynamic transitive closure

 Online cycle elimination for pointer analysis

 Many approaches for context-insensitive pointer analysis

 No attempt for context-sensitive pointer analysis

3

Cloning-based Context-sensitivity (1/3)

 Get analysis result same as fully inlined program

 Infinite for recursive program

 No inlining for recursive calls

 Exponential but finite

 Fully Binary Decision Diagram (BDD) based approach

 “Cloning-Based Context-sensitive Pointer Alias Analysis

using BDD” by Whaley and Lam

 Redundancy sharing through BDD

 Encode contexts and constraints with BDD

 Not ideal for cycle elimination

4

Cloning-based Context-sensitivity (2/3)

 Fully BDD-based approach

 Separate constraint for each context

 Exponential constraints are represented by BDD

 Restrict sharing technique only for context

 Explicit set of context

 BDD-encoded context is not a must

5

Cloning-based Context-sensitivity (3/3)

 Context-sensitivity only for address-not-taken locals

 Exclusively belong to a function

 Inter-procedural effect only through parameter, return

6

Invocation Graph

void m() {

f()1;

f()2;

}

void f() {

g()3;

g()4;

}

void g() { }

Program Call graph

f

g

m

1 2

3 4

Invocation graph

m

f f

g g g g

1 2

3 4 3 4

Reversed graph for g

g

f f

m m m m

3 4

1 2 1 2

Reversed graph for f

f

m m

1 2Full set of context for f Full set of context for g

7

Context Representation

 First child/next sibling binary tree

 Encodes arbitrary forest

 Sort sibling on node label

 Siblings represent union of contexts

 Explicit for full set of context

 is polymorphic over arbitrary function

3 4

1 2 1 2

8

Hash-consing

 Sharing technique for recursive data-structure

 Every constructed term is stored in identity hash table

 Every construction of term goes through hash table

 Reuse existing term whenever found

 Structurally equal terms are physically shared

 Effective caching of operations

9

Cycle Elimination in Context-sensitive Analysis



 Form cycle only for

 Eliminate only -cycles



 Analysis is tuned to find as much as possible

 Especially with context-insensitive (CI) variables

 If one of is CI, all become CI

 More opportunities for cycle elimination

10

Experimental Results
Program Line HC-CE HC-NoCE BDD-CE BDD-NoCE

make 25K 0.2 0.8 0.5 1.3

m4 35K 1.6 16.4 1.7 16.7

gawk 50K 1.0 3.9 1.2 4.3

tar 56K 1.8 17.2 2.3 18.0

vortex 63K 0.7 1.5 9.8 30.6

sqlite 65K 36.5 156.9 116.4 302.1

gap 78K 1.9 10.6 2.2 4.6

povray 82K 11.3 52.0 37.3 104.0

perlbmk 90K 4.9 40.2 5.3 41.3

bash 127K 12.3 52.3 75.6 183.5

cfengine 129K 24.0 58.0 52.7 188.0

sshd 137K 959.0 11884.0 1090.0 13400.1

python 164K 413.5 1458.6 2555.0 4207.2

vim 224K 20.6 102.0 24.8 111.4

gcc 228K 3.1 4.1 112.9 68.1

5.4x 4.5x
5.4x 3.9x11.8x

