
Context-sensitive Pointer Analysis with

Cycle Elimination and Hash-consing

2010. 1. 7

Woongsik Choi

KAIST

ROSAEC 3rd Workshop

2

Cycle Elimination

 All have same solution

 They can be merged into single representative

 No precision is lost

 Pointer analysis

 New edges are added as more pointer values get known

 Dynamic transitive closure

 Online cycle elimination for pointer analysis

 Many approaches for context-insensitive pointer analysis

 No attempt for context-sensitive pointer analysis

3

Cloning-based Context-sensitivity (1/3)

 Get analysis result same as fully inlined program

 Infinite for recursive program

 No inlining for recursive calls

 Exponential but finite

 Fully Binary Decision Diagram (BDD) based approach

 “Cloning-Based Context-sensitive Pointer Alias Analysis

using BDD” by Whaley and Lam

 Redundancy sharing through BDD

 Encode contexts and constraints with BDD

 Not ideal for cycle elimination

4

Cloning-based Context-sensitivity (2/3)

 Fully BDD-based approach

 Separate constraint for each context

 Exponential constraints are represented by BDD

 Restrict sharing technique only for context

 Explicit set of context

 BDD-encoded context is not a must

5

Cloning-based Context-sensitivity (3/3)

 Context-sensitivity only for address-not-taken locals

 Exclusively belong to a function

 Inter-procedural effect only through parameter, return

6

Invocation Graph

void m() {

f()1;

f()2;

}

void f() {

g()3;

g()4;

}

void g() { }

Program Call graph

f

g

m

1 2

3 4

Invocation graph

m

f f

g g g g

1 2

3 4 3 4

Reversed graph for g

g

f f

m m m m

3 4

1 2 1 2

Reversed graph for f

f

m m

1 2Full set of context for f Full set of context for g

7

Context Representation

 First child/next sibling binary tree

 Encodes arbitrary forest

 Sort sibling on node label

 Siblings represent union of contexts

 Explicit for full set of context

 is polymorphic over arbitrary function

3 4

1 2 1 2

8

Hash-consing

 Sharing technique for recursive data-structure

 Every constructed term is stored in identity hash table

 Every construction of term goes through hash table

 Reuse existing term whenever found

 Structurally equal terms are physically shared

 Effective caching of operations

9

Cycle Elimination in Context-sensitive Analysis

 Form cycle only for

 Eliminate only -cycles

 Analysis is tuned to find as much as possible

 Especially with context-insensitive (CI) variables

 If one of is CI, all become CI

 More opportunities for cycle elimination

10

Experimental Results
Program Line HC-CE HC-NoCE BDD-CE BDD-NoCE

make 25K 0.2 0.8 0.5 1.3

m4 35K 1.6 16.4 1.7 16.7

gawk 50K 1.0 3.9 1.2 4.3

tar 56K 1.8 17.2 2.3 18.0

vortex 63K 0.7 1.5 9.8 30.6

sqlite 65K 36.5 156.9 116.4 302.1

gap 78K 1.9 10.6 2.2 4.6

povray 82K 11.3 52.0 37.3 104.0

perlbmk 90K 4.9 40.2 5.3 41.3

bash 127K 12.3 52.3 75.6 183.5

cfengine 129K 24.0 58.0 52.7 188.0

sshd 137K 959.0 11884.0 1090.0 13400.1

python 164K 413.5 1458.6 2555.0 4207.2

vim 224K 20.6 102.0 24.8 111.4

gcc 228K 3.1 4.1 112.9 68.1

5.4x 4.5x
5.4x 3.9x11.8x

