
Filtering Redundant Alarms in

Static Buffer-Overflow Analysis

[ROSAEC 3rd Workshop]

Youil Kim

<youil.kim@arcs.kaist.ac.kr>

Department of CS, KAIST

Introduction

Buffer overflows are often in C programs, and

some of them remain even after extensive tests.

A static analyzer can be a powerful tool to find

buffer-overflow errors in C programs.

2010-01-07 2 ROSAEC 3rd Workshop

Two Phase Buffer-Overflow Analysis

2nd Phase:

False Alarm

Filter

1st Phase: Buffer Overflow Analyzer

Points-to

Analysis

Value

Analysis

Buffer

Analysis

Buffer

Overflow

Alarms

Buffer Analysis Example:

p = {size: [5, 5], offset: [0, 1]}

p

2010-01-07 3

C Code
C Code

C Code

ROSAEC 3rd Workshop

State Refinements at Array Accesses

01: position_set grps[256];

02: MALLOC(grps[ngrps].elems, position, d->nleaves);

03: grps[ngrps].nelem = 1;

04: grps[ngrps].elems[0] = pos;

A code snippet from dfa.c in Grep 2.5.1

ngrps = [-oo,+oo]

ngrps = [0,255]

State Refinement:

0 ≤ ngrps < sizeof(grps)

2010-01-07 4 ROSAEC 3rd Workshop

State Refinements at Pointer Dereferences

01: while (*optarg && *optarg >= ’0’ && *optarg <= ’9’)

02: val = val * 8 + *optarg++ - ’0’;

A code snippet from ftp.c in Wu-ftpd 2.6.2

optarg = {offset:[-oo,+oo], size:[0,+oo]}

optarg = {offset:[0,+oo], size:[0,+oo], safe:[0,0]}

State Refinement:

0 ≤ offset < size

It provides a limited form of relational analysis:

offset + safe < size

2010-01-07 5 ROSAEC 3rd Workshop

Experimental Result

State refinements at array and pointer

accesses remove 27% of alarms from 12

target programs.

Analysis time increases less than 4%.

The target programs are from BugBench and

GNU system software.

2010-01-07 6

Shan Lu et al., BugBench: Benchmarks for Evaluating Bug

Detection Tools, In Workshop on the Evaluation of Software

Defect Detection Tools, 2005.

ROSAEC 3rd Workshop

Correctness

If an alarm is a false positive:

It is sound to assume only states which do not cause

buffer overflows.

State refinements improve the accuracy.

If an alarm indicates a possible error:

It is possible that some of hidden alarms still remain

after the error correction.

2010-01-07 7 ROSAEC 3rd Workshop

Error Correction Example

01: int Score[10];

02: int Age[10];

/* i = [0, 10] */

03: Score[i] = score; /* Cause a buffer overflow */

/* i = [0, 9] by State Refinements */

04: Age[i] = age;

2010-01-07 8

 Two choices for the error correction:

 Correcting the value of the index variable – the refinement is valid.

 Correcting the size of the array in the declaration.

ROSAEC 3rd Workshop

Conclusion

We introduce state refinements at buffer

overflows, which are analogous to compilers’

error recovery techniques.

Our approach effectively removes redundant

alarms in our fast buffer-overflow phase; it can

remove 27% of alarms.

2010-01-07 9 ROSAEC 3rd Workshop

The Effect of State Refinements on # alarms

Software # Accesses Before After % Reduced

polymorph-0.4.0 28 27 21 22%

ncompress-4.2.4 82 49 39 20%

man-1.5h1 357 313 215 31%

gzip-1.2.4 697 416 359 14%

bc-1.0.6 1,322 1,263 834 34%

tar-1.13 2,210 1,735 1,220 30%

099.go 9,843 8,972 6,888 23%

129.compress 92 64 62 3%

sed-4.0.8 3,479 2,327 1,516 35%

grep-2.5.1 1,976 1,410 1,054 25%

bison-1.875 5,024 2,357 1,854 21%

wu-ftpd-2.62 2,404 1,978 1,208 30%

Total 27,514 20,911 15,270 27%

2010-01-07 10 ROSAEC 3rd Workshop

The Effect of State Refinements on Time

Software SLOC Before After % Increment

polymorph-0.4.0 1,357 0.05s 0.05s 0.0%

ncompress-4.2.4 2,195 1.06s 1.07s 0.9%

man-1.5h1 7,232 8.63s 8.76s 1.5%

gzip-1.2.4 11,213 35.53s 36.11s 1.6%

bc-1.0.6 12,830 141.59s 146.83s 3.7%

tar-1.13 21,891 779.68s 781.31s 0.2%

099.go 47,337 966.46s 871.69s -9.8%

129.compress 5,585 0.95s 0.96s 1.1%

sed-4.0.8 18,687 363.91s 327.00s 2.2%

grep-2.5.1 20,843 153.19s 154.22s 0.7%

bison-1.875 31,203 201.47s 207.25s 2.9%

wu-ftpd-2.62 18,071 609.31s 618.62s 1.5%

2010-01-07 11 ROSAEC 3rd Workshop

