[ROSAEC 3rd Workshop]

Filtering Redundant Alarms in Static Buffer-Overflow Analysis

Youil Kim <youil.kim@arcs.kaist.ac.kr>

Department of CS, KAIST

Introduction

lsass,e	xe - 응용 프로그램 오류 📃 🔀							
8	*0x008df878"에 있는 명령이 "0x00000023"의 메모리를 참조했습니다. 메모리는 "read"될 수 없었습니다 프로그램을 마치려면 [확인]을 클릭하십시오. 프로그램을 디버그하려면 [취소]를 클릭하십시오.							
	·····································							

- Buffer overflows are often in C programs, and some of them remain even after extensive tests.
- A static analyzer can be a powerful tool to find buffer-overflow errors in C programs.

Two Phase Buffer-Overflow Analysis

State Refinements at Array Accesses

01:	<pre>position_set grps[256];</pre>
02: 03:	<pre>MALLOC (grps[ngrps].elems, position, d->nleaves); grps[ngrps].nelem = 1;</pre>
04:	<pre>grps[ngrps].elems[0] = pos;</pre>

A code snippet from dfa.c in Grep 2.5.1

State Refinement: 0 ≤ ngrps < sizeof(grps)</pre>

State Refinements at Pointer Dereferences

```
01: while (*optarg && *optarg >= '0' && *optarg <= '9')
02: val = val * 8 + *optarg++ - '0';</pre>
```

A code snippet from ftp.c in Wu-ftpd 2.6.2

It provides a limited form of relational analysis: offset + safe < size **Experimental Result**

- State refinements at array and pointer accesses remove 27% of alarms from 12 target programs.
- Analysis time increases less than 4%.
- The target programs are from BugBench and GNU system software.

Shan Lu et al., BugBench: Benchmarks for Evaluating Bug Detection Tools, In Workshop on the Evaluation of Software Defect Detection Tools, 2005.

Correctness

- If an alarm is a false positive:
 - It is sound to assume only states which do not cause buffer overflows.
 - State refinements improve the accuracy.
- If an alarm indicates a possible error:
 - It is possible that some of hidden alarms still remain after the error correction.

Error Correction Example

```
01: int Score[10];
```

```
02: int Age[10];
```

```
/* i = [0, 10] */
```

```
03: Score[i] = score; /* Cause a buffer overflow */
```

```
/* i = [0, 9] by State Refinements */
```

```
04: Age[i] = age;
```

Two choices for the error correction:

- Correcting the value of the index variable the refinement is valid.
- Correcting the size of the array in the declaration.

Conclusion

- We introduce state refinements at buffer overflows, which are analogous to compilers' error recovery techniques.
- Our approach effectively removes redundant alarms in our fast buffer-overflow phase; it can remove 27% of alarms.

The Effect of State Refinements on # alarms

Software	# Accesses	Before	After	% Reduced
polymorph-0.4.0	28	27	21	22%
ncompress-4.2.4	82	49	39	20%
man-1.5h1	357	313	215	31%
gzip-1.2.4	697	416	359	14%
bc-1.0.6	1,322	1,263	834	34%
tar-1.13	2,210	1,735	1,220	30%
099.go	9,843	8,972	6,888	23%
129.compress	92	64	62	3%
sed-4.0.8	3,479	2,327	1,516	35%
grep-2.5.1	1,976	1,410	1,054	25%
bison-1.875	5,024	2,357	1,854	21%
wu-ftpd-2.62	2,404	1,978	1,208	30%
Total	27,514	20,911	15,270	27%

The Effect of State Refinements on Time

Software	SLOC	Before	After	% Increment
polymorph-0.4.0	1,357	0.05s	0.05s	0.0%
ncompress-4.2.4	2,195	1.06s	1.07s	0.9%
man-1.5h1	7,232	8.63s	8.76s	1.5%
gzip-1.2.4	11,213	35.53s	36.11s	1.6%
bc-1.0.6	12,830	141.59s	146.83s	3.7%
tar-1.13	21,891	779.68s	781.31s	0.2%
099.go	47,337	966.46s	871.69s	-9.8%
129.compress	5,585	0.95s	0.96s	1.1%
sed-4.0.8	18,687	363.91s	327.00s	2.2%
grep-2.5.1	20,843	153.19s	154.22s	0.7%
bison-1.875	31,203	201.47s	207.25s	2.9%
wu-ftpd-2.62	18,071	609.31s	618.62s	1.5%