
Filtering Redundant Alarms in

Static Buffer-Overflow Analysis

[ROSAEC 3rd Workshop]

Youil Kim

<youil.kim@arcs.kaist.ac.kr>

Department of CS, KAIST

Introduction

Buffer overflows are often in C programs, and

some of them remain even after extensive tests.

A static analyzer can be a powerful tool to find

buffer-overflow errors in C programs.

2010-01-07 2 ROSAEC 3rd Workshop

Two Phase Buffer-Overflow Analysis

2nd Phase:

False Alarm

Filter

1st Phase: Buffer Overflow Analyzer

Points-to

Analysis

Value

Analysis

Buffer

Analysis

Buffer

Overflow

Alarms

Buffer Analysis Example:

p = {size: [5, 5], offset: [0, 1]}

p

2010-01-07 3

C Code
C Code

C Code

ROSAEC 3rd Workshop

State Refinements at Array Accesses

01: position_set grps[256];

02: MALLOC(grps[ngrps].elems, position, d->nleaves);

03: grps[ngrps].nelem = 1;

04: grps[ngrps].elems[0] = pos;

A code snippet from dfa.c in Grep 2.5.1

ngrps = [-oo,+oo]

ngrps = [0,255]

State Refinement:

0 ≤ ngrps < sizeof(grps)

2010-01-07 4 ROSAEC 3rd Workshop

State Refinements at Pointer Dereferences

01: while (*optarg && *optarg >= ’0’ && *optarg <= ’9’)

02: val = val * 8 + *optarg++ - ’0’;

A code snippet from ftp.c in Wu-ftpd 2.6.2

optarg = {offset:[-oo,+oo], size:[0,+oo]}

optarg = {offset:[0,+oo], size:[0,+oo], safe:[0,0]}

State Refinement:

0 ≤ offset < size

It provides a limited form of relational analysis:

offset + safe < size

2010-01-07 5 ROSAEC 3rd Workshop

Experimental Result

State refinements at array and pointer

accesses remove 27% of alarms from 12

target programs.

Analysis time increases less than 4%.

The target programs are from BugBench and

GNU system software.

2010-01-07 6

Shan Lu et al., BugBench: Benchmarks for Evaluating Bug

Detection Tools, In Workshop on the Evaluation of Software

Defect Detection Tools, 2005.

ROSAEC 3rd Workshop

Correctness

If an alarm is a false positive:

It is sound to assume only states which do not cause

buffer overflows.

State refinements improve the accuracy.

If an alarm indicates a possible error:

It is possible that some of hidden alarms still remain

after the error correction.

2010-01-07 7 ROSAEC 3rd Workshop

Error Correction Example

01: int Score[10];

02: int Age[10];

/* i = [0, 10] */

03: Score[i] = score; /* Cause a buffer overflow */

/* i = [0, 9] by State Refinements */

04: Age[i] = age;

2010-01-07 8

 Two choices for the error correction:

 Correcting the value of the index variable – the refinement is valid.

 Correcting the size of the array in the declaration.

ROSAEC 3rd Workshop

Conclusion

We introduce state refinements at buffer

overflows, which are analogous to compilers’

error recovery techniques.

Our approach effectively removes redundant

alarms in our fast buffer-overflow phase; it can

remove 27% of alarms.

2010-01-07 9 ROSAEC 3rd Workshop

The Effect of State Refinements on # alarms

Software # Accesses Before After % Reduced

polymorph-0.4.0 28 27 21 22%

ncompress-4.2.4 82 49 39 20%

man-1.5h1 357 313 215 31%

gzip-1.2.4 697 416 359 14%

bc-1.0.6 1,322 1,263 834 34%

tar-1.13 2,210 1,735 1,220 30%

099.go 9,843 8,972 6,888 23%

129.compress 92 64 62 3%

sed-4.0.8 3,479 2,327 1,516 35%

grep-2.5.1 1,976 1,410 1,054 25%

bison-1.875 5,024 2,357 1,854 21%

wu-ftpd-2.62 2,404 1,978 1,208 30%

Total 27,514 20,911 15,270 27%

2010-01-07 10 ROSAEC 3rd Workshop

The Effect of State Refinements on Time

Software SLOC Before After % Increment

polymorph-0.4.0 1,357 0.05s 0.05s 0.0%

ncompress-4.2.4 2,195 1.06s 1.07s 0.9%

man-1.5h1 7,232 8.63s 8.76s 1.5%

gzip-1.2.4 11,213 35.53s 36.11s 1.6%

bc-1.0.6 12,830 141.59s 146.83s 3.7%

tar-1.13 21,891 779.68s 781.31s 0.2%

099.go 47,337 966.46s 871.69s -9.8%

129.compress 5,585 0.95s 0.96s 1.1%

sed-4.0.8 18,687 363.91s 327.00s 2.2%

grep-2.5.1 20,843 153.19s 154.22s 0.7%

bison-1.875 31,203 201.47s 207.25s 2.9%

wu-ftpd-2.62 18,071 609.31s 618.62s 1.5%

2010-01-07 11 ROSAEC 3rd Workshop

