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Background
Airac is

fixpoint

join 2

• one core engine of Sparrow

• an interval-domain-based abstract interpreter

x = [0,+oo]
y = [0,0]

x = [1,+oo]
y = [0,0]

x = x + 1
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Motivation
Motivation

Problem: the analysis quickly loses it power

Larger programs require much more time than small programs,
because

• the amount of computation is proportional to the pgm size.

• the analysis speed is inversely proportional to the pgm size.
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Motivation Problem Solution Experiments

Motivation

Airac

• Sparrow’s buffer-overrun-analysis engine

• an interval-domain-based abstract interpreter

• our platform for domain-specific value analyzer

• e.g., domain-specific analyzer for JP Morgan’s CDS software

is too slow.

Program LOC #Basic-Blocks Time(s) 1 #Iterations

gzip-1.2.4a 7,327 6,541 4601.23 653,063

bc-1.06 13,093 9,298 23515.27 1,964,396

less-290 18,449 7,754 46274.67 3,149,284

tar-1.13 20,258 10,800 75013.88 4,748,749

make-3.76.1 27,304 11,061 88221.06 4,613,382

We identify a problem (due to lack of enough context-sensitivity)

and present its solution.

1
Pentium4 3.2GHz, 4GB RAM

3sec/line

global analysis time
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Lack of locality is the problem

• Unnecessary computation increases (#iteration  )

• Memory operation gets more expensive (speed  )

Join-Point

M0 M1

M0 �M1

int f() {...}
int m() {
  g = 1;
  f();
  
  g = 2;
  f();
}

f does not 
access g

↑

↓

4

x = [0,+oo]
y = [0,0]

x = [1,+oo]
y = [0,0]

x = x + 1
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Memory Localization
(a.k.a, static garbage collection or
framing in the separation logic)

fcall f

split

return

merge

5
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The Current Standard
(Reachability-based localization)

A Local Interprocedural Analysis based on Precomputed Accessed Locations 3

– We prove the effectiveness of the technique by experiments with an industrial-

strength C static analyzer [3, 4] in globally analyzing medium-scale open-

source programs.

– We show that excluding memory portions that will not be accessed by callee

procedures significantly improves the performance of the reachability-based

approach. Our technique refines the reachability-based approach and consis-

tently reduces the analysis time by on average 95.2% for open-source bench-

marks.

1.2 Example

We informally describe our approach and compare it with the reachability-

based approach. Consider the following C code and a flow-sensitive and interval-

domain-based analysis of the code :

1: struct S { int a; int b; }
2: int g;
3: void f (S* p) { p->a = 1; }
4: void main() {
5: struct S *s = (S*)malloc(sizeof(struct S));
6: g = 0;
7: s->a = 0;
8: s->b = 0;
9: f(s); }

The analysis of the program proceeds with an empty memory state. Assume

that the abstract memory state after line 5 is represented by

s �→ �l5, {a, b}�
�l5, a� �→ ⊥
�l5, b� �→ ⊥

which means that s denotes a structure that is allocated at line 5 and the struc-

ture has fields {a, b}. The abstract addresses of each field of the structure are

represented by �l5, a� and �l5, b�, which initially have bottom values. After param-

eter binding at the call-site (line 9), the memory state before entering procedure

f is as follows:

p �→ �l5, {a, b}�
s �→ �l5, {a, b}�

�l5, a� �→ [0, 0]

�l5, b� �→ [0, 0]

g �→ [0, 0]

At this stage, the reachability-based local interprocedural analysis collects

all the reachable memory entries from either global variables or parameters:

p �→ �l5, {a, b}�
�l5, a� �→ [0, 0]

�l5, b� �→ [0, 0]

g �→ [0, 0]

split Entries reachable from 
     1) globals
    2) arguments
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The Current Standard
(Reachability-based localization)
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∞
∞ ∞

Pgm LOC No Local Reach

gzip 7,327 12315s 2182s

twolf 19,700 19214s

bash 105,174
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Too Conservative in Practice

2 Hakjoo Oh and Kwangkeun Yi

Table 1. Reachability-based Approach Is Too Conservative.

Program LOC accessed memory

/ reachable memory

spell-1.0 2,213 5 / 453 (1.1%)
barcode-0.96 4,460 19 / 1175 (1.6%)
httptunnel-3.3 6,174 10 / 673 (1.5%)
gzip-1.2.4a 7,327 22 / 1002 (2.2%)
jwhois-3.0.1 9,344 28 / 830 (3.4%)
parser 10,900 75 / 1787 (4.2%)
bc-1.06 13,093 24 / 824 (2.9%)
less-290 18,449 86 / 1546 (5.6%)

the called procedure bodies. Table 1 shows, given a reachability-based localized
input state to a procedure, how much is actually accessed inside the (directly or
transitively) called procedures.1 For each a/b (r%) in the table, a is the average
number of memory entries accessed in the called procedures, b is the average size
of the reachable input state, and r is their ratio. The results show that only a
few reachable memory entries were actually accessed: procedures accessed only
1.1%–5.6% of reachable memory states. Nonetheless, the reachability-based ap-
proach propagates all the reachable parts to procedures. So, it’s possible for
a procedure body to be needlessly recomputed for input memory states whose
only differences lie in the reachable-but-unaccessed portions. This means that
the reachability-based approach is too conservative for real C programs and
hence is inefficient both in time and memory cost. This finding originates from
the difficulty of having a fast enough industrial-strength static analyzers [10–12,
16] that uses the reachability-based localization.

In this paper we present a new memory localization technique that localizes
the input memory states more aggressively than the reachability-based approach.
In our approach, in addition to excluding unreachable memory entries from the
localized state, we also exclude memory entries that are reachable but unac-
cessed. The main problem is finding the memory parts that will be needed to
analyze a procedure before actually analyzing the procedure. We solve the prob-
lem by staging: (1) the set of memory cells that are accessed by a procedure is
conservatively estimated by a pre-analysis before the actual analysis; (2) then,
the actual analysis uses the accessed-cells-information and filters out memory
cells that will definitely not be accessed by called procedures. The pre-analysis
aggressively applies a conservative abstraction to the abstract semantics of the
original analysis and runs with a small cost. By reducing the sizes of localized

1 The reachable- and accessed-memory ratio is an average over the procedures. We
ran the reachability-based analysis and recorded, for every analysis of procedures,
the sizes of localized memory and its accessed portion. We average the size ratio over
the total number of analyses of procedures.

•global variables

•reachable heap locations

Just small number of 

will be actually accessed by a procedure.

7
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Our Approach

4 Hakjoo Oh and Kwangkeun Yi

where p is a parameter, �l5, a� and �l5, b� are reachable by dereferencing p, and

g is a global variable. Note that, though procedure f does not access the global

variable g and structure field �l5, b�, the localized memory state also contains

them.

From this reachability-based localized state, our approach additionally filters

out the memory entries �l5, b� and g that are reachable but not accessed by f. Our

analysis consists of two phases: a preliminary analysis and an actual analysis. The

preliminary analysis estimates the set of abstract locations that each program

statement accesses and the actual analysis uses that information and performs

our local interprocedural analysis.

The preliminary analysis first computes a memory state that over-approximates

all the possible memory states that could occur during the program execution.

We compute such a memory state by using an efficient flow-insensitive fixpoint

computation tracking only reachability information between memory cells. Sup-

pose we have computed the following state:

p �→ �l5, {a, b}�
s �→ �l5, {a, b}�

�l5, a� �→ [−∞,+∞]

�l5, b� �→ [−∞,+∞]

g �→ [−∞,+∞]

Note that the memory state over-approximates possible memory states at ev-

ery program point. Because the interval values are not related to reachability

information between memory cells, the interval values of �l5, a�, �l5, b� and g are

imprecisely computed as [−∞,+∞]. But it should compute the reachability in-

formation p �→ �l5, {a, b}� and s �→ �l5, {a, b}� precisely. With this memory state,

we estimate the set of accessed memory cells that are accessed by each proce-

dure. Consider the statement p->a = 1 in the body of procedure f. During the

analysis of this statement, we know that memory cell for p are read because of

the dereference of p. And we also know that the abstract location for p->a is ac-

cessed because p->a is updated with 1. In the above computed memory, p has a

structure value �l5, {a, b}� consisting of allocation site l5 and fields {a, b}. In our

abstract semantics, the abstract address for field a of structure allocated at l5,
is represented by �l5, a�, which is the abstract locations for p->a. So, the prelim-

inary analysis conclude that procedure f accesses memory cells for p and �l5, a�.
This information is transfered to the next analysis phase, the actual analysis.

Using the information, when calling procedure f, the actual analysis only

passes memory entries that are reachable from the procedure and will be accessed

in the procedure. The resulting localized memory state is as follows:

p �→ �l5, {a, b}�
�l5, a� �→ [0, 0]

Note that the memory entries for �l5, b� and g are filtered out compared to the

reachability-based localized memory state.
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g is a global variable. Note that, though procedure f does not access the global

variable g and structure field �l5, b�, the localized memory state also contains

them.

From this reachability-based localized state, our approach additionally filters

out the memory entries �l5, b� and g that are reachable but not accessed by f. Our

analysis consists of two phases: a preliminary analysis and an actual analysis. The
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all the possible memory states that could occur during the program execution.

We compute such a memory state by using an efficient flow-insensitive fixpoint

computation tracking only reachability information between memory cells. Sup-

pose we have computed the following state:
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Note that the memory state over-approximates possible memory states at ev-

ery program point. Because the interval values are not related to reachability

information between memory cells, the interval values of �l5, a�, �l5, b� and g are

imprecisely computed as [−∞,+∞]. But it should compute the reachability in-

formation p �→ �l5, {a, b}� and s �→ �l5, {a, b}� precisely. With this memory state,

we estimate the set of accessed memory cells that are accessed by each proce-

dure. Consider the statement p->a = 1 in the body of procedure f. During the

analysis of this statement, we know that memory cell for p are read because of

the dereference of p. And we also know that the abstract location for p->a is ac-

cessed because p->a is updated with 1. In the above computed memory, p has a

structure value �l5, {a, b}� consisting of allocation site l5 and fields {a, b}. In our

abstract semantics, the abstract address for field a of structure allocated at l5,
is represented by �l5, a�, which is the abstract locations for p->a. So, the prelim-

inary analysis conclude that procedure f accesses memory cells for p and �l5, a�.
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passes memory entries that are reachable from the procedure and will be accessed
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�l5, a� �→ [0, 0]

Note that the memory entries for �l5, b� and g are filtered out compared to the

reachability-based localized memory state.
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where p is a parameter, �l5, a� and �l5, b� are reachable by dereferencing p, and

g is a global variable. Note that, though procedure f does not access the global

variable g and structure field �l5, b�, the localized memory state also contains

them.

From this reachability-based localized state, our approach additionally filters

out the memory entries �l5, b� and g that are reachable but not accessed by f. Our

analysis consists of two phases: a preliminary analysis and an actual analysis. The

preliminary analysis estimates the set of abstract locations that each program

statement accesses and the actual analysis uses that information and performs

our local interprocedural analysis.

The preliminary analysis first computes a memory state that over-approximates

all the possible memory states that could occur during the program execution.

We compute such a memory state by using an efficient flow-insensitive fixpoint

computation tracking only reachability information between memory cells. Sup-

pose we have computed the following state:

p �→ �l5, {a, b}�
s �→ �l5, {a, b}�

�l5, a� �→ [−∞,+∞]

�l5, b� �→ [−∞,+∞]

g �→ [−∞,+∞]

Note that the memory state over-approximates possible memory states at ev-

ery program point. Because the interval values are not related to reachability

information between memory cells, the interval values of �l5, a�, �l5, b� and g are

imprecisely computed as [−∞,+∞]. But it should compute the reachability in-

formation p �→ �l5, {a, b}� and s �→ �l5, {a, b}� precisely. With this memory state,

we estimate the set of accessed memory cells that are accessed by each proce-

dure. Consider the statement p->a = 1 in the body of procedure f. During the

analysis of this statement, we know that memory cell for p are read because of

the dereference of p. And we also know that the abstract location for p->a is ac-

cessed because p->a is updated with 1. In the above computed memory, p has a

structure value �l5, {a, b}� consisting of allocation site l5 and fields {a, b}. In our

abstract semantics, the abstract address for field a of structure allocated at l5,
is represented by �l5, a�, which is the abstract locations for p->a. So, the prelim-

inary analysis conclude that procedure f accesses memory cells for p and �l5, a�.
This information is transfered to the next analysis phase, the actual analysis.

Using the information, when calling procedure f, the actual analysis only

passes memory entries that are reachable from the procedure and will be accessed

in the procedure. The resulting localized memory state is as follows:

p �→ �l5, {a, b}�
�l5, a� �→ [0, 0]

Note that the memory entries for �l5, b� and g are filtered out compared to the

reachability-based localized memory state.
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Fig. 4. Comparison of performance between AiracReach and AiracAccess.

bc, AiracReach required 335MB of peak memory but AiracAccess required 88MB.
The reduced peak memory consumption enabled AiracAccess to analyze the largest
four programs (wget, screen, bison, bash) that cannot be analyzed by AiracReach

because of unacceptable memory cost. AiracAccess succeeded to analyze them with
263–2,228 MB of peak memory consumption.

We also compared the analysis precision between AiracReach and AiracAccess.
Table 2 compares the precision between them for some programs in Fig. 3(a).
In order to measure the precision, we first joined all the memories associated
with each program point (Node). Then we counted the number of constant in-
tervals (#const, e.g., [1, 1]), finite intervals (#finite, e.g., [1, 5]), intervals with
one infinity (#open, e.g., [−1,+∞) or (−∞, 1]), and intervals with two infinities
(#top, (−∞,+∞)) from interval values (Ẑ) and array blocks (2AllocSite×Ẑ×Ẑ)
contained in the joined memory. The constant interval and top interval indicate
the most precise and imprecise values, respectively. From the results, we see that
AiracAccess is at least as precise as AiracReach.

During the experiments, we observed that the improved performance is quite
sensitive to the localization ratio (the size of accessed memory entries/the size of

•Our approach reduces 

• the time by on average 95.1% (up to 144x speed-up)

• peak memory by on average 75.0%
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Balancing pre/actual Analysis

• Our pre-analysis is

• efficient enough thanks to flow-insensitivity

• precise enough because we do not abstract 
address domain

• tracking variables as well as heap locations

precise/inefficientefficient/imprecise

precise and yet 
efficient in practice
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Balancing pre/actual Analysis

• Our pre-analysis is

• efficient enough thanks to flow-insensitivity

• precise enough because we do not abstract 
address domain

• tracking variables as well as heap locations

precise/inefficientefficient/imprecise

precise and yet 
efficient in practice

∞

Pgm LOC Reach Access Pre

gzip 7,327 2182s 94s 1.6s

twolf 19,700 19214s 600s 5.7s

bash 105,174 702s 19.0s
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Generalized Localization

M = P ∗ R

P → Q

M � = Q ∗ R

call f

M = P ∗ R

P → Q

M � = Q ∗ R

M = P ∗ R

M � = Q ∗ R

P → Q

C

M = P ∗ R

P → Q

M � = Q ∗ R

We can apply our localization for any code part

Examples

13
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Example
int g;
int buf[10];

void f(int p) {
    g = p;

for(i=0;i<9;i++) 
{
    buf[i] = 0;
    ...
}

}

int main() {
    f(1);
    f(2);
}

f is analyzed twice even with localization

14
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Example
int g;
int buf[10];

void f(int p) {
    g = p;

for(i=0;i<9;i++) 
{
    buf[i] = 0;
    ...
}

}

int main() {
    f(1);
    f(2);
}

does not access g and p

f is analyzed twice even with localization
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• The minimum size of 
blocks to be selected is 
parameterized.

• Blocks with one entry/
exit point are selected.

• Blocks are selected 
recursively.

Selecting Localization Points2 Lucas Brutschy, Hakjoo Oh, and Kwangkeun Yi

Fig. 1. Selected blocks in an example function of the barcode program

Figure 1 shows a control flow graph and the split and merge points selected
by our algorithm. The red dashed edges point from split nodes to merge nodes.
Grey blocks enclose the sets of nodes, for which the analysis cost is reduced by
only considering the actually accessed set of locations when propagating memory
changes. ...

ToDo: The algorithm works by...

The core of the algorithm consists of the functions Collect (Algorithm 1),
Select (Algorithm 2), and Split (Algorithm 3). Collect is the main function
of the algorithm. It expects a worklist of nodes in level-order in the dominator
tree of the currently processed subblock. For the first call of the function, this
list contains all nodes of the CFG. Each node in the worklist is considered as
a possible split node and for each of these nodes the Select function is used
to find a corresponding merge node. The Select function selects a merge node
that is a postdominator of and dominated by the split node. It is also ensured
that the subprogram between split and merge does not exceed size−min nodes.
If a merge node is found, so that the localized block between the split and the
merge node has at least min nodes, the Split function is used to remove all
nodes contained in the selected block from the worklist. Collect is then called
recursively to find subblocks of the selected block, and both the result of the
recursive call and the currently selected block are added to the resultsset.
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• The minimum size of 
blocks to be selected is 
parameterized.

• Blocks with one entry/
exit point are selected.

• Blocks are selected 
recursively.

Selecting Localization Points2 Lucas Brutschy, Hakjoo Oh, and Kwangkeun Yi

Fig. 1. Selected blocks in an example function of the barcode program

Figure 1 shows a control flow graph and the split and merge points selected
by our algorithm. The red dashed edges point from split nodes to merge nodes.
Grey blocks enclose the sets of nodes, for which the analysis cost is reduced by
only considering the actually accessed set of locations when propagating memory
changes. ...

ToDo: The algorithm works by...

The core of the algorithm consists of the functions Collect (Algorithm 1),
Select (Algorithm 2), and Split (Algorithm 3). Collect is the main function
of the algorithm. It expects a worklist of nodes in level-order in the dominator
tree of the currently processed subblock. For the first call of the function, this
list contains all nodes of the CFG. Each node in the worklist is considered as
a possible split node and for each of these nodes the Select function is used
to find a corresponding merge node. The Select function selects a merge node
that is a postdominator of and dominated by the split node. It is also ensured
that the subprogram between split and merge does not exceed size−min nodes.
If a merge node is found, so that the localized block between the split and the
merge node has at least min nodes, the Split function is used to remove all
nodes contained in the selected block from the worklist. Collect is then called
recursively to find subblocks of the selected block, and both the result of the
recursive call and the currently selected block are added to the resultsset.

Pgm LOC Access GenAccess Save

gzip 7,327 94s 49s 47.9%

twolf 19,700 600s 270s 55.0%

bash 105,174 702s 469s 33.2%
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Conclusion

• We need a more aggressive localization 
than reachability-based one.

• Accessed-based localization passes only 
the memory parts possibly accessed by 
the called procedure bodies.

• Our localization can be effectively used for 
smaller entities than procedures.
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