
Issues in Mechanizing Metatheory

Gyesik Lee

ROPAS

ROSAEC Workshop, Jan. 8, 2010

1 / 11



One Big Issue

How close are we to a world where every paper on
programming languages is accompanied by an electronic
appendix with machine-checked proofs?

– POPLmarck Challenge

2 / 11



POPLmark Challenge

I Proposed by the PL club at U. Pennsylvania, 2005.

I A set of benchmarks designed to evaluate the state of
mechanization in the metatheory of programming languages.

I Focused on difficult issues to formalize such as binders with
α-conversion.

I For better reasoning about the languages in which the software
is written.

I Good for POPL papers.

3 / 11



POPLmark Challenge (Cont.)

To gauge progress in this area, we issue here a set of
challenge problems, dubbed the POPLmark Challenge,
chosen to exercise many aspects of programming
languages that are known to be difficult to formalize.

– POPLmark Challenge

I Binding

I α-conversion

I Induction

I Substitution

But, something is missing.

4 / 11



Another Big Issue

As practitioners of machine-checked proof about real
compilers, we have interests that are similar but not
identical. We want to formally relate machine-checked
proofs to actual implementations, not particularly to
LATEX documents.

– CIVmark

5 / 11



CIVmark

I “A list-machine benchmark for mechanized metatheory”.
A. Appel and X. Leroy, 2006.

I CIV = Compiler Implementation Verification

I Interests similar to those of POPLmark, but not identical.

6 / 11



CIVmark (Cont.)

I Emphasis on the importance of efficient definitions and
implementations.

I For representation of a type-checker algorithm in a mechanized
metatheory (MM).

I For formal, mechanical, and automatic derivation of an
efficient implementation of the type-checker from the
algorithm represented in the MM.

7 / 11



Issues: Machine Syntax

I Syntax of values, naturals, etc:
I Inductive reasoning should be possible.

I Expansion of functions:
I Representation of f [v 7→ a]

I Conditions for expansion

8 / 11



Issues: Operational Semantics

I Association of values to variables
I Choice of functions or relations

I Operations on mathematical mappings:

I Inductive specification of mathematical relations such as
instructions, programs

9 / 11



Issues: Type Systems

I Representation of environment for type assignments

I Specification of program typing: sequence of labeled
environments

I Inductive specification of instruction typings, program typings,
etc.

10 / 11



Summary: Mechanization Tasks

I Representation of an operational semantics

I Representation of a type system

I Correctness proof

I Representation of an efficient type-checking algorithm

I Termination of the type-checking algorithm

I Soundness of the type-checker

11 / 11


