
EffectiveAdvice
Disciplined Advice with Explicit Effects

Bruno C. d. S. Oliveira (bruno@ropas.snu.ac.kr)
ROSAEC Center, Seoul National University

(joint work with Tom Schrijvers & William R. Cook)

Wednesday, 20 January 2010

mailto:bruno@ropas.snu.ac.kr
mailto:bruno@ropas.snu.ac.kr


Motivation
• Several modularity approaches

• Object Oriented Programming Inheritance (OOP)

• Aspect Oriented Programming (AOP)

• Feature Oriented Programming (FOP)

• are hard to understand, due to

• hidden control flows

• hidden data dependencies

• Main Challenges: modular reasoning and reasoning 
about interference between components.

all use 
inheritance in 

some way 
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Reasoning Properties

1. Modular Reasoning

understand component 
individually

2. Interference

understand interaction 
between components

?

? ?

? ?

?

?

?

? ?
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Previous Work

• Kiczales & Mezini: 

“modular reasoning for AOP and 
similar mechanisms is hard”

• Aldrich: 

modular reasoning is possible for an 
effect-free approach (Open Modules)
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Goals

• reason modularly about tightly coupled 
components

• using familiar reasoning techniques like 
equational reasoning and parametricity.

• understand the essence of AOP-like advice.
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EffectiveAdvice

• model of AOP advice using open recursion

• no new calculus, just System F  (Haskell for surface 
syntax)

• based on Cook’s (1989) denotational semantics of 
inheritance

• full support for effects via monads

• reasoning about interference

• harmless advice/inheritance theorems
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Advice and Open 
Recursion
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Open Recursion
type Open s = s -> s 

weave :: Open s -> s
weave a = a (weave a) 

(⊕) :: Open s -> Open s -> Open s
a1 ⊕ a2 = \proceed -> a1 (a2 proceed)

zero :: Open s 
zero = \proceed -> proceed

identity function

function composition

fixpoint
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Example
fib1 :: Open (Int -> Int) 
fib1 proc n = case n of
 0 -> 0 
 1 -> 1 
 _ -> proc (n-1) + proc (n-2)

advfib :: Open (Int -> Int) 
advfib proc n = case n of
 10 -> 55 
 _  -> proc n

slowfib, optfib :: Int -> Int 
slowfib = weave fib1
optfib  = weave (advfib ⊕ fib1)
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Open Recursion

Mixin Composition

• proceed ~ super in OOP

type Open s = s → s

weave :: Open s → s
weave a = a (weave a)

zero :: Open s
zero = id

(⊕) :: Open s → Open s → Open s
a1 ⊕ a2 = λproceed → a1 (a2 proceed)

Figure 1: Basic mixin combinators.

thors [37, 36], we use Haskell as a convenient source language
for System F and elaborate EffectiveAdvice as a Haskell li-
brary1. Mixin composition is used to weave advice into a
base program [9]. Monads [38] model effects and, for com-
positionality, non-monadic functions must be lifted into a
monad.

In the purely functional model for EffectiveAdvice, equiv-
alence of advice, as well as base programs, is determined by
equational reasoning. Different interference patterns [33] be-
tween advice and base programs, constraining possible data
and control flow interactions, can be enforced through the
use of combinators. Higher-rank types [31] are used to en-
sure non-interference of effects. A key novelty introduced by
EffectiveAdvice is the use of parametricity [37, 36], a pow-
erful modular reasoning technique based on types only, to
prove theorems for combinators providing strong guarantees
of non-interference. In particular, two harmless advice [10]
theorems are proved in this work.

In summary, the contributions of this paper are:

• EffectiveAdvice: A disciplined model of advice with
full support for effects in both base programs and ad-
vice. In EffectiveAdvice effects are an integral part
of the interfaces of components. In the idealized pro-
gramming model, familiar reasoning techniques such
as equational reasoning and parametricity can be used,
yet interesting programs can be expressed.

• Strong guarantees of control and data flow non-interference
through the use of combinators and the type system.

• A novel use of parametricity to enforce and reason
about non-interference of effects between components,
which is used to prove theorems for harmless advice
and harmless observation advice.

• An implementation of the EffectiveAdvice model as a
Haskell library using open recursion to model advice
and monads to model effects. The model is statically
typed and purely functional.

The proofs of the theorems and background information
are available in a technical report [29].

2. EFFECTIVEADVICE
This section introduces the Haskell implementation of Ef-

fectiveAdvice using open recursion and monads.

2.1 Open Recursion
Open recursion is a property of a component in which re-

cursive references are left open, so that the recursive behav-
ior can be extended later. Open recursion is the basis for
1www.cs.kuleuven.be/~toms/EffectiveAdvice.tgz

inheritance and mixin composition in object-oriented lan-
guages [9]. The connection between mixins and aspects is
well-known [25]. Open recursion is easily implemented in
Haskell or Scala by introducing an explicit parameter for
self-reference, rather than relying on the built-in recursive
naming in the language. An explicit fixpoint operation is
required to convert an open recursive component into an
ordinary, closed component that can be invoked.

The basis of the implementation is shown in Figure 1. The
type Open s is a synonym for a function with type s → s
representing open recursion. The parameter of that function
is called a join point, that is, the point in the component in
which advice is added. The operation ⊕ defines component
(or advice) composition. Composition is associative, and it
has the zero component as left and right units of ⊕, forming
a monoid. Note that this is just the monoid of endofunctions
with identity and function composition.
f ⊕ zero ≡ f ≡ zero ⊕ f
(f ⊕ g) ⊕ h ≡ f ⊕ (g ⊕ h)
The function weave is a fixpoint combinator used for closing,
or sealing, an open and potentially advised component.

Consider the following open functions:
fib1 :: Open (Int → Int)
fib1 proceed n = case n of

0 → 0
1 → 1
→ proceed (n − 1) + proceed (n − 2)

advfib :: Open (Int → Int)
advfib proceed n = case n of

10 → 55
30 → 832040

→ proceed n
The open function fib1 defines the standard fibonacci func-
tion, except that recursive calls are replaced by proceed . The
open function advfib optimizes two calls of the fibonacci
function by returning the appropriate values immediately.
Note that advfib is not meant to be used standalone. It as-
sumes that it is used in combination with an open function
like fib1 that takes care of the uncovered cases.

Different combinations of open functions are closed through
weaving:
slowfib1 , optfib :: Int → Int
slowfib1 = weave fib1

optfib = weave (advfib ⊕ fib1 )
The functions slowfib1 and optfib illustrate that EffectiveAd-
vice unifies the concept of advice and base programs under
a single type. There is still a conceptual difference between
them, because in a base program proceed is understood as a
recursive call, while in advice proceed refers to the original
computation being wrapped. Weaving advice alone will typ-
ically result in a useless program, as it has no base case. This
distinction becomes clearer when we visualize what happens
with proceed calls in a chain of advice being composed.

p = weave (a1 ⊕ a2 ⊕ ... ⊕ an ⊕ base)

proceed

proceed proceed

In the advice a1 the proceed reference is pointing to a2 (the
next advice in the chain); in the a2 advice proceed points to
the next advice in the chain and so on for the other advice.
When the base program is reached, proceed just points backNote: proceed ~ super in OOP
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Effects
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Effects

• Cook’s model of inheritance is purely 
functional (no side-effects)

• this is great for reasoning, but ...

• any realistic examples require effects

• Solution: use monads!
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Example: Modular Memoization

fib2 :: Monad m => Open (Int -> m Int) 
fib2 proc n = case n of
 0 -> return 0 
 1 -> return 1 
 _ -> do x <- proc (n-1)
       y <- proc (n-2) 
       return (x + y)

slowfib2 :: Int -> Int 
slowfib2 = runId . weave fib2

may have side-effects 

recovering 
naive fib
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Example: Modular Memoization

memo :: MonadState Map m => Open (Int -> m Int)
memo proc n = 
 do map <- get
    if member n map 
     then return (map ! n) 
     else do r <- proc n
             map’ <- get put (insert n r map’)   
             return r

optfib2 :: Int -> Int 
optfib2 n = evalState (weave (memo ⊕ fib2) n)   
                      emptyMap

side-effect
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Interference
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Disciplining Advice for Reasoning

• control and data flow combinators inspired 
by Rinard et al. (2004).

• exploit purity for reasoning

• equational reasoning

• parametricity

• modular non-interference proofs.
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Control Flow 
Interference

• Cassification of Rinard et al.

test2 e = getLog
(runState (runWriterT (debug2 e)) [ ])

test3 e = extract
(runStateT (runWriterT (exc e)) [ ]) where
extract (Left (msg , exp, )) =
"Error: " ++ msg ++
"\nIn Expression: "++ show exp

extract (Right t) = getLog t
While the first two programs may silently give an error if
a variable is not in the environment, the last program has
to handle the exception explicitly and it can report an error
message with the faulty expression.

4. INTERFERENCE COMBINATORS
Rinard et al. [33] propose a classification system for in-

terference patterns that can occur between advice and ad-
vised programs: direct interference consists of control flow
manipulations, whereas indirect interference consist of state
manipulations. They use program analysis to identify those
patterns automatically.

EffectiveAdvice takes a different approach by providing
combinators to enforce the different interference patterns
at aspect composition time. Each combinator associates a
particular type shape with an interference pattern. Thus,
a composition that does not meet the type shape required
by the combinator fails to type-check. Note that no spe-
cial purpose extension of the type system is needed for this
approach.

4.1 Enforcing Control Flow Properties
Direct interference is related to control flow and how the

use of proceed calls can guarantee that a program satisfies
certain properties. According to Rinard et al., advice can
be classified as:

• Combination: An advice can call proceed any num-
ber of times.

• Replacement: There are no calls to proceed in advice.

• Augmentation: An advice that calls proceed exactly
once, and does not modify the arguments to proceed
or the value returned by proceed .

• Narrowing: An advice that calls proceed at most
once, and does not modify the arguments to proceed
or the value returned by proceed .

Consider the logging advice log of the previous section.
This advice calls proceed exactly once. Therefore log is an
example of augmentation advice. In EffectiveAdvice, the dif-
ferent forms of direct interference are enforced, rather than
identified, using combinators. These interference combina-
tors are discussed below.
Combination There is no new combinator since no in-
terference properties are enforced. The ⊕ operator already
composes advice of the general form Open s.
Replacement The informal requirement for replacement
is that no calls are made to proceed . This requirement can
be captured by the following combinator:
type Replace s = s

replace :: Replace s → Open s
replace radv = λproceed → radv

Replacement advice has type Replace s, which is the same
type as the whole program. This reflects the fact that re-
placement advice is a proper program by itself. In other
words the base program’s behavior is replaced (or overrid-
den) entirely, which has the effect of destroying the usual
control flow of the base program.
Augmentation The informal requirement for augmenta-
tion advice is that proceed is called exactly once. This be-
havior is enforced with the augment combinator
type Augment a b c m = (a → m c, a → b → c → m ())

augment :: Monad m
⇒ Augment a b c m → Open (a → m b)

augment (bef , aft) proceed a =
do {c ← bef a; b ← proceed a; aft a b c; return b}
This combinator is responsible for calling proceed itself,

rather than delegating this responsibility to the advice. The
augmentation advice has type Augment a b c m, and it
consists of two components: the first component is called
before proceed and the second is called afterwards. Both
parts can use the input a, but only the after argument has
access to the result b of proceed . Moreover, the before part
can communicate an auxiliary value c to the after part. For
instance, log1 is logging advice
log1 :: (MonadWriter String m,Show a,Show b)

⇒ String → Augment a b () m
log1 name = (bef , aft) where

bef x = write "Entering " x
aft y = write "Exiting " y
write a b = tell (a ++ name ++ show b ++ "\n")

such that log ≡ augment ◦ log1 .
Combinators similar to the well-known AOP notions of be-

fore and after advice, can be implemented on top of augment :
before :: Monad m ⇒ (a → m ()) → Open (a → m b)
after :: Monad m ⇒ (a → b → m ()) → Open (a → m b)

before bef =
augment (λa → bef a >> return (),λa b c → return ())

after aft =
augment (\ → return (), λa b c → aft a b)
Our earlier dumping advice can be written as before ad-

vice:
dump1 :: (MonadState s m,MonadWriter String m,Show s)

⇒ a → m ()
dump1 arg =

do s ← get
tell (show s ++ "\n")

Note that dump ≡ before dump1 .
Narrowing This form of advice calls proceed at most once.
Hence, a runtime choice can be made between replacement
or augmentation advice:
type Narrow a b c m =

(a → m Bool ,Augment a b c m,Replace (a → m b))
narrow :: Monad m ⇒

Narrow a b c m → Open (a → m b)
narrow (p, aug , rep) proceed x =

do b ← p x
if b then augment aug proceed x

else replace rep proceed x
The runtime choice is made by the predicate of type a →
m Bool , i.e. based on the input a and monad m.

A typical example of narrowing is memoization. In the
case of a repeated call, normal evaluation is replaced by a
table lookup. In case of a new call, normal evaluation is
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Combinators: Example

type Augment a b c m = 
  (a -> m c, a -> b -> c -> m ())

augment :: Monad m => Augment a b c m
-> Open (a -> m b)
augment (before, after) proc a =
 do c <- before a 
    b <- proc a 
    after a b c
    return b

In words: proceed should be 
called once and only one.
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Dataflow/Effect 
Interference

• Classification of Rinard et al. 

augmented with tabulation.
memo1 :: (MonadState (Map a b) m,Ord a)

⇒ Narrow a b () m
memo1 = (p, (bef , aft), rep) where

p x = do {m ← get ; return (member x m)}
bef = return ()
aft x r = do {m ← get ; put (insert x r m)}
rep x = do {m ← get ; return (m ! x)}
This version of memoization makes it clear that proceed

is called at most once.

4.2 Enforcing Data Flow Properties
Indirect interference is related to data flow through the

possible interaction of shared effects (or data) between ad-
vice and base programs. The most common form of shared
effects is that of shared state. Another conventional form of
effectful interaction is the throwing and catching of excep-
tions.

Rinard et al. [33] consider five different forms of inter-
ference between advice and method (of the base program),
specific to state:

• Orthogonal: The advice and method access disjoint
fields. In this case we say that the scopes are orthog-
onal.

• Independent: Neither the advice nor the method
may write a field that the other may read or write.
In this case we say that the scopes are independent.

• Observation: The advice may read one or more fields
that the method may write but they are otherwise in-
dependent. In this case we say that the advice scope
observes the method scope.

• Actuation: The advice may write one or more fields
that the method may read but they are otherwise in-
dependent. In this case we say that the advice scope
actuates the method scope.

• Interference: The advice and method may write the
same field. In this case we say that the two scopes
interfere.

EffectiveAdvice generalizes these notions from state to ar-
bitrary effects. Just as for control flow interference, it pro-
vides a number of combinators that enforce the form of effect
interference.
Interference Primitives Interference arises by bringing
together two programs, advice and a base program. Effec-
tiveAdvice builds interference combinators from primitive
combinators for individual programs. These primitives ex-
press whether the advice with effect t knows the type of
effect m of the base program. If it does not know the type,
then it cannot initiate interference. This absence of knowl-
edge is captured by a higher-ranked type [31] and a corre-
sponding conversion function to plain advice:
type NIAdvice a b t = ∀m.(Monad m,Monad (t m))

⇒ Open (a → t m b)

niadvice :: (Monad m,MonadTrans t, Monad (t m))
⇒ NIAdvice a b t → Open (a → t m b)

niadvice adv = adv
The opposite case does not require a new operator, since the
plain type Open (a → t m b) suggests that interference may
be possible.

Similarly, for the base program interference may not be
initiated with:
type NIBase a b m = ∀t .(MonadTrans t, Monad (t m))

⇒ Open (a → t m b)

nibase :: (Monad m,MonadTrans t,Monad (t m))
⇒ NIBase a b m → Open (a → t m b)

nibase bse = bse
The types NIAdvice and NIBase allow us to separate the

effects that can be manipulated by the advice from the ef-
fects that can be manipulated by the base program. The
type system guarantees that this is indeed the case.

In their general form the types of log1 and beval are not
sufficiently instantiated to establish non-interference. In
fact, it is possible to obtain both interference and non-interference,
depending on the instantiation of the monad.

Fortunately, the type checker confronts us with this issue
by rejecting niadvice (augment (log1 "eval")) and nibase beval .
The solution is to instantiate the types such that the overall
effect monad is cleanly split into two independent parts, one
for the advice and one for the base program:
log2 :: (Show a,Show b) ⇒ NIAdvice a b (WriterT String)
log2 = augment (log1 "eval")
beval1 :: NIBase Expr Int (State Env)
beval1 = beval
Interference Combinators Using the above primitives,
EffectiveAdvice defines four primitive interference combina-
tors:
adv ! bse = niadvice adv ⊕ nibase bse

adv " bse = adv ⊕ nibase bse

adv # bse = niadvice adv ⊕ bse

adv $ bse = adv ⊕ bse
Note that, unlike Rinard’s categories, these combinators

are not specific for state: they are parametric in the type
of effect. The combinators $ and ! closely correspond to
Rinard’s interference and orthogonal categories. The " and
# combinators indicate which of the two programs is aware
of the other’s effects, which are thus shared between the two
programs.

For instance, the composition log2 ! beval1 expresses that
the logging advice and the monadic evaluator do not inter-
fere with each other’s effects.
Stateful Effects Rinard et al. [33] consider more refined
forms of stateful interaction, based on read-only or read&write
access to a shared state. EffectiveAdvice distinguishes be-
tween such forms of interaction by imposing appropriate
constraints on the monad type variable m.

For this purpose EffectiveAdvice refines MonadState to
cater for different views:
class Monad m ⇒ MGet s m | m → s where

get :: m s

class Monad m ⇒ MPut s m | m → s where
put :: s → m ()

class (MGet s m,MPut s m) ⇒ MonadState s m
The constraint MGet s m only allows reading the state

s of monad m, while the class MPut only allows writing it.
The new MonadState s m allows both reading and writing
by subclassing both MGet and MPut . Four laws govern the
semantics of the get and put methods:
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Decomposition of 
Non-Interference

-- * Advice
-- ** Interfering: 
type IAdvice a b m 
  = Open (a -> m b)
-- ** Non-Interfering:
type NIAdvice a b t 
  = forall m. (Monad m, Monad (t m))
    => Open (a -> t m b)
-- * Base Component
-- similar classification
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Interference 
Combinators

augmented with tabulation.
memo1 :: (MonadState (Map a b) m,Ord a)

⇒ Narrow a b () m
memo1 = (p, (bef , aft), rep) where

p x = do {m ← get ; return (member x m)}
bef = return ()
aft x r = do {m ← get ; put (insert x r m)}
rep x = do {m ← get ; return (m ! x)}
This version of memoization makes it clear that proceed

is called at most once.

4.2 Enforcing Data Flow Properties
Indirect interference is related to data flow through the

possible interaction of shared effects (or data) between ad-
vice and base programs. The most common form of shared
effects is that of shared state. Another conventional form of
effectful interaction is the throwing and catching of excep-
tions.

Rinard et al. [33] consider five different forms of inter-
ference between advice and method (of the base program),
specific to state:

• Orthogonal: The advice and method access disjoint
fields. In this case we say that the scopes are orthog-
onal.

• Independent: Neither the advice nor the method
may write a field that the other may read or write.
In this case we say that the scopes are independent.

• Observation: The advice may read one or more fields
that the method may write but they are otherwise in-
dependent. In this case we say that the advice scope
observes the method scope.

• Actuation: The advice may write one or more fields
that the method may read but they are otherwise in-
dependent. In this case we say that the advice scope
actuates the method scope.

• Interference: The advice and method may write the
same field. In this case we say that the two scopes
interfere.

EffectiveAdvice generalizes these notions from state to ar-
bitrary effects. Just as for control flow interference, it pro-
vides a number of combinators that enforce the form of effect
interference.
Interference Primitives Interference arises by bringing
together two programs, advice and a base program. Effec-
tiveAdvice builds interference combinators from primitive
combinators for individual programs. These primitives ex-
press whether the advice with effect t knows the type of
effect m of the base program. If it does not know the type,
then it cannot initiate interference. This absence of knowl-
edge is captured by a higher-ranked type [31] and a corre-
sponding conversion function to plain advice:
type NIAdvice a b t = ∀m.(Monad m,Monad (t m))

⇒ Open (a → t m b)

niadvice :: (Monad m,MonadTrans t, Monad (t m))
⇒ NIAdvice a b t → Open (a → t m b)

niadvice adv = adv
The opposite case does not require a new operator, since the
plain type Open (a → t m b) suggests that interference may
be possible.

Similarly, for the base program interference may not be
initiated with:
type NIBase a b m = ∀t .(MonadTrans t, Monad (t m))

⇒ Open (a → t m b)

nibase :: (Monad m,MonadTrans t,Monad (t m))
⇒ NIBase a b m → Open (a → t m b)

nibase bse = bse
The types NIAdvice and NIBase allow us to separate the

effects that can be manipulated by the advice from the ef-
fects that can be manipulated by the base program. The
type system guarantees that this is indeed the case.

In their general form the types of log1 and beval are not
sufficiently instantiated to establish non-interference. In
fact, it is possible to obtain both interference and non-interference,
depending on the instantiation of the monad.

Fortunately, the type checker confronts us with this issue
by rejecting niadvice (augment (log1 "eval")) and nibase beval .
The solution is to instantiate the types such that the overall
effect monad is cleanly split into two independent parts, one
for the advice and one for the base program:
log2 :: (Show a,Show b) ⇒ NIAdvice a b (WriterT String)
log2 = augment (log1 "eval")
beval1 :: NIBase Expr Int (State Env)
beval1 = beval
Interference Combinators Using the above primitives,
EffectiveAdvice defines four primitive interference combina-
tors:
adv ! bse = niadvice adv ⊕ nibase bse

adv " bse = adv ⊕ nibase bse

adv # bse = niadvice adv ⊕ bse

adv $ bse = adv ⊕ bse
Note that, unlike Rinard’s categories, these combinators

are not specific for state: they are parametric in the type
of effect. The combinators $ and ! closely correspond to
Rinard’s interference and orthogonal categories. The " and
# combinators indicate which of the two programs is aware
of the other’s effects, which are thus shared between the two
programs.

For instance, the composition log2 ! beval1 expresses that
the logging advice and the monadic evaluator do not inter-
fere with each other’s effects.
Stateful Effects Rinard et al. [33] consider more refined
forms of stateful interaction, based on read-only or read&write
access to a shared state. EffectiveAdvice distinguishes be-
tween such forms of interaction by imposing appropriate
constraints on the monad type variable m.

For this purpose EffectiveAdvice refines MonadState to
cater for different views:
class Monad m ⇒ MGet s m | m → s where

get :: m s

class Monad m ⇒ MPut s m | m → s where
put :: s → m ()

class (MGet s m,MPut s m) ⇒ MonadState s m
The constraint MGet s m only allows reading the state

s of monad m, while the class MPut only allows writing it.
The new MonadState s m allows both reading and writing
by subclassing both MGet and MPut . Four laws govern the
semantics of the get and put methods:

• 4 possible combinations
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Harmless Advice
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Harmless Advice

• Dantas & Walker:

get >> m ≡ m

get >>= λs1 → get >>= f s ≡ get >>= λs1 → f s s

put x >> put y ≡ put y

put x >> get ≡ put x >> return x

The new classes allow more accurate types, for instance
dumping advice only requires reading the state:
dump2 :: (MGet s m,MonadWriter String m,Show s)

⇒ a → m ()
dump2 = do {s ← get ; tell (show s ++ "\n")}
With the two new constraints, EffectiveAdvice also defines
relaxed versions of NIAdvice:
type ROAdvice a b t s = ∀m.(MGet s m,MGet s (t m)) ⇒

Open (a → t m b)

type WOAdvice a b t s = ∀m.(MPut s m,MPut s (t m)) ⇒
Open (a → t m b)

The dump3 advice instantiates dump2 as a ROAdvice:
dump3 :: Show s ⇒ ROAdvice a b (WriterT String) s
dump3 = before dump2

The new interference primitives in turn allow Rinard’s state-
specific interference classes to be expressed as combinators:
observation :: (MGet s m,MGet s (t m),MonadTrans t) ⇒

ROAdvice a b t s → NIBase a b m → Open (a → t m b)
observation adv bse = adv ⊕ bse

actuation :: (MPut s m,MPut s (t m),MonadTrans t) ⇒
WOAdvice a b t s → NIBase a b m → Open (a → t m b)

actuation adv bse = adv ⊕ bse
EffectiveAdvice puts similar constraints on the base program
and distinguishes nine different forms of interference. The
following table connects these nine forms to the correspond-
ing four terms used by Rinard et al.:

MGet MPut MonadState
MGet Independent Observation Observation
MPut Actuation Interference Interference

MonadState Actuation Interference Interference
Note that, by distinguishing between MPut and MonadState ,

EffectiveAdvice has a more fine-grained classification. MPut×
MPut , for instance, is only a weak form of interference.
While both programs write to the same state, neither pro-
gram’s computations are affected; only the resulting state
is.

While Rinard’s classification is specific for state, Effec-
tiveAdvice allows similar classifications for other kinds of
effects. For example, with exceptions the rights to throw
and catch exceptions are separated into different monad sub-
classes: MonadThrow e m for throwing an exception e,
MonadCatch e m for catching, and MonadException e m
for both. By considering the permitted operations of the
advice and base program, the possible interference patterns
between them are established.

5. HARMLESS ADVICE: STRONG GUAR-

ANTEES OF NON-INTERFERENCE

This section uses direct and indirect non-interference com-
binators to enforce strong guarantees of non-interference.

5.1 Harmless Advice

The harmless composition combinator ! ensures both con-
trol and data flow properties.

type NIAugment a b c t = ∀m.(Monad m,Monad (t m)) ⇒
Augment a b c (t m)

(!) :: (Monad m,MonadTrans t,Monad (t m)) ⇒
NIAugment a b c t → NIBase a b m → Open (a → t m b)

adv ! bse = augment adv " bse
Harmless composition requires a special type of non-interfering
augmentation advice, which is defined by NIAugment . It is
important that the advice used by ! is augmentation since,
for instance, if an effectful base program could be called by
advice twice, it could give different results than if called only
once. This is because the result may depend on the effects
of the base program. The " combinator used by ! ensures
that the advice and the base program have non-interfering
effects.

Dantas and Walker [10] introduced the notion of harmless
advice for advice that guarantees full non-interference with
the base program:

A piece of harmless advice is a computation that,
like ordinary aspect-oriented advice, executes when
control reaches a designated control-flow point.
However, unlike ordinary advice, harmless advice
is designed to obey a weak non-interference prop-
erty. Harmless advice may change the termina-
tion behavior of computations and use I/O, but
it does not otherwise influence the final result of
the mainline code.

The full non-interference provided by the ! combinator
enforces that the advice is harmless. Let us cast the informal
notion of harmlessness in a formal theorem:

Theorem 1 (Harmless Advice) Consider a base program
bse and advice adv with the types:
bse :: ∀t .(MonadTrans t, Monad (t κ)) ⇒ Open (t κ α)
adv :: ∀m.(Monad m,Monad (τ m)) ⇒ Augment α β γ (τ m)
where κ is a monad and τ a monad transformer. If a func-
tion proj :: ∀m,a.Monad m ⇒ τ m a → m a exists that
satisfies the property:

proj ◦ lift ≡ id

, then advice adv is harmless with respect to bse:

proj ◦ (weave (adv ! bse)) ≡ runIdT ◦ (weave bse)

Informally, the theorem states that, if we ignore the effects
introduced by the advice, the advised program is equivalent
to the unadvised program. The role of the projection func-
tion proj is to ignore the effects introduced by the advice.
The required property proj ◦ lift ≡ id expresses the intuition
that projection has no impact if there are no effects.

This theorem is proved in the companion technical re-
port [29]. Rather than looking into the details of the proof
itself, it is more interesting to look into the techniques used
by the proof: equational reasoning and parametricity.

Equational reasoning is the basic mechanism used in purely
functional languages to reason about programs. Equational
reasoning allows replacing a program for an equivalent one
in any context, which leads to a simple algebraic style of
proofs about programs like the one in Section 2.2. In im-
pure languages equational reasoning does not generally hold,
because a program may implicitly depend on the context of
that program.
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Harmless Advice

• Non-interference along 2 axes

• control flow: augmentation

• data flow: orthogonalget >> m ≡ m

get >>= λs1 → get >>= f s ≡ get >>= λs1 → f s s

put x >> put y ≡ put y

put x >> get ≡ put x >> return x

The new classes allow more accurate types, for instance
dumping advice only requires reading the state:
dump2 :: (MGet s m,MonadWriter String m,Show s)

⇒ a → m ()
dump2 = do {s ← get ; tell (show s ++ "\n")}
With the two new constraints, EffectiveAdvice also defines
relaxed versions of NIAdvice:
type ROAdvice a b t s = ∀m.(MGet s m,MGet s (t m)) ⇒

Open (a → t m b)

type WOAdvice a b t s = ∀m.(MPut s m,MPut s (t m)) ⇒
Open (a → t m b)

The dump3 advice instantiates dump2 as a ROAdvice:
dump3 :: Show s ⇒ ROAdvice a b (WriterT String) s
dump3 = before dump2

The new interference primitives in turn allow Rinard’s state-
specific interference classes to be expressed as combinators:
observation :: (MGet s m,MGet s (t m),MonadTrans t) ⇒

ROAdvice a b t s → NIBase a b m → Open (a → t m b)
observation adv bse = adv ⊕ bse

actuation :: (MPut s m,MPut s (t m),MonadTrans t) ⇒
WOAdvice a b t s → NIBase a b m → Open (a → t m b)

actuation adv bse = adv ⊕ bse
EffectiveAdvice puts similar constraints on the base program
and distinguishes nine different forms of interference. The
following table connects these nine forms to the correspond-
ing four terms used by Rinard et al.:

MGet MPut MonadState
MGet Independent Observation Observation
MPut Actuation Interference Interference

MonadState Actuation Interference Interference
Note that, by distinguishing between MPut and MonadState ,

EffectiveAdvice has a more fine-grained classification. MPut×
MPut , for instance, is only a weak form of interference.
While both programs write to the same state, neither pro-
gram’s computations are affected; only the resulting state
is.

While Rinard’s classification is specific for state, Effec-
tiveAdvice allows similar classifications for other kinds of
effects. For example, with exceptions the rights to throw
and catch exceptions are separated into different monad sub-
classes: MonadThrow e m for throwing an exception e,
MonadCatch e m for catching, and MonadException e m
for both. By considering the permitted operations of the
advice and base program, the possible interference patterns
between them are established.

5. HARMLESS ADVICE: STRONG GUAR-

ANTEES OF NON-INTERFERENCE

This section uses direct and indirect non-interference com-
binators to enforce strong guarantees of non-interference.

5.1 Harmless Advice

The harmless composition combinator ! ensures both con-
trol and data flow properties.

type NIAugment a b c t = ∀m.(Monad m,Monad (t m)) ⇒
Augment a b c (t m)

(!) :: (Monad m,MonadTrans t,Monad (t m)) ⇒
NIAugment a b c t → NIBase a b m → Open (a → t m b)

adv ! bse = augment adv " bse
Harmless composition requires a special type of non-interfering
augmentation advice, which is defined by NIAugment . It is
important that the advice used by ! is augmentation since,
for instance, if an effectful base program could be called by
advice twice, it could give different results than if called only
once. This is because the result may depend on the effects
of the base program. The " combinator used by ! ensures
that the advice and the base program have non-interfering
effects.

Dantas and Walker [10] introduced the notion of harmless
advice for advice that guarantees full non-interference with
the base program:

A piece of harmless advice is a computation that,
like ordinary aspect-oriented advice, executes when
control reaches a designated control-flow point.
However, unlike ordinary advice, harmless advice
is designed to obey a weak non-interference prop-
erty. Harmless advice may change the termina-
tion behavior of computations and use I/O, but
it does not otherwise influence the final result of
the mainline code.

The full non-interference provided by the ! combinator
enforces that the advice is harmless. Let us cast the informal
notion of harmlessness in a formal theorem:

Theorem 1 (Harmless Advice) Consider a base program
bse and advice adv with the types:
bse :: ∀t .(MonadTrans t, Monad (t κ)) ⇒ Open (t κ α)
adv :: ∀m.(Monad m,Monad (τ m)) ⇒ Augment α β γ (τ m)
where κ is a monad and τ a monad transformer. If a func-
tion proj :: ∀m,a.Monad m ⇒ τ m a → m a exists that
satisfies the property:

proj ◦ lift ≡ id

, then advice adv is harmless with respect to bse:

proj ◦ (weave (adv ! bse)) ≡ runIdT ◦ (weave bse)

Informally, the theorem states that, if we ignore the effects
introduced by the advice, the advised program is equivalent
to the unadvised program. The role of the projection func-
tion proj is to ignore the effects introduced by the advice.
The required property proj ◦ lift ≡ id expresses the intuition
that projection has no impact if there are no effects.

This theorem is proved in the companion technical re-
port [29]. Rather than looking into the details of the proof
itself, it is more interesting to look into the techniques used
by the proof: equational reasoning and parametricity.

Equational reasoning is the basic mechanism used in purely
functional languages to reason about programs. Equational
reasoning allows replacing a program for an equivalent one
in any context, which leads to a simple algebraic style of
proofs about programs like the one in Section 2.2. In im-
pure languages equational reasoning does not generally hold,
because a program may implicitly depend on the context of
that program.
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Harmless Advice 
Theorem

get >> m ≡ m

get >>= λs1 → get >>= f s ≡ get >>= λs1 → f s s

put x >> put y ≡ put y

put x >> get ≡ put x >> return x

The new classes allow more accurate types, for instance
dumping advice only requires reading the state:
dump2 :: (MGet s m,MonadWriter String m,Show s)

⇒ a → m ()
dump2 = do {s ← get ; tell (show s ++ "\n")}
With the two new constraints, EffectiveAdvice also defines
relaxed versions of NIAdvice:
type ROAdvice a b t s = ∀m.(MGet s m,MGet s (t m)) ⇒

Open (a → t m b)

type WOAdvice a b t s = ∀m.(MPut s m,MPut s (t m)) ⇒
Open (a → t m b)

The dump3 advice instantiates dump2 as a ROAdvice:
dump3 :: Show s ⇒ ROAdvice a b (WriterT String) s
dump3 = before dump2

The new interference primitives in turn allow Rinard’s state-
specific interference classes to be expressed as combinators:
observation :: (MGet s m,MGet s (t m),MonadTrans t) ⇒

ROAdvice a b t s → NIBase a b m → Open (a → t m b)
observation adv bse = adv ⊕ bse

actuation :: (MPut s m,MPut s (t m),MonadTrans t) ⇒
WOAdvice a b t s → NIBase a b m → Open (a → t m b)

actuation adv bse = adv ⊕ bse
EffectiveAdvice puts similar constraints on the base program
and distinguishes nine different forms of interference. The
following table connects these nine forms to the correspond-
ing four terms used by Rinard et al.:

MGet MPut MonadState
MGet Independent Observation Observation
MPut Actuation Interference Interference

MonadState Actuation Interference Interference
Note that, by distinguishing between MPut and MonadState ,

EffectiveAdvice has a more fine-grained classification. MPut×
MPut , for instance, is only a weak form of interference.
While both programs write to the same state, neither pro-
gram’s computations are affected; only the resulting state
is.

While Rinard’s classification is specific for state, Effec-
tiveAdvice allows similar classifications for other kinds of
effects. For example, with exceptions the rights to throw
and catch exceptions are separated into different monad sub-
classes: MonadThrow e m for throwing an exception e,
MonadCatch e m for catching, and MonadException e m
for both. By considering the permitted operations of the
advice and base program, the possible interference patterns
between them are established.

5. HARMLESS ADVICE: STRONG GUAR-

ANTEES OF NON-INTERFERENCE

This section uses direct and indirect non-interference com-
binators to enforce strong guarantees of non-interference.

5.1 Harmless Advice

The harmless composition combinator ! ensures both con-
trol and data flow properties.

type NIAugment a b c t = ∀m.(Monad m,Monad (t m)) ⇒
Augment a b c (t m)

(!) :: (Monad m,MonadTrans t,Monad (t m)) ⇒
NIAugment a b c t → NIBase a b m → Open (a → t m b)

adv ! bse = augment adv " bse
Harmless composition requires a special type of non-interfering
augmentation advice, which is defined by NIAugment . It is
important that the advice used by ! is augmentation since,
for instance, if an effectful base program could be called by
advice twice, it could give different results than if called only
once. This is because the result may depend on the effects
of the base program. The " combinator used by ! ensures
that the advice and the base program have non-interfering
effects.

Dantas and Walker [10] introduced the notion of harmless
advice for advice that guarantees full non-interference with
the base program:

A piece of harmless advice is a computation that,
like ordinary aspect-oriented advice, executes when
control reaches a designated control-flow point.
However, unlike ordinary advice, harmless advice
is designed to obey a weak non-interference prop-
erty. Harmless advice may change the termina-
tion behavior of computations and use I/O, but
it does not otherwise influence the final result of
the mainline code.

The full non-interference provided by the ! combinator
enforces that the advice is harmless. Let us cast the informal
notion of harmlessness in a formal theorem:

Theorem 1 (Harmless Advice) Consider a base program
bse and advice adv with the types:
bse :: ∀t .(MonadTrans t, Monad (t κ)) ⇒ Open (t κ α)
adv :: ∀m.(Monad m,Monad (τ m)) ⇒ Augment α β γ (τ m)
where κ is a monad and τ a monad transformer. If a func-
tion proj :: ∀m,a.Monad m ⇒ τ m a → m a exists that
satisfies the property:

proj ◦ lift ≡ id

, then advice adv is harmless with respect to bse:

proj ◦ (weave (adv ! bse)) ≡ runIdT ◦ (weave bse)

Informally, the theorem states that, if we ignore the effects
introduced by the advice, the advised program is equivalent
to the unadvised program. The role of the projection func-
tion proj is to ignore the effects introduced by the advice.
The required property proj ◦ lift ≡ id expresses the intuition
that projection has no impact if there are no effects.

This theorem is proved in the companion technical re-
port [29]. Rather than looking into the details of the proof
itself, it is more interesting to look into the techniques used
by the proof: equational reasoning and parametricity.

Equational reasoning is the basic mechanism used in purely
functional languages to reason about programs. Equational
reasoning allows replacing a program for an equivalent one
in any context, which leads to a simple algebraic style of
proofs about programs like the one in Section 2.2. In im-
pure languages equational reasoning does not generally hold,
because a program may implicitly depend on the context of
that program.

given any projection function s. t.

get >> m ≡ m

get >>= λs1 → get >>= f s ≡ get >>= λs1 → f s s

put x >> put y ≡ put y

put x >> get ≡ put x >> return x

The new classes allow more accurate types, for instance
dumping advice only requires reading the state:
dump2 :: (MGet s m,MonadWriter String m,Show s)

⇒ a → m ()
dump2 = do {s ← get ; tell (show s ++ "\n")}
With the two new constraints, EffectiveAdvice also defines
relaxed versions of NIAdvice:
type ROAdvice a b t s = ∀m.(MGet s m,MGet s (t m)) ⇒

Open (a → t m b)

type WOAdvice a b t s = ∀m.(MPut s m,MPut s (t m)) ⇒
Open (a → t m b)

The dump3 advice instantiates dump2 as a ROAdvice:
dump3 :: Show s ⇒ ROAdvice a b (WriterT String) s
dump3 = before dump2

The new interference primitives in turn allow Rinard’s state-
specific interference classes to be expressed as combinators:
observation :: (MGet s m,MGet s (t m),MonadTrans t) ⇒

ROAdvice a b t s → NIBase a b m → Open (a → t m b)
observation adv bse = adv ⊕ bse

actuation :: (MPut s m,MPut s (t m),MonadTrans t) ⇒
WOAdvice a b t s → NIBase a b m → Open (a → t m b)

actuation adv bse = adv ⊕ bse
EffectiveAdvice puts similar constraints on the base program
and distinguishes nine different forms of interference. The
following table connects these nine forms to the correspond-
ing four terms used by Rinard et al.:

MGet MPut MonadState
MGet Independent Observation Observation
MPut Actuation Interference Interference

MonadState Actuation Interference Interference
Note that, by distinguishing between MPut and MonadState ,

EffectiveAdvice has a more fine-grained classification. MPut×
MPut , for instance, is only a weak form of interference.
While both programs write to the same state, neither pro-
gram’s computations are affected; only the resulting state
is.

While Rinard’s classification is specific for state, Effec-
tiveAdvice allows similar classifications for other kinds of
effects. For example, with exceptions the rights to throw
and catch exceptions are separated into different monad sub-
classes: MonadThrow e m for throwing an exception e,
MonadCatch e m for catching, and MonadException e m
for both. By considering the permitted operations of the
advice and base program, the possible interference patterns
between them are established.

5. HARMLESS ADVICE: STRONG GUAR-

ANTEES OF NON-INTERFERENCE

This section uses direct and indirect non-interference com-
binators to enforce strong guarantees of non-interference.

5.1 Harmless Advice

The harmless composition combinator ! ensures both con-
trol and data flow properties.

type NIAugment a b c t = ∀m.(Monad m,Monad (t m)) ⇒
Augment a b c (t m)

(!) :: (Monad m,MonadTrans t,Monad (t m)) ⇒
NIAugment a b c t → NIBase a b m → Open (a → t m b)

adv ! bse = augment adv " bse
Harmless composition requires a special type of non-interfering
augmentation advice, which is defined by NIAugment . It is
important that the advice used by ! is augmentation since,
for instance, if an effectful base program could be called by
advice twice, it could give different results than if called only
once. This is because the result may depend on the effects
of the base program. The " combinator used by ! ensures
that the advice and the base program have non-interfering
effects.

Dantas and Walker [10] introduced the notion of harmless
advice for advice that guarantees full non-interference with
the base program:

A piece of harmless advice is a computation that,
like ordinary aspect-oriented advice, executes when
control reaches a designated control-flow point.
However, unlike ordinary advice, harmless advice
is designed to obey a weak non-interference prop-
erty. Harmless advice may change the termina-
tion behavior of computations and use I/O, but
it does not otherwise influence the final result of
the mainline code.

The full non-interference provided by the ! combinator
enforces that the advice is harmless. Let us cast the informal
notion of harmlessness in a formal theorem:

Theorem 1 (Harmless Advice) Consider a base program
bse and advice adv with the types:
bse :: ∀t .(MonadTrans t, Monad (t κ)) ⇒ Open (t κ α)
adv :: ∀m.(Monad m,Monad (τ m)) ⇒ Augment α β γ (τ m)
where κ is a monad and τ a monad transformer. If a func-
tion proj :: ∀m,a.Monad m ⇒ τ m a → m a exists that
satisfies the property:

proj ◦ lift ≡ id

, then advice adv is harmless with respect to bse:

proj ◦ (weave (adv ! bse)) ≡ runIdT ◦ (weave bse)

Informally, the theorem states that, if we ignore the effects
introduced by the advice, the advised program is equivalent
to the unadvised program. The role of the projection func-
tion proj is to ignore the effects introduced by the advice.
The required property proj ◦ lift ≡ id expresses the intuition
that projection has no impact if there are no effects.

This theorem is proved in the companion technical re-
port [29]. Rather than looking into the details of the proof
itself, it is more interesting to look into the techniques used
by the proof: equational reasoning and parametricity.

Equational reasoning is the basic mechanism used in purely
functional languages to reason about programs. Equational
reasoning allows replacing a program for an equivalent one
in any context, which leads to a simple algebraic style of
proofs about programs like the one in Section 2.2. In im-
pure languages equational reasoning does not generally hold,
because a program may implicitly depend on the context of
that program.

get >> m ≡ m

get >>= λs1 → get >>= f s ≡ get >>= λs1 → f s s

put x >> put y ≡ put y

put x >> get ≡ put x >> return x

The new classes allow more accurate types, for instance
dumping advice only requires reading the state:
dump2 :: (MGet s m,MonadWriter String m,Show s)

⇒ a → m ()
dump2 = do {s ← get ; tell (show s ++ "\n")}
With the two new constraints, EffectiveAdvice also defines
relaxed versions of NIAdvice:
type ROAdvice a b t s = ∀m.(MGet s m,MGet s (t m)) ⇒

Open (a → t m b)

type WOAdvice a b t s = ∀m.(MPut s m,MPut s (t m)) ⇒
Open (a → t m b)

The dump3 advice instantiates dump2 as a ROAdvice:
dump3 :: Show s ⇒ ROAdvice a b (WriterT String) s
dump3 = before dump2

The new interference primitives in turn allow Rinard’s state-
specific interference classes to be expressed as combinators:
observation :: (MGet s m,MGet s (t m),MonadTrans t) ⇒

ROAdvice a b t s → NIBase a b m → Open (a → t m b)
observation adv bse = adv ⊕ bse

actuation :: (MPut s m,MPut s (t m),MonadTrans t) ⇒
WOAdvice a b t s → NIBase a b m → Open (a → t m b)

actuation adv bse = adv ⊕ bse
EffectiveAdvice puts similar constraints on the base program
and distinguishes nine different forms of interference. The
following table connects these nine forms to the correspond-
ing four terms used by Rinard et al.:

MGet MPut MonadState
MGet Independent Observation Observation
MPut Actuation Interference Interference

MonadState Actuation Interference Interference
Note that, by distinguishing between MPut and MonadState ,

EffectiveAdvice has a more fine-grained classification. MPut×
MPut , for instance, is only a weak form of interference.
While both programs write to the same state, neither pro-
gram’s computations are affected; only the resulting state
is.

While Rinard’s classification is specific for state, Effec-
tiveAdvice allows similar classifications for other kinds of
effects. For example, with exceptions the rights to throw
and catch exceptions are separated into different monad sub-
classes: MonadThrow e m for throwing an exception e,
MonadCatch e m for catching, and MonadException e m
for both. By considering the permitted operations of the
advice and base program, the possible interference patterns
between them are established.

5. HARMLESS ADVICE: STRONG GUAR-

ANTEES OF NON-INTERFERENCE

This section uses direct and indirect non-interference com-
binators to enforce strong guarantees of non-interference.

5.1 Harmless Advice

The harmless composition combinator ! ensures both con-
trol and data flow properties.

type NIAugment a b c t = ∀m.(Monad m,Monad (t m)) ⇒
Augment a b c (t m)

(!) :: (Monad m,MonadTrans t,Monad (t m)) ⇒
NIAugment a b c t → NIBase a b m → Open (a → t m b)

adv ! bse = augment adv " bse
Harmless composition requires a special type of non-interfering
augmentation advice, which is defined by NIAugment . It is
important that the advice used by ! is augmentation since,
for instance, if an effectful base program could be called by
advice twice, it could give different results than if called only
once. This is because the result may depend on the effects
of the base program. The " combinator used by ! ensures
that the advice and the base program have non-interfering
effects.

Dantas and Walker [10] introduced the notion of harmless
advice for advice that guarantees full non-interference with
the base program:

A piece of harmless advice is a computation that,
like ordinary aspect-oriented advice, executes when
control reaches a designated control-flow point.
However, unlike ordinary advice, harmless advice
is designed to obey a weak non-interference prop-
erty. Harmless advice may change the termina-
tion behavior of computations and use I/O, but
it does not otherwise influence the final result of
the mainline code.

The full non-interference provided by the ! combinator
enforces that the advice is harmless. Let us cast the informal
notion of harmlessness in a formal theorem:

Theorem 1 (Harmless Advice) Consider a base program
bse and advice adv with the types:
bse :: ∀t .(MonadTrans t, Monad (t κ)) ⇒ Open (t κ α)
adv :: ∀m.(Monad m,Monad (τ m)) ⇒ Augment α β γ (τ m)
where κ is a monad and τ a monad transformer. If a func-
tion proj :: ∀m,a.Monad m ⇒ τ m a → m a exists that
satisfies the property:

proj ◦ lift ≡ id

, then advice adv is harmless with respect to bse:

proj ◦ (weave (adv ! bse)) ≡ runIdT ◦ (weave bse)

Informally, the theorem states that, if we ignore the effects
introduced by the advice, the advised program is equivalent
to the unadvised program. The role of the projection func-
tion proj is to ignore the effects introduced by the advice.
The required property proj ◦ lift ≡ id expresses the intuition
that projection has no impact if there are no effects.

This theorem is proved in the companion technical re-
port [29]. Rather than looking into the details of the proof
itself, it is more interesting to look into the techniques used
by the proof: equational reasoning and parametricity.

Equational reasoning is the basic mechanism used in purely
functional languages to reason about programs. Equational
reasoning allows replacing a program for an equivalent one
in any context, which leads to a simple algebraic style of
proofs about programs like the one in Section 2.2. In im-
pure languages equational reasoning does not generally hold,
because a program may implicitly depend on the context of
that program.
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Harmless Effects

-- * Writer
projW :: forall w m a. (Monoid w, Monad m)
      => WriterT w m a -> m a
projW m = do (r,w) <- runWriterT m
             return r
-- * State
projS :: forall s m a. Monad m 
      => s -> StateT s m a -> m a
projS s0 m = do (r,sn) <- runStateT m s0 
                return r
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Harmfull Effects

-- * Exceptions

projE :: forall e m a. Monad m
      => ErrorT e m a -> m a
projE m = runErrorT m >>= \x -> case x of
  Right r    -> return r
  Left error -> ???

-- * IO
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Harmless Observation 
Advice

• Relaxation of harmlessness notion

• Observation advice does not affect the 
base computation

Parametricity [37] allows the derivation of theorems for a
whole class of programs, only knowing their type. Voigtlän-
der [36] has recently shown how to extend the parametricity
approach to type constructor classes such as Monad . This
way we can derive theorems about effectful programs with-
out knowing the particular effects used.

Parametricity in its simplest form only holds for total, i.e.
fully defined and terminating, programs. If partial and non-
terminating programs are also allowed, the advice may intro-
duce non-termination and partiality. This is our counterpart
of “may change the termination behavior” in Dantas’s and
Walker’s definition.

5.2 Harmless Effects

In order to suit the Harmless Advice theorem, advice can-
not introduce arbitrary effects. There must be a suitable
projection function for ignoring the effects. Such projec-
tion functions do indeed exist for several state-related monad
transformers.
WriterT For the WriterT monad transformer we define
the following projection function:
projW :: ∀w m a.(Monad m,Monoid w)

⇒ WriterT w m a → m a
projW m = runWriterT m >>= return ◦ fst
It is indeed suitable:

Lemma 1 The function projW is a suitable function for
the Harmless Advice theorem:

projW ◦ lift ≡ id

With the help of projW , the Harmless Advice theorem
establishes that the logging advice is harmless:

proj ◦weave (log2 "eval"! beval1 ) ≡ runIdT ◦weave beval1

StateT We can also define a suitable projection function
for the StateT monad transformer:
projS :: ∀s m a.Monad m ⇒ s → StateT s m a → m a
projS s0 m = runStateT m s0 >>= return ◦ fst
Indeed, the required property holds:

Lemma 2 The function projS s0 is a suitable function for
the Harmless Advice theorem:

projS s0 ◦ lift ≡ id

for any s0 .

The proofs for both lemmas are presented in the compan-
ion technical report [29].
Other Harmless Effects There are several other harmless
effects, such as IdT with trivial projection function runIdT ,
ReaderT and variations on these.

5.3 Harmful effects

An interesting aspect of our theorem is that harmless ad-
vice may not introduce arbitrary effects. Only those effects
for which a suitable projection function proj exists, may be
used in harmless advice.

Consider again the ErrorT e monad transformer of Fig-
ure 3. We can only partially define the projection function:
projE :: ∀e m a.Monad m ⇒ ErrorT e m a → m a
projE m = runErrorT m >>= λx → case x of

Left e → ???
Right x → return x

In the case of an error, we cannot produce a value. We
could attempt to fix this issue by parametrizing projE with
a default value d :
projE ′ :: ∀e m a.Monad m ⇒ a → ErrorT e m a → m a
projE ′ d m = runErrorT m >>= λx → case x of

Left e → return d
Right x → return x

but now projE ′ d :: ∀e m.Monad m ⇒ ErrorT e m a →
m a fixes the type parameter a to the type of d , which is
inappropriate.

Dantas and Walker mention that “Harmless advice may
. . . use I/O.” However, undiscriminated use of I/O may def-
initely interfere with I/O in the base program. In Haskell,
this manifests itself in the fact that there is no safe way to
project from the IO monad. Only more disciplined effects,
such as WriterT , ReaderT and StateT are possible.

5.4 Harmless Observation Advice

In the main Harmless Advice theorem, we have used the !
operator which enforces that advice and base program are
orthogonal. While orthogonality is a sufficient condition,
it is certainly not a necessary one. For instance, observa-
tion advice may be harmless too. A combinator that forces
harmless observation advice is:
type NIOAugment a b c s t = ∀m.

(MGet s m,Monad (t m)) ⇒ Augment a b c (t m)

(") :: (MGet s m,MonadTrans t, MGet s (t m)) ⇒
NIOAugment a b c s t → NIBase a b m → Open (a → t m b)

adv " bse = augment adv ‘observation ‘ bse
Now we can adapt the theorem accordingly:

Theorem 2 (Harmless Observation Advice) Consider
a base program bse :: ∀t .MonadTrans t ⇒ Open (t κ α) and
advice adv :: ∀m.MGet σ m ⇒ Augment α β γ (τ m),
with κ a MonadState σ and τ a MonadTrans. If a function
proj :: ∀m a.Monad m ⇒ τ m a → m a exists that satisfies
the property:

proj ◦ lift ≡ id

, then the advice adv is harmless with respect to bse:

proj ◦ (weave (adv " bse)) ≡ runIdT ◦ (weave bse)

We refer to the technical report again for the proof [29].
It is similar in style to that of the Harmless Advice the-
orem. The main difference lies in the fact that the advice
knows more about the m type parameter. As a consequence,
weaker parametricity results are obtained. The loss in para-
metricity is made up for by exploiting the two get laws.

Theorem 2 establishes that dumping advice is harmless:

projW ◦ weave (dump3 " beval1 ) ≡ runIdT ◦ weave beval1

6. LANGUAGE SUPPORT

This section discusses language support for EffectiveAd-
vice, including how to solve some of the current limitations.
Object-Oriented Languages The EffectiveAdvice model
is easily implemented in Haskell, which is directly based on a
variant of System F. However, while Haskell provides a great
setting for reasoning, it has practical drawbacks. For in-
stance, components are not oblivious, but need to be marked
Open to allow for advice.

Parametricity [37] allows the derivation of theorems for a
whole class of programs, only knowing their type. Voigtlän-
der [36] has recently shown how to extend the parametricity
approach to type constructor classes such as Monad . This
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Lemma 2 The function projS s0 is a suitable function for
the Harmless Advice theorem:

projS s0 ◦ lift ≡ id

for any s0 .

The proofs for both lemmas are presented in the compan-
ion technical report [29].
Other Harmless Effects There are several other harmless
effects, such as IdT with trivial projection function runIdT ,
ReaderT and variations on these.

5.3 Harmful effects

An interesting aspect of our theorem is that harmless ad-
vice may not introduce arbitrary effects. Only those effects
for which a suitable projection function proj exists, may be
used in harmless advice.

Consider again the ErrorT e monad transformer of Fig-
ure 3. We can only partially define the projection function:
projE :: ∀e m a.Monad m ⇒ ErrorT e m a → m a
projE m = runErrorT m >>= λx → case x of

Left e → ???
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In the case of an error, we cannot produce a value. We
could attempt to fix this issue by parametrizing projE with
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m a fixes the type parameter a to the type of d , which is
inappropriate.

Dantas and Walker mention that “Harmless advice may
. . . use I/O.” However, undiscriminated use of I/O may def-
initely interfere with I/O in the base program. In Haskell,
this manifests itself in the fact that there is no safe way to
project from the IO monad. Only more disciplined effects,
such as WriterT , ReaderT and StateT are possible.

5.4 Harmless Observation Advice

In the main Harmless Advice theorem, we have used the !
operator which enforces that advice and base program are
orthogonal. While orthogonality is a sufficient condition,
it is certainly not a necessary one. For instance, observa-
tion advice may be harmless too. A combinator that forces
harmless observation advice is:
type NIOAugment a b c s t = ∀m.

(MGet s m,Monad (t m)) ⇒ Augment a b c (t m)

(") :: (MGet s m,MonadTrans t, MGet s (t m)) ⇒
NIOAugment a b c s t → NIBase a b m → Open (a → t m b)

adv " bse = augment adv ‘observation ‘ bse
Now we can adapt the theorem accordingly:

Theorem 2 (Harmless Observation Advice) Consider
a base program bse :: ∀t .MonadTrans t ⇒ Open (t κ α) and
advice adv :: ∀m.MGet σ m ⇒ Augment α β γ (τ m),
with κ a MonadState σ and τ a MonadTrans. If a function
proj :: ∀m a.Monad m ⇒ τ m a → m a exists that satisfies
the property:

proj ◦ lift ≡ id

, then the advice adv is harmless with respect to bse:

proj ◦ (weave (adv " bse)) ≡ runIdT ◦ (weave bse)

We refer to the technical report again for the proof [29].
It is similar in style to that of the Harmless Advice the-
orem. The main difference lies in the fact that the advice
knows more about the m type parameter. As a consequence,
weaker parametricity results are obtained. The loss in para-
metricity is made up for by exploiting the two get laws.

Theorem 2 establishes that dumping advice is harmless:

projW ◦ weave (dump3 " beval1 ) ≡ runIdT ◦ weave beval1

6. LANGUAGE SUPPORT

This section discusses language support for EffectiveAd-
vice, including how to solve some of the current limitations.
Object-Oriented Languages The EffectiveAdvice model
is easily implemented in Haskell, which is directly based on a
variant of System F. However, while Haskell provides a great
setting for reasoning, it has practical drawbacks. For in-
stance, components are not oblivious, but need to be marked
Open to allow for advice.
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Proof Technique

• We need to know only the types, not the 
implementations of 

• advice, 

• base component, and

• projection function
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Proof Technique

• We do rely on

• definitions of the combinators

• monad laws

• purity of Haskell
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Parametricity

• Parametric polymorphism ...

• ... yields Theorems for Free!

f :: forall a. [a] -> Int

l   :: [A]
g   :: A -> B
map :: forall a b. (a -> b) -> [a] -> [b]

f l == f (map g l)
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Related Work

• Various works on reasoning for AOP

• global analysis [Kiczales&Menzini]

• type-and-effect system on impure ML 
calculus (weaker) [Dantas&Walker]

• ...

• EffectiveAdvice: very light-weight, yet strong 
results, combinators
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Conclusion

• EffectiveAdvice: disciplined advice with 
explicit effects, allows

• modular reasoning

• reasoning about interference
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Questions?
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Augmentation Example
log :: ... => String -> Augment a b () m 
log name = (bef,aft) where
  bef a = write “Entering ” a 
  aft b = write “Exiting ” b 
  write msg x = ...

eval = weave (augment log “evaluator” ⊕  
basic_eval)
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