EffectiveAdyvice

Disciplined Advice with Explicit Effects

Bruno C.d.S. Oliveira (bruno@ropas.snu.ac.kr)
ROSAEC Center; Seoul National University

(joint work with Tom Schrijvers & William R. Cook)

Wednesday, 20 January 2010

mailto:bruno@ropas.snu.ac.kr
mailto:bruno@ropas.snu.ac.kr

Motivation

® Several modularity approaches

all use
inheritance in
some way

® are hard to understand, due to

® hidden control flows

® hidden data dependencies

® Main Challenges: modular reasoning and reasoning
about interference between components.

Wednesday, 20 January 2010

Reasoning Properties

|. Modular Reasoning

understand component
individually

2. Interference

understand interaction
between components

Wednesday, 20 January 2010

Previous VWork

® Kiczales & Mezini:

“modular reasoning for AOP and
similar mechanisms is hard”

® Aldrich:

modular reasoning is possible for an
effect-free approach (Open Modules)

Wednesday, 20 January 2010

Goals

® reason modularly about tightly coupled
components

® using familiar reasoning techniques like
equational reasoning and parametricity.

® understand the essence of AOP-like advice.

Wednesday, 20 January 2010

EffectiveAdvice

® model of AOP advice using open recursion

® no new calculus, just System F (Haskell for surface
syntax)

® based on Cook’s (1989) denotational semantics of
inheritance

® full support for effects via monads

® reasoning about interference

® harmless advice/inheritance theorems

Wednesday, 20 January 2010

Advice and Open
Recursion

aaaaaaaaaaaaaaaaaaaaaaa

Open Recursion

type Open s = s => s

fixpoint)
weave :: Open s => s
weave a = a (weave a)
2 function composition)
(®) :: Open s => Open s => Open s

ar ® a2z = \proceed -> a1 (a2 proceed)

zero :: Open 52 identity function)

zero = \proceed -> proceed

Wednesday, 20 January 2010

Example

fib1 :: Open (Int -> Int)
fibi1 proc n = case n of

0 -> 0

1 -> 1

_ => proc (n-1) + proc (n-2)
advfib :: Open (Int -> Int)
advfib proc n = case n of

10 -> 55

_ => proc n

slowfib, optfib :: Int -> Int
slowfib = weave fibi
optfib = weave (advfib ® fibi)

Wednesday, 20 Januar y 2010

Open Recursion

proceed

|
» = weave (a|1 P 6112 D..P aln D bafse)

proceed proceed

Note: proceed ~ super in OOP

Wednesday, 20 January 2010

Effects

Wednesday, 20 January 2010

Effects

® Cook’s model of inheritance is purely
functional (no side-effects)

® this is great for reasoning, but ...
® any realistic examples require effects

® Solution: use monads!

Wednesday, 20 January 2010

Example: Modular Memoization

Qay have side-effects

fib2 :: Monad m => Open (Int -> m Int)
fib2 proc n = case n of
0 -> return O
1l -> return 1
-> do X <- proc (n 1)
y <- proc -2)
return (X + V)

recoverl
naive fi b

slowfib2 :¢ Int -> Int
slowfib2 runId . weave fib:

aaaaa y 2010

Example: Modular Memoization

g side-effect >

memo :: MonadState Map m => Open (Int -> m Int)
memo pProc n =
do map <- get
if member n map
then return (map ! n)
else do r <- proc n
map’ <- get put (insert n r map’)
return r

optfib2 :: Int -> Int
optfib2 n = evalState (weave (memo ® fib2) n)
emptyMap

Wednesday, 20 Januar y 2010

Interference

Disciplining Advice for Reasoning

® control and data flow combinators inspired
by Rinard et al. (2004).

® exploit purity for reasoning
® equational reasoning

® parametricity

® modular non-interference proofs.

Wednesday, 20 January 2010

Control Flow
Interference

® (assification of Rinard et al.

Combination: An advice can call proceed any num-
ber of times.

Replacement: There are no calls to proceed in advice.

Augmentation: An advice that calls proceed exactly
once, and does not modify the arguments to proceed
or the value returned by proceed.

Narrowing: An advice that calls proceed at most
once, and does not modify the arguments to proceed
or the value returned by proceed.

Wednesday, 20 January 2010

Combinators: Example

type Augment a b ¢ m =
(a -=>mc, a -=>b ->c ->m ())

augment :: Monad m => Augment a b ¢ m
-> Open (a -> m Db)
augment (before, after) proc a =

do c <- before a -
b <- proc a
after a b o =— In words: proceed should be
return b called once and only one.

_

Wednesday, 20 Januar y 2010

Dataflow/Effect
Interference

® (lassification of Rinard et al.

e Orthogonal: The advice and method access disjoint
fields. In this case we say that the scopes are orthog-
onal.

e Independent: Neither the advice nor the method
may write a field that the other may read or write.
In this case we say that the scopes are independent.

e Observation: The advice may read one or more fields
that the method may write but they are otherwise in-
dependent. In this case we say that the advice scope
observes the method scope.

e Actuation: The advice may write one or more fields
that the method may read but they are otherwise in-
dependent. In this case we say that the advice scope
actuates the method scope.

e Interference: The advice and method may write the
same field. In this case we say that the two scopes
interfere.

Wednesday, 20 January 2010

Decomposition of
Non-Interference

-— * Advice
-—- ** Tnterfering:
type IAdvice a b m
= Open (a -> m b)
-—- ** Non-Interfering:
type NIAdvice a b t
= forall m. (Monad m, Monad (t m))
=> Open (a -> t m b)
-— * Base Component
—— similar classification

Wednesday, 20 January 2010

Interference
Combinators

® 4 possible combinations

adv & bse
adv © bse
adv & bse
adv Q bse

niradvice adv @ nibase bse
adv @ nibase bse

niradvice adv @ bse

adv @ bse

Harmless Adyvice

aaaaaaaaaaaaaaaaaaaaaaa

Harmless Advice

® Dantas & Walker:

A prece of harmless aduvice 1s a computation that,
like ordinary aspect-oriented advice, executes when
control reaches a designated control-flow point.
However, unlike ordinary advice, harmless advice
18 designed to obey a weak non-interference prop-
erty. Harmless advice may change the termina-
tion behavior of computations and use 1/0, but
1t does not otherwise influence the final result of
the mainline code.

Wednesday, 20 January 2010

Harmless Advice

® Non-interference along 2 axes
® control flow: augmentation

® data flow: orthogonal

adv ® bse = augment adv © bse

Wednesday, 20 January 2010

Harmless Advice
Theorem

proj o (weave (adv ® bse)) = runldT o (weave bse)

given any projection function s. t.

proj :: Vm,a.Monad m = 7 m a — m a

proj o lift = id

Harmless Effects

—-— * Write

r

projW :: forall w m a. (Monoid w, Monad m)
=> WriterT wm a -> m a

projW m = do (r,w) <- runWriterT m
return r
-— * State
projS :: forall s m a. Monad m
=> s =-> StateT s m a -> m a
projS sO0 m = do (r,sn) <- runStateT m sO

return r

Wednesday, 20 Januar y 2010

Harmfull Effects

-—- * Exceptions

projE :: forall e m a. Monad m
=> BErrorT e m a => m a
projE m = runErrorT m >>= \x -> case X of

Right r -> return r
Left error -> 27?7

—— * IO

Wednesday, 20 January 2010

Harmless Observation
Advice

® Relaxation of harmlessness notion

® (Observation advice does not affect the
base computation

adv ® bse = augment adv ‘observation' bse

proj o (weave (adv ® bse)) = runldT o (weave bse)

Wednesday, 20 January 2010

Proof Technique

® We need to know only the types, not the
implementations of

® advice,
® base component, and

® projection function

Wednesday, 20 January 2010

Proof Technique

® VWe do rely on
® definitions of the combinators
® monad laws

® purity of Haskell

Wednesday, 20 January 2010

Parametricity

® Parametric polymorphism ...

® ..yields Theorems for Free!

f :: forall a. [a] -> Int

1 :: [A]

g t:t A -> B

map :: forall a b. (a -> b) -> [a] -> [Db]

f 1 == (map g 1)

Wednesday, 20 January 2010

Related VWork

® Various works on reasoning for AOP
® global analysis [Kiczales&Menzini]

® type-and-effect system on impure ML
calculus (weaker) [Dantas&VValker]

® EffectiveAdvice: very light-weight, yet strong
results, combinators

Wednesday, 20 January 2010

Conclusion

® EffectiveAdvice: disciplined advice with
explicit effects, allows

® modular reasoning

® reasoning about interference

Wednesday, 20 January 2010

Questions!

Augmentation Example

log :: ... => String -> Augment a b () m
log name = (bef,aft) where

bef a = write “Entering ” a

aft b = write “Exiting ” b

write msg x = ...

eval = weave (augment log “evaluator” @
basic eval)

Wednesday, 20 January 2010

