
Static Analysis for
Java-like Programs

Sukyoung Ryu

Department of Computer Science
Korea Advanced Institute of Science and Technology

January 7, 2010

0-0



Static Analysis for Java-like Programs, Jan ’10

Static Program Analysis
(at KAIST)

1



Exception Analyses

Static Analysis for Java-like Programs, Jan ’10

• Exception analysis for ML programs

> Exceptions and functions are intermingled.

> Decoupled two analyses:

control flow analysis and exception analysis

> Exception analyzer:

http://cm.bell-labs.com/cm/cs/what/smlnj/links.html

• Exception analysis for multithreaded Java programs

> concurrency analysis and exception analysis

• Rigorous, safe, and practical exception analyses

• A systematic development of an analysis

2



Static Analysis for Java-like Programs, Jan ’10

Debugging Everywhere
(at Harvard)

3



Source-Level Debugger ldb

Static Analysis for Java-like Programs, Jan ’10

• for multiple languages

C, Java, OCaml, and SML

• for multiple platforms

Sparc, Mips, and x86

• with modest programming effort

contract between a compiler and ldb

• without sacrificing runtime performance

http://www.etaps05.inf.ed.ac.uk/Programme/CC.html

4



Static Analysis for Java-like Programs, Jan ’10

Fortress Programming Language
(at Sun Labs.)

5



Project Fortress

Static Analysis for Java-like Programs, Jan ’10

• A multicore language for scientists and engineers

• Run your whiteboard in parallel!

vnorm = v/‖v‖∑
k←1:n

ak xk

C = A ∪B

y = 3x sin x cos 2x log log x

• “Growing a Language”

Guy L. Steele Jr., keynote talk, OOPSLA 1998

6



Static Analysis for Java-like Programs, Jan ’10

Static Analysis for Java-like Programs

7



What to Not Expect

Static Analysis for Java-like Programs, Jan ’10

• Exhaustive survey of Java static analysis tools

• An apple to apple comparison of Java and C analysis tools

• Fortress sales

8



What JavaTM Did for C

Static Analysis for Java-like Programs, Jan ’10

• Catch “stupid mistakes”: static type system

• Automatic storage management: garbage collection

• Platform independence: JVM

• Extensive libraries

• Security model, including type safety

• Dynamic compilation

9



Java-like Languages

Static Analysis for Java-like Programs, Jan ’10

• Scala http://www.scala-lang.org

• Fortress http://projectfortress.sun.com

• X10 http://x10-lang.org

• Clojure http://clojure.org

• Groovy http://groovy.codehaus.org

• JRuby http://jruby.org

• Jython http://www.jython.org

• · · ·

10



Languages on the JVM

Static Analysis for Java-like Programs, Jan ’10

• Scala http://www.scala-lang.org

• Fortress http://projectfortress.sun.com

• X10 http://x10-lang.org

• Clojure http://clojure.org

• Groovy http://groovy.codehaus.org

• JRuby http://jruby.org

• Jython http://www.jython.org

• · · ·

11



Why JVM for Other Languages

Static Analysis for Java-like Programs, Jan ’10

• Available for many hardware and software platforms

• Extremely high performance (especially HotSpot)

• Huge universe of Java libraries

12



Static Analysis Tools

Static Analysis for Java-like Programs, Jan ’10

• Commercial tools

Sparrow, CodeSonar, Coverity, KlocWork, PolySpace,

Purify, Lint, PREfix, PREfast, QAC, Safer C, GoAnna,

Fortify, VeraCode, SLAM

• Open-source or noncommercial tools

FindBugsTM, clang, BLAST, Jlint, JPF, Splint, Calysto,

Saturn, mygcc, ESC, LC-Lint, Vault, Astree, CGS, C-Kit,

Uno, Orion

13



Static Analysis for C Programs

Static Analysis for Java-like Programs, Jan ’10

• Memory-related errors

> buffer overflow

> read outside array bounds

> memory leaks

> null pointer dereferences

• Compared to Java programs

> more bugs to find

> a lot scarier bugs

> not as good free tools

14



Static Analysis for Java Programs

Static Analysis for Java-like Programs, Jan ’10

• Violations of reasonable programming practices

> Shouldn’t have infinite recursive loop.

> Shouldn’t throw NullPointerException.

> All statements should be reachable.

> Shouldn’t allow SQL injection.

• Compared to C programs

> static type system

> bytecode verifier

> good free tools, notably FindBugs

15



FindBugs

Static Analysis for Java-like Programs, Jan ’10

• An open-source static analysis tool

http://findbugs.sourceforge.net

• Analyzes classfiles; source files used only for display

• Looks for bug patterns, inspired by real problems in real

code

• Built into the standard software development processes of

Google and eBay

16



Kinds of Bugs

Static Analysis for Java-like Programs, Jan ’10

• Errors: Some things are always wrong.

> SQL injection

> infinite recursive loop

• Warnings: Some things are merely error prone.

> duplicate branches

> switch case falls through

• Guidelines: Some things are for code quality.

> confusing method name

17



What Matters

Static Analysis for Java-like Programs, Jan ’10

• At Google, null pointer exceptions aren’t considered to be

a serious problem in server code.

> But at eBay, they are.

• Both eBay and Google have developed their own

prioritized lists of which issues they care about.

> They are significantly different.

18



FindBugs: Some Lessons

Static Analysis for Java-like Programs, Jan ’10

• Static analysis typically finds mistakes

> but some mistakes don’t matter

> need to find important bugs.

• The bugs that matter depend on context.

• Concurrency is tricky.

19



FindBugs: Low-Hanging Fruits

Static Analysis for Java-like Programs, Jan ’10

• Some detectors are simple but specific: looking for ignored

return values is easy.

• Some are harder: finding uses of .equals to compare two

objects of different types (requires a type analysis.)

• FindBugs does lots of simple analyses, very little

interprocedural code analysis.

• You don’t have to be clever to find stupid mistakes; being

stupid works pretty well.

• But clever can find more.

20



FindBugs: Bug Categories

Static Analysis for Java-like Programs, Jan ’10

• Correctness

• Bad practice

• Dodgy code

• Multithreaded correctness

• Potential performance problems

• Malicious code vulnerability

• Experimental

• Security

• Internationalization

21



FindBugs: Bug Categories for Fortress

Static Analysis for Java-like Programs, Jan ’10

• Correctness 45

• Bad practice 480

• Dodgy code 596

• Multithreaded correctness 15

• Potential performance problems 133

• Malicious code vulnerability 65

• Experimental 4

• Security

• Internationalization

22



FindBugs: Bug Categories for Fortress

Static Analysis for Java-like Programs, Jan ’10

23



FindBugs: Correctness Bugs in Fortress

Static Analysis for Java-like Programs, Jan ’10

• Correctness 45

> Infinite recursive loop 1

> Bad casts of object references 2
∗ Impossible cast 1
∗ instanceof will always return false 1

> Bad use of return value from method 3
∗ Exception created and dropped rather than thrown 3

> Redundant comparison to null 9
∗ Nullcheck of value previously dereferenced 9

> · · ·

24



FindBugs: Bad Practice in Fortress

Static Analysis for Java-like Programs, Jan ’10

• Bad practice 480

> Bad use of return value from method 5
∗ Method ignores exceptional return value 5

> Null pointer dereference 47
∗ Method with Boolean return type returns explicit null 38
∗ equals() method does not check for null argument 9

> Checking String equality using == or != 5
∗ Comparison of String objects using == or != 5

> Dropped or ignored exceptions 5
∗ Method might ignore exceptions 5

> · · ·
25



FindBugs: Multithreaded Bugs

Static Analysis for Java-like Programs, Jan ’10

• Multithreaded bugs 15

> Constructor invokes Thread.start() 1

> Inconsistent synchronization 2

> Lock not released on all paths 3
∗ Method does not release lock on all exception paths

3

> Possible double check of field 5

> Static use of type Calendar or DateFormat 4
∗ Call to static DateFormat 2
∗ Static DateFormat 2

26



FindBugs: Performance Problems

Static Analysis for Java-like Programs, Jan ’10

• Performance problems 133

> Inner class could be made static 8
∗ Should be a static inner class 8

> Private method is never called 7

> Questionable Boxing of primitive value 12
∗ Method invokes inefficient Number constructor; use

static valueOf instead 12

> String concatenation in loop using + operator 44
∗ Method concatenates strings using + in a loop 44

> Unread field 24

> · · ·
27



FindBugs: Bug Patterns

Static Analysis for Java-like Programs, Jan ’10

• Some big, broad and common patterns

> Dereferencing a null pointer

> An impossible checked cast

> Methods whose return value should not be ignored

• Lots of small, specific bug patterns, that together find

lots of bugs

> Every Programming Puzzler

> Every chapter in Effective Java

> Most postings to http://thedailywtf.com

28



FindBugs: Analysis Techniques

Static Analysis for Java-like Programs, Jan ’10

• Local pattern matching

> If you invoke String.toLowerCase(), don’t ignore the

return value.

• Intraprocedural dataflow analysis

> Null pointer, type case errors

• Interprocedural method summaries

> This method always dereferences its parameter.

• Context-sensitive interprocedural analysis

> Interprocedural flow of untrusted data
∗ SQL injection, cross site scripting

29



FindBugs: More Bugs

Static Analysis for Java-like Programs, Jan ’10

• Where is the best place to expend effort to find more

bugs?

> Use more sophisticated analysis to find more subtle

errors

> Build more shallow and general bug detectors

> Write application-specific bug detectors

30



More Free Tools for Java Programs

Static Analysis for Java-like Programs, Jan ’10

• Checkstyle http://checkstyle.sourceforge.net

• PMD http://pmd.sourceforge.net

• Hammurapi http://www.hammurapi.biz

• Soot http://www.sable.mcgill.ca/soot

• Squale http://www.squale.org

31



Commercial Tools for Java Programs

Static Analysis for Java-like Programs, Jan ’10

• KlocWork http://www.klocwork.com

• Fortify Software SCA http://www.fortify.com

• Coverity Prevent http://coverity.com

• SureLogic Fluid http://www.surelogic.com

• Parasoft JTest http://www.parasoft.com/jsp/home.jsp

32



Static Analysis for Scala Programs

Static Analysis for Java-like Programs, Jan ’10

• More features while preserving backward compatibility for

Java

> Type erasure semantics

• Issues to map the source-level new features down to JVM

> Compiling generics through user-directed type

specialization ICOOOLPS 2009

> Implementing first-class polymorphic delimited

continuations by a type-directed selective CPS-

transform ICFP 2009

33



Static Analysis for Fortress Programs

Static Analysis for Java-like Programs, Jan ’10

• Mind-changing semantics

> Parallelism by default

> Advanced type system

• Issues to map the source-level new features down to JVM

> Encoding Fortress type system in Java bytecode

> Implementing checks for various static guarantees

• Issues to improve performance to take advantage of

multicores

> purity analysis

> unboxed value analysis

> contention management for transactional memory
34



Sukyoung Ryu

sryu@cs.kaist.ac.kr

http://plrg.kaist.ac.kr

34-1


