
Instant Code Clone Detection

Mu-Woong Lee, Jong-Won Roh, Seung-won Hwang

POSTECH

Sunghun Kim

HKUST

Outline

 Code Clone Detection

 Motivation

 Our Goal

 System Overview

 Characteristic Vectors

 Dimensionality Reduction

 Indexing

 Filtering-then-Ranking Clone Detection

 Interleaved Clone Detection

 Experimental Evaluation

2

Code Clone Detection

3

…

…

…
clustering

Code Clone Detection

 Similarity measure:

 Textual similarities using tokens

 Abstract Syntax Tree (AST)

 Program Dependence Graph (PDG)

 Application:

 Code refactoring

 Cheating detection…

 Most clone detectors work as an “off-line”
manner…

4

Motivation

 Why it should be an off-line process?

5

Clone Detector

Structural
Similarity

Off-line

Code Search
Engine

Text
similarity

On-line

?
“Code clone information is most

useful when delivered directly to a
developer’s editing session.”

Our Goal

 Find clones of a given code ASAP!

6

Query code fragment
Top-k clones

Millions of code
fragments…

System Overview

7

Characteristic
vectors

(High dimensional)

Dimension-
reduced
vectors

Query code
Reduced
version

clones

Multi-
dimensional

index

Characteristic Vectors

 Tree similarity → vector similarity

…

…

AST

Characteristic vectors
(high dimensional
numeric vectors)

Each sub-tree
containing at
least T nodes

Dimensionality Reduction

 Why we reduce dimensionality of the
characteristic vectors?

 Curse of dimensionality!

 Characteristic vectors → 261D integer vectors

 On high dimensional data

 Index search time > sequential search time

9

Dimensionality Reduction

 Optimal subspace selection

 Preserve the lower-bounding property

 Preserve the distance relations between two vectors as
much as possible

 NP-Hard

10

Dimensionality Reduction

 Greedy vs. Variance-based

 Top-10 selected dimensions:

11

Greedy strategy Variance-based

1 Identifier Identifier

2 ID_TK ID_TK

3 Unary expression Unary expression

4 Multiplicative expression Multiplicative expression

5 Additive expression Additive expression

6 Shift expression Relational expression

7 Relational expression Shift expression

8 Equality expression Equality expression

9 Conditional expression Conditional expression

10 Assignment expression Assignment expression

Indexing

 R-tree

 2D example (node capacity: 4)

12

Indexing

 “bulkloading”

 The variance of each dimension varies a lot

 Still high dimensional (20D?)

 Decrease the number of slice for each dimension

 Bottom-up index building

13

STR

Filtering-then-Ranking Clone Detection

 Top-k code clones?

14

Characteristic
vectors

Reduced
vectors

R-tree

Query
Reduced
version

kNN

Search
range

Candidates

Top-k clones

Lower
bounding
property!

Filtering-then-Ranking Clone Detection

 Performance

 Faster than the sequential scan (7~10 times)

 Issue

 Expensive I/Os

 Random I/Os for traversing the tree

 Random I/Os for reading original characteristic vectors

15

Interleaved Clone Detection

 Vector packing

 Many random I/Os → few random I/Os + scan

16

15 pts

2 blocks

Interleaved Clone Detection

 Interleaved index traversal

17

Characteristic
vectors

Reduced
vectors

R-tree

Query
Reduced
version

Data block layer

packing

Top-k clones

Interleaved Clone Detection

 Delayed loading

 “Circular SCAN disk scheduling”

 Eg) loading the blocks 2 → 4 → 3 → 1:

 Four random access → one random + sequential access

18

Experimental Evaluation

 Environment

 Pentium IV 3.2 GHz CPU

 1GB memory

 P-ATA HDD

 Linux, gcc

 Dataset

 JDK 1.6.0 update 13

 7,195 java files, 2,075,573 LOC

 400 Java open source projects

 Hosted on SourceForge, Tigris.org, and GoogleCode

 288,846 java files, 54,709,384 LOC

 DECKARD characteristic vector generator

19

Experimental Evaluation

 Index building time

20

Dataset minT # vectors

Building time (s)

Filtering-
then-ranking

Interleaved

JDK5 50 36,658 0.563 0.867

JDK3 30 60,582 0.793 1.517

OSP9 90 612,926 8.968 34.055

OSP7 70 783,933 11.619 46.725

OSP5 50 1,072,598 16.939 72.903

OSP3 30 1,696,806 27.653 128.118

Experimental Evaluation

 Querying time over varying # of vectors

 k = 20

21

vectors
(millions)

results

0.613 27.26

0.784 40.55

1.073 56.12

1.697 73.23

Experimental Evaluation

 Querying time over varying k

 # of vectors = 1,697K

22

k # results

10 63.60

20 73.23

40 94.92

60 113.78

80 135.93

Conclusion

 Our proposed algorithm

 Detects clones among 1.7 million code fragments in sub-
second response time

 Supports top-k queries

 We also proposed an approximation algorithm

 Dozens times faster / 70% accurate

 To do

 Comparisons with the state-of-the-art tools

23

Q&A

24

