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Code Clone Detection
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Code Clone Detection

 Similarity measure:

 Textual similarities using tokens

 Abstract Syntax Tree (AST)

 Program Dependence Graph (PDG)

 Application:

 Code refactoring

 Cheating detection…

 Most clone detectors work as an “off-line” 
manner…
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Motivation

 Why it should be an off-line process?
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“Code clone information is most 

useful when delivered directly to a 
developer’s editing session.”



Our Goal

 Find clones of a given code ASAP!
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Query code fragment
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Millions of code 
fragments…



System Overview
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Characteristic Vectors

 Tree similarity → vector similarity

…

…

AST
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Dimensionality Reduction

 Why we reduce dimensionality of the 
characteristic vectors?

 Curse of dimensionality!

 Characteristic vectors → 261D integer vectors

 On high dimensional data

 Index search time > sequential search time
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Dimensionality Reduction

 Optimal subspace selection

 Preserve the lower-bounding property

 Preserve the distance relations between two vectors as 
much as possible

 NP-Hard
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Dimensionality Reduction

 Greedy vs. Variance-based

 Top-10 selected dimensions:
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Greedy strategy Variance-based

1 Identifier Identifier

2 ID_TK ID_TK

3 Unary expression Unary expression

4 Multiplicative expression Multiplicative expression

5 Additive expression Additive expression

6 Shift expression Relational expression

7 Relational expression Shift expression

8 Equality expression Equality expression

9 Conditional expression Conditional expression

10 Assignment expression Assignment expression



Indexing

 R-tree

 2D example (node capacity: 4)
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Indexing

 “bulkloading”

 The variance of each dimension varies a lot

 Still high dimensional (20D?)

 Decrease the number of slice for each dimension

 Bottom-up index building
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Filtering-then-Ranking Clone Detection

 Top-k code clones?
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Filtering-then-Ranking Clone Detection

 Performance

 Faster than the sequential scan (7~10 times)

 Issue

 Expensive I/Os

 Random I/Os for traversing the tree

 Random I/Os for reading original characteristic vectors
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Interleaved Clone Detection

 Vector packing

 Many random I/Os → few random I/Os + scan
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2 blocks



Interleaved Clone Detection

 Interleaved index traversal
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Interleaved Clone Detection

 Delayed loading

 “Circular SCAN disk scheduling”

 Eg) loading the blocks 2 → 4 → 3 → 1:

 Four random access → one random + sequential access
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Experimental Evaluation

 Environment

 Pentium IV 3.2 GHz CPU

 1GB memory

 P-ATA HDD

 Linux, gcc

 Dataset

 JDK 1.6.0 update 13

 7,195 java files, 2,075,573 LOC

 400 Java open source projects

 Hosted on SourceForge, Tigris.org, and GoogleCode

 288,846 java files, 54,709,384 LOC

 DECKARD characteristic vector generator
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Experimental Evaluation

 Index building time
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Dataset minT # vectors

Building time (s)

Filtering-
then-ranking

Interleaved

JDK5 50 36,658 0.563 0.867

JDK3 30 60,582 0.793 1.517

OSP9 90 612,926 8.968 34.055

OSP7 70 783,933 11.619 46.725

OSP5 50 1,072,598 16.939 72.903

OSP3 30 1,696,806 27.653 128.118



Experimental Evaluation

 Querying time over varying # of vectors

 k = 20
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# vectors
(millions)

# results

0.613 27.26

0.784 40.55

1.073 56.12

1.697 73.23



Experimental Evaluation

 Querying time over varying k

 # of vectors = 1,697K
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k # results

10 63.60

20 73.23

40 94.92

60 113.78

80 135.93



Conclusion

 Our proposed algorithm

 Detects clones among 1.7 million code fragments in sub-
second response time

 Supports top-k queries

 We also proposed an approximation algorithm

 Dozens times faster / 70% accurate

 To do

 Comparisons with the state-of-the-art tools
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Q&A
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