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class Collects ¢ where
insert: :<element of ¢c> -> ¢ -> c

<element of c> follows from c

C element of c

BitSet Char
[a] a

Tree a a







Stand-alone :





































» Our type checking algorithm is
sound, complete and terminating
given sufficiently strong restrictions
on the top-level equations.

» These restrictions are pretty
drastic.
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 t;...t, contain no type !unctions

» LHSs do not overlap ~ = confluence
» r contains no type function, or
*ris G Sp++:Sm- 7 termination

=S,...S,, contain no type functions
= size(s,...S,,) < size(t,...t,)
= RHS has no more occurrences of schema

variable than LHS based on Functional

Dependency restrictions
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 t,...t, contain no type functions

« LHSs do not overlap T confluence
e for each G s;...s., in r:
=S,...S, contain no type functions ~— termination

= size(s;...S,) < size(t;...t,)
e RHS has no more occurrences of schema

variable than LHS trade-off:
more liberal than  either termination
Functional Dependencies « Or completeness




Additional complications: >

» Dealing with unification variables

- Inferring types as well as checking
e.g., function without signature

» Generation of evidence
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e | /\ W\_/ _Tﬂ_ Is [Sulzmann 2007]

System F with equality coercions

e coercion: evidence for non-syntactic
type equality

e necessary for GADTs

e also for type families

see paper

our type checker generates

coercions for all wanted equations

missing for
Functional Dependencies
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ype checking for type families
- completion of local equations
» trade-off between termination
and completeness

 evidence and other
complications
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* Vs. Congruence closure [Nelson’so]
=unification variables, also [Tiwari‘00]
=schema variables, also [Beckert'94]
=evidence, alsO [Nieuwenhuis’05]
=no completion of top-level equations

» Vs.Functional Dependencies
[Jones’00]

=|liberated from type classes
=evidence generation
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Our algorithm
e has been simplified significantly
since delivering the IFCP paper
= same basic idea
= but more aggressive “flattening”
= many fewer rules
» is Implemented

» already has lots of applications



1. Unified algorithm for type classes
and functions (see ICFP poster)

2. Invariants that must be satisfied
by type function instances

forall x y. (Nat x, Nat y) =>
Add x y = Add y X






