Tom Schrijvers, Simon Peyton Jones,
Manuel Chakravarty, Martin Sulzmann

ICFP 2008

—

P P B ~—) OSN a U N

class Collects ¢ where
insert: :<element of ¢c> -> ¢ -> c

<element of c> follows from c

C element of c

BitSet Char
[a] a

Tree a a

Stand-alone :

» Our type checking algorithm is
sound, complete and terminating
given sufficiently strong restrictions
on the top-level equations.

» These restrictions are pretty
drastic.

— p— ™

— ™ Y, ™ o'y o S o

r ~5 r ~
I I I N __C:/\._ __/_,-U__i/

 t;...t, contain no type !unctions

» LHSs do not overlap ~ = confluence
» r contains no type function, or
*ris G Sp++:Sm- 7 termination

=S,...S,, contain no type functions
= size(s,...S,,) < size(t,...t,)
= RHS has no more occurrences of schema

variable than LHS based on Functional

Dependency restrictions

D2 | ~) 0 (= ~ o (=
__L/ (OIAN\T\ L N\ Y v\ sy

Ft,...t =

 t,...t, contain no type functions

« LHSs do not overlap T confluence
e for each G s;...s., in r:
=S,...S, contain no type functions ~— termination

= size(s;...S,) < size(t;...t,)
e RHS has no more occurrences of schema

variable than LHS trade-off:
more liberal than either termination
Functional Dependencies « Or completeness

Additional complications: >

» Dealing with unification variables

- Inferring types as well as checking
e.g., function without signature

» Generation of evidence

type
Haskell checker
source

hs reconstructs
types

Haskell
language

Core

simplifier

Core language
System F.

e | /\ W_/ _Tﬂ_ Is [Sulzmann 2007]

System F with equality coercions

e coercion: evidence for non-syntactic
type equality

e necessary for GADTs

e also for type families

see paper

our type checker generates

coercions for all wanted equations

missing for
Functional Dependencies

P PN
S — -

— A _ _ _ _ _ _ A _

ype checking for type families
- completion of local equations
» trade-off between termination
and completeness

 evidence and other
complications

~ — S— p— p— —

* Vs. Congruence closure [Nelson’so]
=unification variables, also [Tiwari‘00]
=schema variables, also [Beckert'94]
=evidence, alsO [Nieuwenhuis’05]
=no completion of top-level equations

» Vs.Functional Dependencies
[Jones’00]

=|liberated from type classes
=evidence generation

P |
o — 5 — 1 — P T o~ -

\ ~

Our algorithm
e has been simplified significantly
since delivering the IFCP paper
= same basic idea
= but more aggressive “flattening”
= many fewer rules
» is Implemented

» already has lots of applications

1. Unified algorithm for type classes
and functions (see ICFP poster)

2. Invariants that must be satisfied
by type function instances

forall x y. (Nat x, Nat y) =>
Add x y = Add y X

