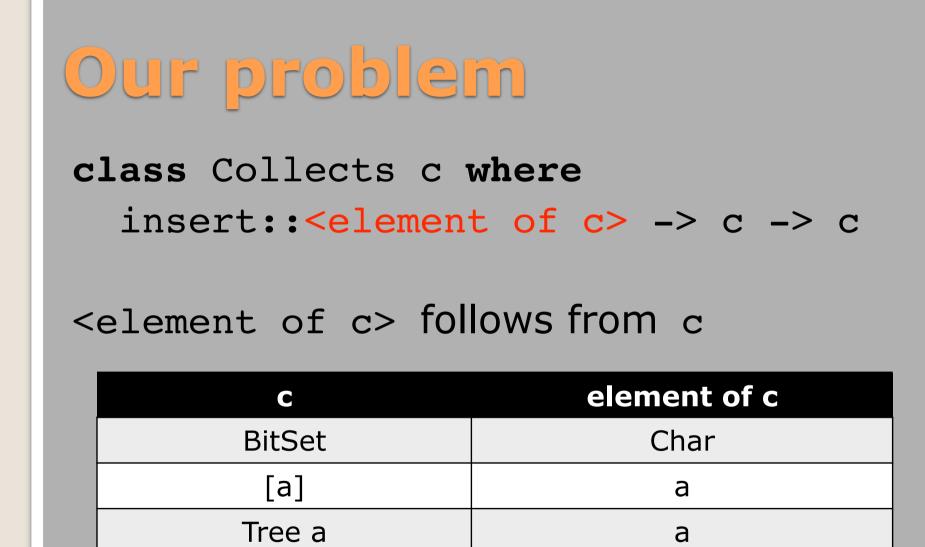
Type Checking with Open Type Functions

Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty, Martin Sulzmann

ICFP 2008

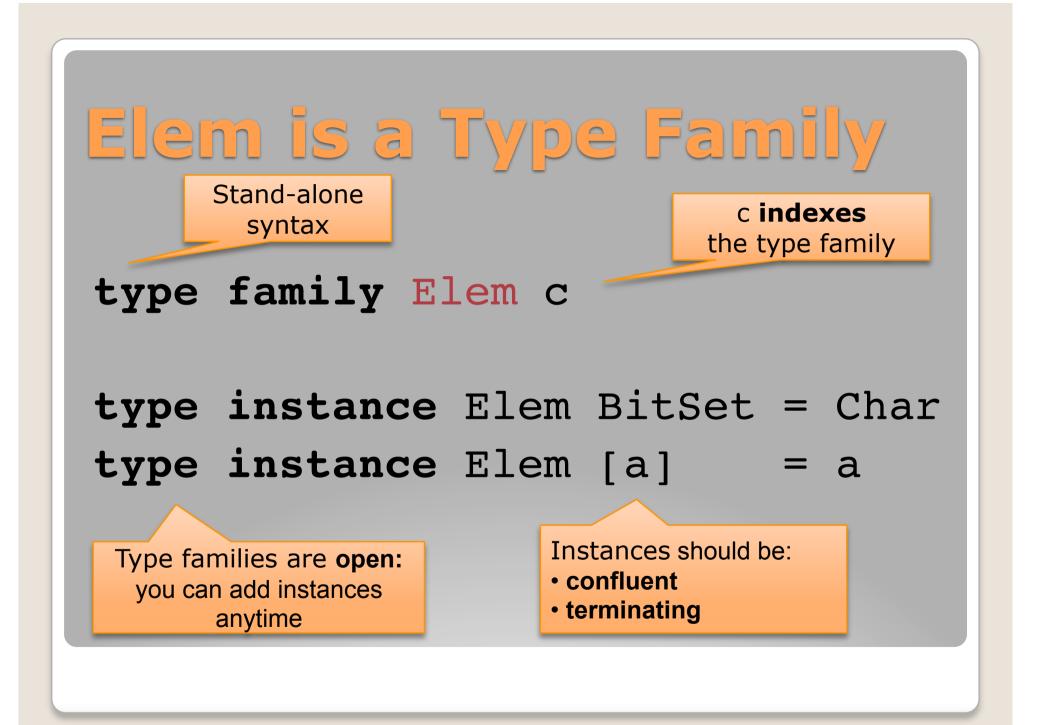


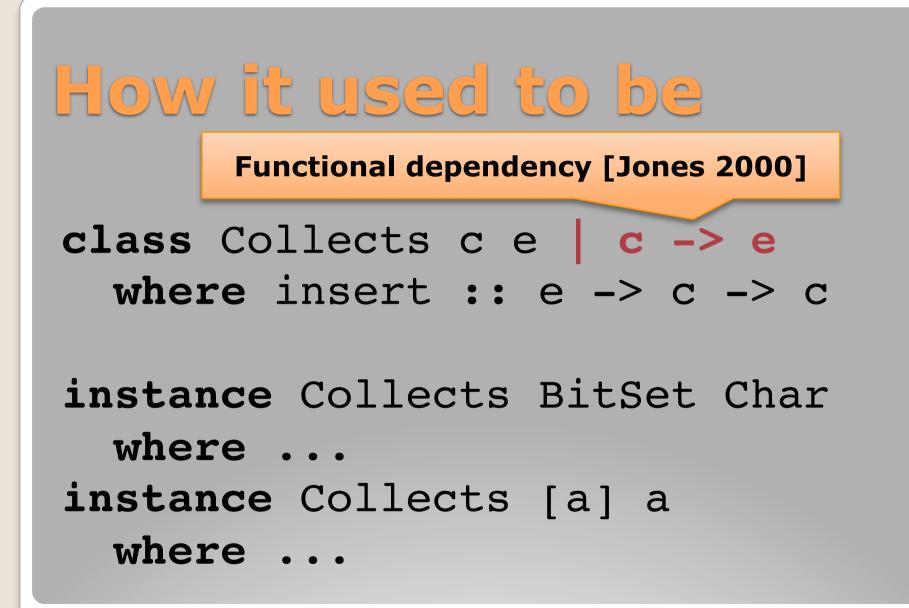
What we want

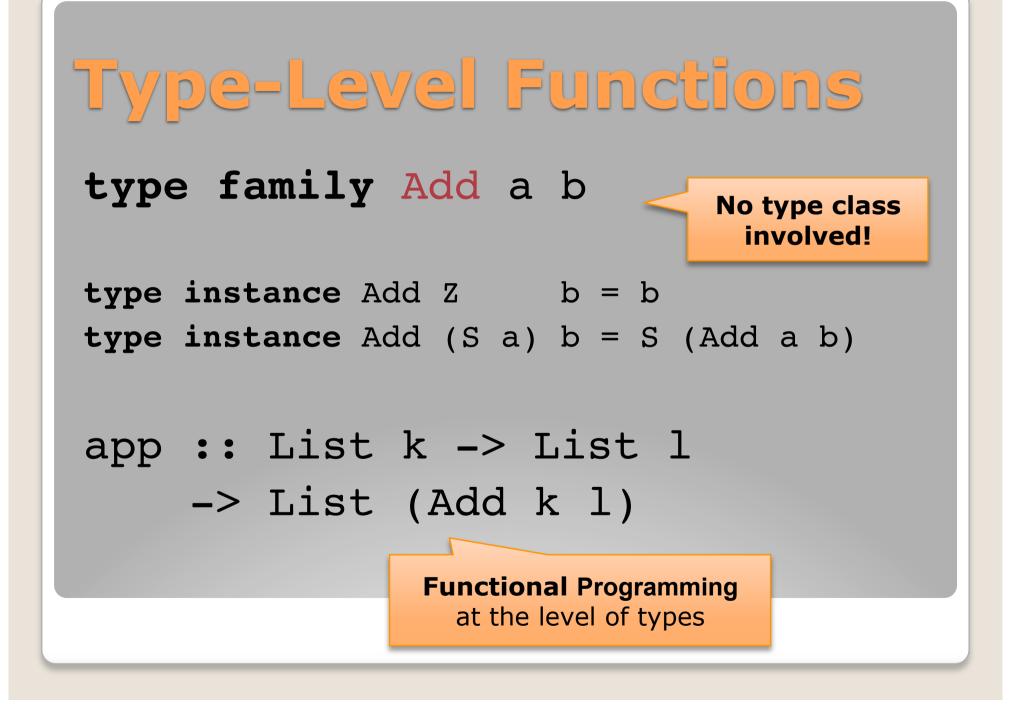
class Collects c where
 type Elem c :: *
 insert :: Elem c -> c -> c
Associated
 type synonym
[Chakravarty 2005]

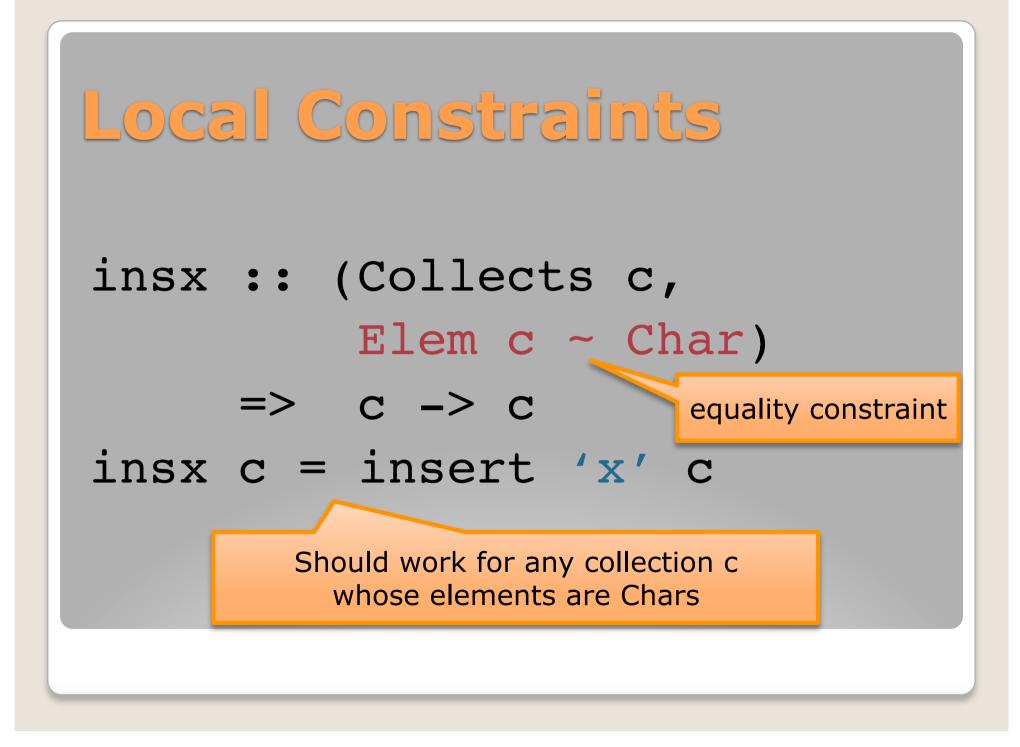
instance Collects BitSet
 where type Elem BitSet = Char

instance Collects [a]
where type Elem [a] = a









What we need

Type checking for all this

Type checking is hard Given • E_t: top-level equations, e.g. forall x. Elem [x] ~ x • E_q: local equations, e.g. Elem a ~ Char • E_w: wanted equations, e.g. Elem (Elem [a]) ~ Char

Find a proof for

Simple Case

- No local constraints
- Easy: for s ~ t
 - Use E_t as a left-to-right rewrite system
 - normalize s and t
 - Check for syntactic equality
- E.g.
 - 1.Elem BitSet ~ Elem [Char]
 - 2.Char ~ Char

Why is it hard with E_{g} ?

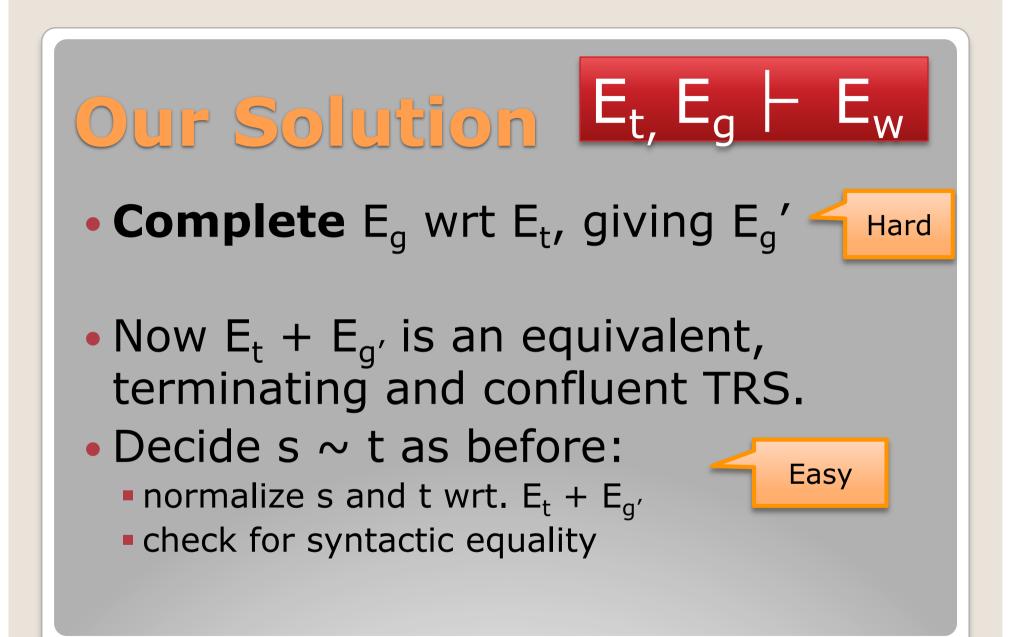
E_g not a **terminating** rewrite system
 Not oriented

LHS not in constructor form

- May diverge: F a ~ G (F a)
- May loop:
 - F Int ~ F (G Int)
 - G Int ~ Int | F Int ~ Int

Why is it hard?(2)

Even if E_t and E_g are terminating, then E_t + E_g rewrite may not be.
e.g.
E_t = { F Int ~ F (G Int) }
E_a = { G Int ~ Int }



Simple Example (1) $E_a = \{ G \text{ Int } \sim F (G \text{ Int}), \}$ F(G Int) ~ Int } • substitute 2nd in 1st: Completion { G Int ~ Int, F (G Int) ~ Int } • substitute 1st in 2nd $E_{a}' = \{ G Int~Int, F Int~Int \}$ More than substitution, see paper

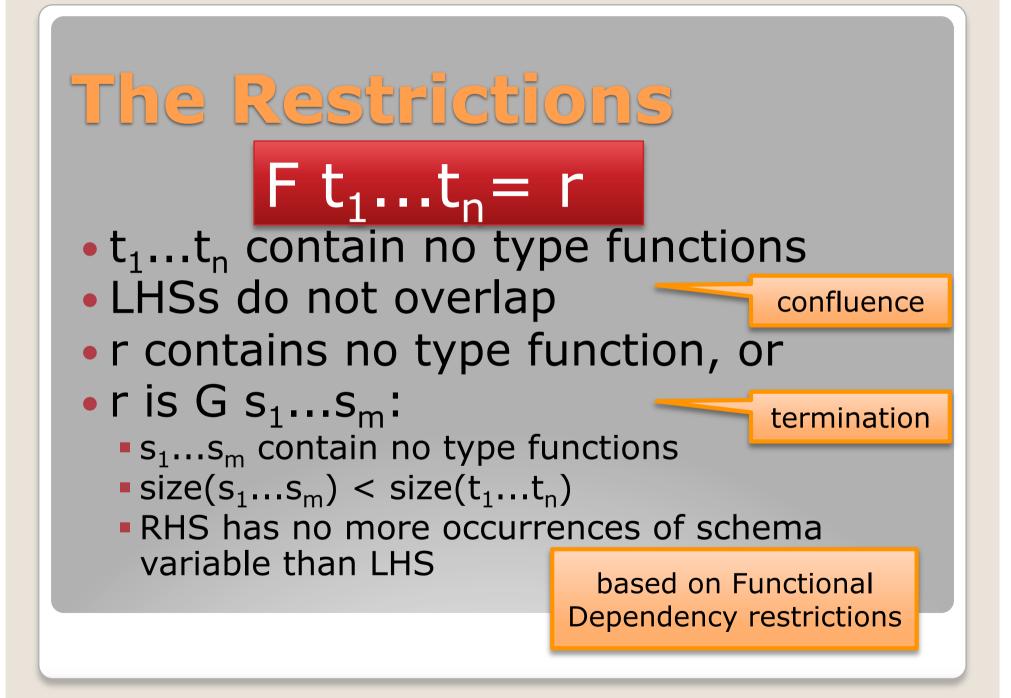
Simple Example (2)

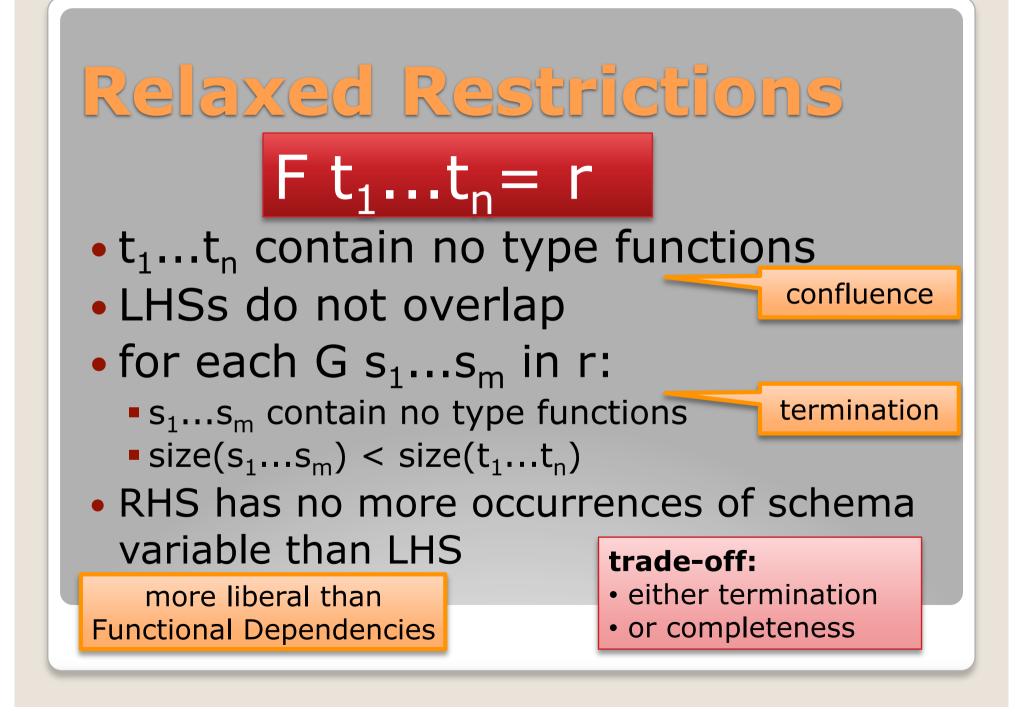
E_g' = { G Int~Int, F Int~Int }
To check E_w = { G (F Int) ~ Int }
Rewrite G (F Int)
⇔ G Int
⇒ Int
See that reduced LHS and RHS are syntactically equal

Properties

 Our type checking algorithm is sound, complete and terminating given sufficiently strong restrictions on the top-level equations.

• These **restrictions** are pretty drastic.

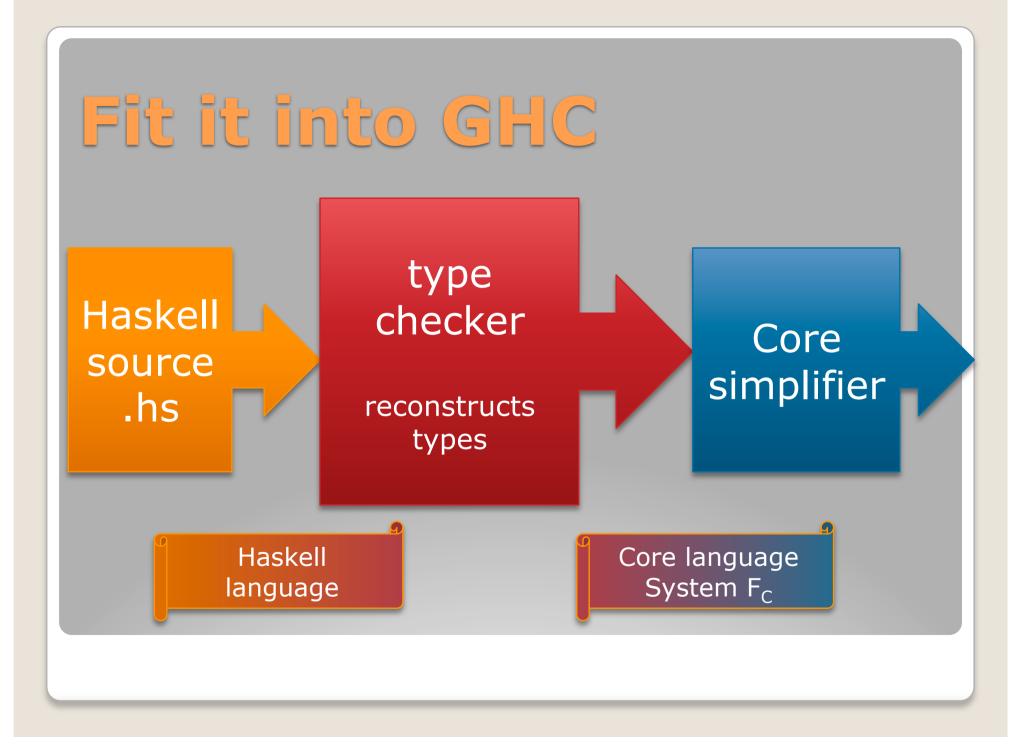


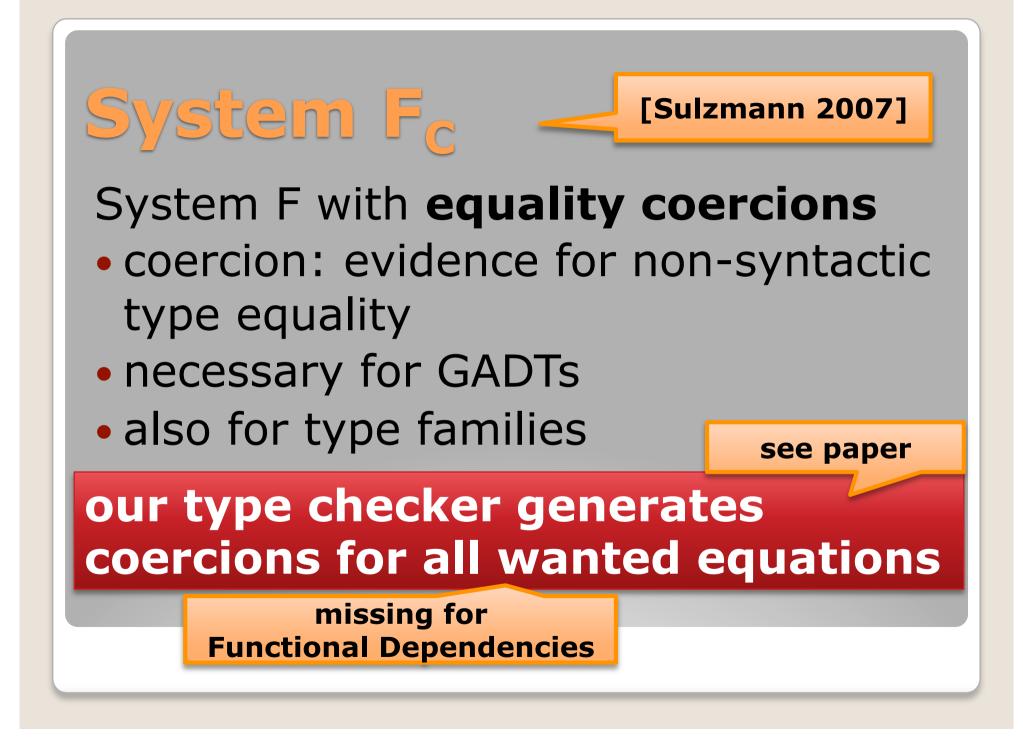


Type Famillies in Practice

Additional complications:

- Dealing with unification variables
- Inferring types as well as checking e.g., function without signature
- Generation of evidence





Summary

Type checking for type families
completion of local equations
trade-off between termination and completeness
evidence and other

complications

Hasn't this been done?

- Vs. Congruence closure [Nelson'80] • Unification variables, also [Tiwari'00]
 - schema variables, also [Beckert'94]
 - evidence, also [Nieuwenhuis'05]
 - no completion of top-level equations
- Vs.Functional Dependencies [Jones'00]
 - Iberated from type classes
 - evidence generation

Current Situation

Our algorithm

- has been *simplified significantly* since delivering the IFCP paper
 - same basic idea
 - but more aggressive "flattening"
 - many fewer rules
- is *implemented*

already has lots of applications

Work in Progress

 Unified algorithm for type classes and functions (see ICFP poster)
 Invariants that must be satisfied by type function instances

forall x y. (Nat x, Nat y) =>
 Add x y = Add y x

