
Tom Schrijvers, Simon Peyton Jones,
Manuel Chakravarty, Martin Sulzmann

ICFP 2008

class Collects c where!

 insert::<element of c> -> c -> c!

<element of c> follows from c!

c! element of c!

BitSet! Char!

[a]! a!

Tree a! a!

class Collects c where!
 type Elem c :: *!
 insert :: Elem c -> c -> c!

instance Collects BitSet!
 where type Elem BitSet = Char!

instance Collects [a]!
 where type Elem [a] = a!

Associated

type synonym
[Chakravarty 2005]

type family Elem c!

type instance Elem BitSet = Char!

type instance Elem [a] = a!

Stand-alone

syntax c indexes

the type family

Type families are open:

you can add instances

anytime

Instances should be:

•! confluent
•! terminating

class Collects c e | c -> e!
 where insert :: e -> c -> c!

instance Collects BitSet Char!
 where ...!
instance Collects [a] a!
 where ...!

Functional dependency [Jones 2000]

type family Add a b!

type instance Add Z b = b!

type instance Add (S a) b = S (Add a b)!

app :: List k -> List l!

 -> List (Add k l)!

Functional Programming

at the level of types

No type class

involved!

insx :: (Collects c,!

 Elem c ~ Char) !

 => c -> c!

insx c = insert ‘x’ c !

Should work for any collection c
whose elements are Chars

equality constraint

Type checking

for all this

Given

!!Et: top-level equations, e.g.
forall x. Elem [x] ~ x

!!Eg: local equations, e.g. Elem a ~ Char!

!!Ew: wanted equations, e.g.

! ! Elem (Elem [a]) ~ Char!

Find a proof for Et, Eg! Ew

!!No local constraints

!!Easy: for s ~ t
!!Use Et as a left-to-right rewrite system

!!normalize s and t

!!Check for syntactic equality

!! E.g.

1.!Elem BitSet ~ Elem [Char]!

2.!Char ~ Char!

Et! Ew

!!Eg not a terminating rewrite system

!!Not oriented

!!LHS not in constructor form

!!May diverge: F a ~ G (F a)!

!!May loop:
F Int ~ F (G Int)!

G Int ~ Int ! F Int ~ Int!

!!Even if Et and Eg are terminating,
then Et + Eg rewrite may not be.

e.g.

Et = { F Int ~ F (G Int) }

Eg = { G Int ~ Int }!

!!Complete Eg wrt Et, giving Eg’

!!Now Et + Eg’ is an equivalent,
terminating and confluent TRS.

!!Decide s ~ t as before:
!!normalize s and t wrt. Et + Eg’

!!check for syntactic equality

Et, Eg! Ew

Hard

Easy

Eg = { G Int ~ F (G Int),!

 F(G Int) ~ Int }

!!substitute 2nd in 1st:

 { G Int ~ Int,!

 F (G Int) ~ Int }

!!substitute 1st in 2nd

Eg’ = { G Int~Int, F Int~Int }

Completion

More than substitution,
see paper

!!Eg’ = { G Int~Int,F Int~Int }

!!To check Ew = { G (F Int) ~ Int }

!!Rewrite G (F Int)!
 " G Int!

 " Int!

!!See that reduced LHS and RHS are

syntactically equal

!!Our type checking algorithm is
sound, complete and terminating

given sufficiently strong restrictions
on the top-level equations.

!!These restrictions are pretty
drastic.

!!t1...tn contain no type functions
!!LHSs do not overlap
!!r contains no type function, or
!!r is G s1...sm:

!!s1...sm contain no type functions
!!size(s1...sm) < size(t1...tn)
!!RHS has no more occurrences of schema
variable than LHS

F t1...tn= r

confluence

termination

based on Functional
Dependency restrictions

!!t1...tn contain no type functions

!!LHSs do not overlap

!!for each G s1...sm in r:
!!s1...sm contain no type functions

!!size(s1...sm) < size(t1...tn)

!!RHS has no more occurrences of schema

variable than LHS

F t1...tn= r

confluence

termination

more liberal than
Functional Dependencies

trade-off:
•! either termination
•! or completeness

Additional complications:
!!Dealing with unification variables

!!Inferring types as well as checking
e.g., function without signature

!!Generation of evidence

see paper

Haskell

source
.hs

type

checker

reconstructs
types

Core

simplifier

Haskell

language

Core language

System FC

System F with equality coercions

!!coercion: evidence for non-syntactic

type equality

!!necessary for GADTs

!!also for type families

our type checker generates
coercions for all wanted equations

[Sulzmann 2007]

see paper

missing for
Functional Dependencies

Type checking for type families

!!completion of local equations

!!trade-off between termination

and completeness

!!evidence and other
complications

!!Vs. Congruence closure [Nelson’80]

!!unification variables, also [Tiwari’00]

!!schema variables, also [Beckert’94]

!!evidence, also [Nieuwenhuis’05]

!!no completion of top-level equations

!!Vs.Functional Dependencies
[Jones’00]

!!liberated from type classes
!!evidence generation

Our algorithm

!!has been simplified significantly
since delivering the IFCP paper
!! same basic idea

!! but more aggressive “flattening”

!! many fewer rules

!! is implemented

!!already has lots of applications

GHC

6.10

1. ! Unified algorithm for type classes

and functions (see ICFP poster)

2. !Invariants that must be satisfied
by type function instances

forall x y. (Nat x, Nat y) =>
Add x y = Add y x!

