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Randomized Algorithm

A randomized algorithm is defined as an algorithm
that is allowed to access a source of independent,
unbiased random bits, and it is then allowed to use
these random bits to influence its computation.

Ex) Computer games, randomized quick sort...

Input > Algorithm

Random bits

» Output
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Why randomness can be helpful?

m A Simple example

m Suppose we want to check whether an integer set
A={a,a,,a,...,a} hasanevennumber or not.

m Even when A has n/2 many even numbers, if we

run a Deterministic Algorithm, it may check n/2 +1
many elements in the worst case.

m A Randomized Algorithm: At each time, choose an
elements (to check) at random.

m Smooths the “worst case input distribution” into
“randomness of the algorithm”
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Random Sampling

m What is a random sampling?

Given a probability distribution 77, pick a point
according to .

e.gd. Monte Carlo method for integration

m Choose numbers uniformly at random from the
integration domain, and compute the average value
of f at those points
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How to use Random Sampling?

m Volume computation in Euclidean space.

m Can be used to approximately count discrete
objects. Ex) # of matchings in a graph
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Application : Counting

m How many ways can we
tile with dominos?
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Application : Counting

m Sample tilings uniformly = I
at random.

m Let P, = proportion of
sample of type 1.

m N : estimation of N.
EmN'=N'/P,=N./ (P, P,,)...

N =N, +N,
N; =Ny + Ny
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How to Sample? Ex: Hit and Run

m Hit and Run algorithm is used to sample from a
convex set in an n-dimensional Euclidean space.

m It converges in O(n®) time. (n: dimension)
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How to Sample? : Markov Chain (MC)

P

m “States” can be labeled 0,1,2,3,...

m At every time slot a “jump” decision is
made randomly based on current state

O] Zpij:]-
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Ex of MC: 1-D Random Wadalk

1pe— (1) —p
| | |

X(t)

m Time is slotted

m The walker flips a coin every time slot to
decide which way to go

X@t)+1 wop.p

. X(t_l_l):{X(t)—l w.p. 1—p
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Markov Property

m “Future” is independent of “Past” and
depend only on “Present”

m In other words: Memoryless

m Useful for modeling and analyzing real
systems
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Stationary Distribution

Define Wk(z) — PI’{Xk — ’L}
Then 7 ., =xP ( 7 isarow vector)

Stationary Distribution: 7™ — |Im L—oo Tk
if the limit exists.

If 7T exists, it satisfies that
Zﬂ'ipij =rjforall], Z,L 7T(’1,) — |
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Conditions for n to Exist (1)

m The Markov chain is irreducible.
m Counter-examples:

SEBRCERO
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Conditions for 1t to Exist (Il)

m The Markov chain is aperiodic.
A MC is aperiodic if all the states are aperiodic.

m Counter-example:
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$Special case

e It is known that a Markov Chain has stationary
distribution 7 if the detailed balance condition holds:

P =7 P
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Monte Carlo principle

m Consider a card game: what’s
the chance of winning with a
properly shuffled deck?

m Hard to compute analytically

§> ?

$ Lose

m Insight: why not just p/ay a few
games, and see empirically how
many times win? v

m More generally, can approximate g .
a probability density function Q;\ ° V. Win
using samples from that density?

ﬁ> Lose

ﬁbv ﬁ> Lose

Chance of winning is 1 in 4!
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"
Markov chain Monte Carlo (MCMC)

m Recall again the set Xand the distribution p(x)
we wish to sample from

m Suppose thatitis hard to sample p(x) but that it
is possible to “walk around” in Xusing only local
state transitions

m Insight: we can use a “random walk” to help us
draw random samples from p(x)

p(Xx)
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"
Markov chain Monte Carlo (MCMC)

m In order for a Markov chain to useful for sampling
p(x), we require that for any starting state x1

P> (X) >p(x)

m Equivalently, the stationary distribution of the
Markov chain must be p(x).

m Then we can start in an arbitrary state, use the
Markov chain to do a random walk for a while,
and stop and output the current state x®.

m The resulting state will be sampled from p(x)!
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Random Walk on Undirected Graphs

At each node, choose
a neighbor u.a.r and
jump to it
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Random Walk on Undirected Graph G=(V,E)

Q=V

0 otherwise

p(xy) =1 /) K <E

* Irreducible < Gis connected
e Aperiodic <  Gis not bipartite
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The Stationary Distribution

Claim: If G is connected and not bipartite, then
the probability distribution induced by the
random walk on it converges to

m(x)=d(x)/2,d(x). 7, d(x)=2|E]|

Proof: detailed balance condition holds.
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PageRanhk: Random Walk Over
The Web

m |f a user starts at a random web page and
surfs by clicking links and randomly entering
new URLs, what is the probability that s/he
will arrive at a given page?

m The PageRank of a page captures this notion

More “popular” or “worthwhile” pages get
a higher rank

This gives a rule for random walk on The
Web graph (a directed graph).
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PageRank: Example
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PageRank: Formula

Given page A, and pages T, through T_ linking
to A, PageRank of A is defined as:

PR(A) = (1-d) + d (PR(T,)/C(T,) + ... +
PR(T.)/C(T.))

m C(P) is the out-degree of page P
m dis the “random URL” factor (=0.85)

m This is the stationary distribution of the
Markov chain for the random walk.
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T1
3 [
. A
PR=0.5 ‘
4 2
T2 . .
PR=0.3 ‘ ]
T3 — =
PR=0.1 -

PR(A)=(1-d) + d*(PR(T1)/C(T1) + PR(T2)/C(T2) + PR(T3)/C(T3))
=0.15+0.85%(0.5/3 + 0.3/4+ 0.1/5)

26



"
PageRank: Intuition & Computation

m Each page distributes its PR. to all pages
it links to. Linkees add up their awarded
rank fragments to find their PR, ..

m dis the “random jump factor”

m Can be calculated iteratively : PR, is
computed based on PR..

PR.., (A)=(1-d) +d (PR(T,)/C(T,) + ... + PR,(T,)/C(T))
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