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Randomized Algorithm
A randomized algorithm is defined as an algorithm 

that is allowed to access a source of independent, 

unbiased random bits, and it is then allowed to use 

these random bits to influence its computation.

Ex) Computer games, randomized quick sort…

Input OutputAlgorithm

Random bits
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Why randomness can be helpful?

 A Simple example

 Suppose we want to check whether an integer set       
has an even number or not.

 Even when A has n/2 many even numbers, if we

run a Deterministic Algorithm, it may check n/2 +1  
many elements in the worst case.

 A Randomized Algorithm: At each time, choose an  
elements (to check) at random.

 Smooths the “worst case input distribution” into 
“randomness of the algorithm”

}...,,,{ 321 naaaaA 
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Random Sampling

 What is a random sampling?
Given a probability distribution    , pick a point 

according to     .

e.g. Monte Carlo method for integration
 Choose numbers uniformly at random from the 

integration domain, and compute the average value 
of f at those points



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How to use Random Sampling?

 Volume computation in Euclidean space.

 Can be used to approximately count discrete 
objects. Ex) # of matchings in a graph
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Application : Counting

 How many ways can we      
tile with dominos?
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 Sample tilings uniformly 
at random. 

 Let P1 = proportion of 
sample of type 1.

 N* : estimation of N.

 N* = N1
* / P1 = N11

* / (P1 P11 )…
N1 N2

N = N1 + N2

Application : Counting
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How to Sample? Ex: Hit and Run

 Hit and Run algorithm is used to sample from a 
convex set in an n-dimensional Euclidean space.

 It converges in            time. (n: dimension))( 3nO
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How to Sample? : Markov Chain (MC)

 “States” can be labeled 0,1,2,3,…

 At every time slot a “jump” decision is 

made randomly based on current state


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Ex of MC: 1-D Random Walk

 Time is slotted

 The walker flips a coin every time slot to 

decide which way to go



X(t)

p1-p
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Markov Property

 “Future” is independent of “Past” and 

depend only on “Present”

 In other words: Memoryless

 Useful for modeling and analyzing real 

systems
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Stationary Distribution

Define

Then                           ( is a row vector)

Stationary Distribution:

if the limit exists.

If exists, it satisfies that

Pkk  1 k


 P for all ,i ij j

i

j 
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Conditions for  to Exist (I)
 The Markov chain is irreducible.

 Counter-examples:
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Conditions for  to Exist (II)

 The Markov chain is aperiodic.

 A MC is aperiodic if all the states are aperiodic.

 Counter-example:
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Special case

• It is known that a Markov Chain has stationary 
distribution   if the detailed balance condition holds:

jiiji PP j 


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Monte Carlo principle

 Consider a card game: what’s 

the chance of winning with a 

properly shuffled deck?

 Hard to compute analytically

 Insight: why not just play a few 
games, and see empirically how 

many times win?

 More generally, can approximate 

a probability density function 

using samples from that density?

?

Lose

Lose

Win

Lose

Chance of winning is 1 in 4!
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Markov chain Monte Carlo (MCMC)

 Recall again the set X and the distribution p(x) 

we wish to sample from

 Suppose that it is hard to sample p(x) but that it 

is possible to “walk around” in X using only local 

state transitions

 Insight: we can use a “random walk” to help us 

draw random samples from p(x)

X

p(x)
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Markov chain Monte Carlo (MCMC)

 In order for a Markov chain to useful for sampling 

p(x), we require that for any starting state x(1)

 Equivalently, the stationary distribution of the      

Markov chain must be p(x).

 Then we can start in an arbitrary state, use the 

Markov chain to do a random walk for a while, 

and stop and output the current state x(t).

 The resulting state will be sampled from p(x)!
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Random Walk on Undirected Graphs

At each node, choose 

a neighbor u.a.r and 

jump to it
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Random Walk on Undirected Graph G=(V,E)

=V
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• Irreducible  G is connected

• Aperiodic  G is not bipartite
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The Stationary Distribution

Claim: If G is connected and not bipartite, then 

the probability distribution induced by the     

random walk on it converges to 

(x)=d(x)/Σxd(x).

Proof: detailed balance condition holds.

Σxd(x)=2|E|
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PageRank: Random Walk Over 
The Web

 If a user starts at a random web page and 
surfs by clicking links and randomly entering 
new URLs, what is the probability that s/he 
will arrive at a given page?

 The PageRank of a page captures this notion

More “popular” or “worthwhile” pages get 
a higher rank

This gives a rule for random walk on The  
Web graph (a directed graph).
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PageRank: Example

www.cnn.com

en.wikipedia.org

www.nytimes.com

www.kaist.ac.kr
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PageRank: Formula

Given page A, and pages T
1

through T
n

linking 
to A, PageRank of A is defined as:

PR(A) = (1-d) + d (PR(T
1
)/C(T

1
) + ... +

PR(T
n
)/C(T

n
))

 C(P) is the out-degree of page P

 d is the “random URL” factor (≈0.85)

 This is the stationary distribution of the 
Markov chain for the random walk.
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T1

PR=0.5

T2

PR=0.3

T3

PR=0.1

A

PR(A)=(1-d) + d*(PR(T1)/C(T1) + PR(T2)/C(T2) + PR(T3)/C(T3)) 

=0.15+0.85*(0.5/3 + 0.3/4+ 0.1/5)   
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PageRank: Intuition & Computation

 Each page distributes its PR
i
to all pages  

it links to. Linkees add up their awarded  
rank fragments to find their PR

i+1
.

 d is the “random jump factor”

 Can be calculated iteratively : PR
i+1

is 
computed based on PR

i
.

PR
i+1

(A)= (1-d) + d (PR
i
(T

1
)/C(T

1
) + ... + PR

i
(T

n
)/C(T

n
))
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