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Introduction

• Type classes are good for

• Retroactive extension

• Concept-style generic programming (a la C++)

• How can we enjoy the benefits of type 
classes in OO?

• Scala’s answer: Standard class system + 
Implicits
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Type Classes (Haskell)
First Role: Requirements on types
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Type Classes
Second Role: Implicit arguments

constraints on the type arguments, and passing all of these
explicitly is tedious and cumbersome.
The second role of type classes is to propagate constraints

like ordT automatically, making generic algorithms conve-
nient and practical to use. Scala took inspiration from type
classes and introduced implicits: a mechanism for implicitly
passing arguments based on their types. Thus, in Scala, the
ordering constraint can be implicitly passed by adding an
implicit qualifier before the argument:
def sort [T ] (xs :List [T ]) (implicit ordT :Ord [T ]) :List [T ]

Likewise potential candidate models can be considered by
the compiler by being qualified with an implicit keyword:
implicit object intOrd extends Ord [Int ] . . .

This allows a convinient use of sort
scala> sort (List (3,2,1))
res1 :List [Int ] = List (1,2,3)

just like a version of the program using type classes. Further-
more, it also allows sort to be called with an additional order-
ing argument such as: sort (List (3,2,1)) (mySpecialOrd),
where mySpecialOrd is another model of the ordering con-
cept for integers. This is useful for resolving ambiguities:
it is perfectly reasonable to have various orderings for the
same type.
In a way type-class style concepts provide a similar ser-

vice to F-bounded polymorphism (Canning et al. 1989),
which is supported by conventional OO languages like Java,
C# or Scala. Unlike type-parameter bounds, which impose
constraints directly on the values of the bounded type, con-
cepts like Ord [T ] provide the evidence that T satisfies the
constraints externally. The drawback of concept-style con-
straints is that dynamic dispatching over the instances of
T is not available, but in return support for multi-type con-
cepts is better and retroactive modeling of concepts becomes
possible. Concept-style constraints are often more suitable
than type parameter bounds for expressing generic algo-
rithms (Järvi et al. 2003).

Contributions The first contribution of this paper is to
show how type classes can be encoded using generic OO
classes and implicits. The implicits mechanism has been part
of Scala for a while now (Moors et al. 2008; Odersky et al.
2006), and in the Scala community the type class encoding is
folklore knowledge. However, a detailed account of the en-
coding and a comparison between type classes and implicits
was missing so far. This paper provides a clear, complete,
account of the encoding, and introduces the CONCEPT pat-
tern as a way to express concept-style interfaces in any OO
languages that support generics (such as current versions of
Java or C#). Furthermore some interesting applications of
the CONCEPT pattern are presented. For example we offer
an interesting answer to Cook (2009)’s dinner quiz on the
relation between objects and ADTs: in an OO language with
generics, ADT signatures can be viewed as a particular class
of objects.

The second contribution of this paper is to show how
Scala’s rich class system gives us many common exten-
sions of type classes for free. In particular we show that
a combination of type members and dependent method types
allow us to express associated types (Chakravarty et al.
2005a); prioritized overlapping implicits offer an alternative
to type classes overlapping instances (Jones et al. 1997);
and multiple-parameter type classes (Jones et al. 1997) are
expressed naturally by standard generics. Furthermore, the
combination of implicits and Scala’s OO features surpasses
Haskell’s type classes in several regards: implicit arguments
can be optionally be passed explicitly; and models are lexi-
cally scoped. Finally, we show that these features make Scala
ideally suited for generic programming in the large (Siek
and Lumsdaine 2008).

Running the examples Most examples compile as-is us-
ing Scala 2.8. Some of the more advanced ones rely on ex-
perimental support for dependent method types, which must
be enabled using the−Xexperimental switch. Unfortunately,
some examples are affected by bugs related to the interac-
tion between dependent method types and implicits. How-
ever, they are fixed in a development branch1. At the time
of writing, this branch could not be merged into the main
distribution, as the 2.8.0 release was pending. They will be
available in nightly builds and releases in the near future.

2. Type Classes in Haskell
This section introduces Haskell type classes as originally
proposed byWadler and Blott (1989) as well as some simple,
common extensions.

2.1 Single Parameter Type Classes
The original model of type classes consists of single parame-
ter type classes, which enables the definition of ad-hoc over-
loaded functions like comparison, pretty printing or parsing.
class Ord a where

! ::a→ a→ Bool
class Show a where
show ::a→ String

class Read a where
read ::String→ a

A type class declaration consists of a class name such as Eq,
Show or Read; a type parameter; and a set of method dec-
larations. Each of the methods in the type class declaration
should have at least one occurrence of the type parameter in
their signature (either as an argument or as a return type).
If we think of the type parameter a in these type class dec-
larations as the equivalent of the self argument in an OO
language, we can see that a few different types of methods
can be modeled:

1 http://github.com/adriaanm/scala/tree/topic/
retire_debruijn_depmet
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Lightweight OO Approach

• Use existing class system for doing type classes

• This covers the first role of type classes

• Add implicits:

• This covers the second role of type classes
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Scala’s Class System

• Traits : Like interfaces but allowing for a 
disciplined form of multiple inheritance.

• Classes: Similar to Java classes

• Objects: Singleton instances
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Ordering Type Class

that takes the ordering object implicitly. Thus provided that
the apples-to-apples is modified as follows:
implicit object ordApple extends Ord [Apple] . . .

def cmp [A] (x :A,y :A) (implicit ord :Ord [A]) =
ord.compare (x,y)

Then we can write:
a= new Apple (3);
cmp (a,new Apple (5));

Furthermore, if we also modify pick to use implicits:
def pick [T ] (a1 :T,a2 :T) (implicit ordA :Ord [T ]) =
if (cmp (a1,a2)) a2 else a1

and write the value a3 as:
val a3= pick (a1,a2)

In C#, extension methods provide language support for (stat-
ically dispatched) retroactive implementations. Haskell type
classes, JavaGI and the C++0X concepts proposal provide
direct language support concept-style interfaces. JavaGI’s
generalized interfaces offer more expressiveness than the
CONCEPT pattern. JavaGI’s retroactive implementations
support multi-methods (Chambers and Leavens 1995) (that
is, methods dynamically dispatched on several arguments)
on the instances of the manipulated types.
The Scala approach to concept-style interfaces is to ex-

press them with the CONCEPT pattern and implicits. This
makes the pattern very natural to use without an additional,
pattern specific, language construct.

5. Applications and Comparison with Type
Classes

The CONCEPT pattern has several applications, including
some that go beyond the traditional constrained polymor-
phism applications of concepts. The pattern is illustrated by
example in the next few subsections. This section also com-
pares the programs written with the CONCEPT pattern with
similar programs using type classes. To help in this compar-
ison, the significant differences between the OO programs
and the equivalent programs using type classes are marked
in gray. The reader interested in looking at the actual Haskell
code can consult Appendix A.

5.1 Ordering Concept
Figure 3 shows how to implement an ordering concept using
the CONCEPT pattern. This concept is similar to the one used
in Figure 2, except that it uses an equality concept Eq [T ] as
well, expressing a refinement relation between concepts. In
this case, for convenience, we use standard subtyping to ex-
press such refinement relation. However, other approaches
(such as using delegation) would be possible too. In conven-
tional OO languages such as Java or C# the traits Eq and
Ord would correspond to interfaces. Thus, the default def-
inition for equality in the Ord trait would not be definable

trait Eq [T ] {
def equal (a :T,b :T) :Boolean

}

trait Ord [T ] extends Eq [T ] {
def compare (a :T,b :T) :Boolean
def equal (a :T,b :T) :Boolean=
compare (a,b) ∧ compare (b,a)

}

class IntOrd extends Ord [Int ] {
def compare (a : Int,b : Int) = a! b

}

class ListOrd [T ] (ordD:Ord [T ]) extends Ord [List [T ]] {

def compare (l1 :List [T ], l2 :List [T ]) =
(l1, l2)match {
case (x :: xs,y :: ys) ⇒
if (ordD.equal (x,y)) compare (xs,ys)
else ordD.compare (x,y)

case ( ,Nil) ⇒ false
case (Nil, ) ⇒ true

}
}

class ListOrd2 [T ] (ordD :Ord [T ]) extends Ord [List [T ]] {

private val listOrd = new ListOrd [T ] (ordD)

def compare (l1 :List [T ], l2 :List [T ]) =

(l1.length< l2.length) ∧ listOrd.compare (l1, l2)

}

Figure 3. Equality and ordering concepts and some models.

directly on the interface. Scala traits offer a very convenient
way to express such default definitions, but such functional-
ity can be mimicked in other ways in Java or C#. The classes
IntOrd, ListOrd and ListOrd2 define three models of Ord;
the first one for integers and the other two for lists.
The three models illustrate the retroactive capabilities

of the CONCEPT pattern: the models are added after Int
and List [T ] have been defined. The two models for lists
illustrate that multiple models can co-exist at the same time.
Thus multiple implementations of conceptual methods for
the same type can be defined.

Comparison with Type Classes The essential difference
between the OO code in Figure 3 and the equivalent defi-
nitions using type classes (which can be found in Figure 12)
is that models, and model arguments need to be named. In
Haskell, instances can be viewed as a kind of anonymous
objects, which only the compiler gets direct access to. This
partly explains why the definition of ListOrd2 is grayed out:

7 2010/3/26
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Ordering Instances
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}

class IntOrd extends Ord [Int ] {
def compare (a : Int,b : Int) = a! b

}

class ListOrd [T ] (ordD:Ord [T ]) extends Ord [List [T ]] {

def compare (l1 :List [T ], l2 :List [T ]) =
(l1, l2)match {
case (x :: xs,y :: ys) ⇒
if (ordD.equal (x,y)) compare (xs,ys)
else ordD.compare (x,y)

case ( ,Nil) ⇒ false
case (Nil, ) ⇒ true

}
}
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private val listOrd = new ListOrd [T ] (ordD)

def compare (l1 :List [T ], l2 :List [T ]) =

(l1.length< l2.length) ∧ listOrd.compare (l1, l2)
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Figure 3. Equality and ordering concepts and some models.
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Comparison with Type Classes The essential difference
between the OO code in Figure 3 and the equivalent defi-
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Using Ordering

def cmp [T ] (x :T,y :T) (implicit ord :Ord [T ]) =

ord.compare (x,y)

implicit val IntOrd = new Ord [Int ] {. . .}

implicit def ListOrd [T ] (implicit ordD:Ord [T ]) =

new Ord [List [T ]] {. . .}

def ListOrd2 [T ] (implicit ordD :Ord [T ]) =

new Ord [List [T ]] {. . .}

Figure 4. Variation of the Ordering solution using implicits.

in Haskell two instances for the same modeled type are for-
bidden.
In the OO version, it is necessary to first create the models

explicitly. For example:
def sort [T ] (xs :List [T ]) (ordT :Ord [T ]) :List [T ] = . . .

val l1= List (7,2,6,4,5,9)
val l2= List (2,3)

val test = new ListOrd (new IntOrd ()).compare (l1, l2)
val test2= new ListOrd2 (new IntOrd ()).compare (l1, l2)
val test3= sort (l1) (new ListOrd (new IntOrd ()))

In the type class version, the equivalent code would be:
sort ::Ord t⇒ [t ] → [t ]
l1=[7,2,6,4,5,9]
l2=[2,3]
test = compare l1 l2
test3= sort l1

Clearly, in the OO version, the use of compare in test and
test2 is less convenient than simply calling compare l1 l2,
but it does offer the possibility of switching the implemen-
tation of the comparison operation in test2. In test3 creating
the models explicitly is also somewhat verbose and inconve-
nient.

Idiomatic solution using implicits The convenience of use
of type classes can recovered with implicits. Figure 4 shows
a variation of the code in Figure 3 (only the differences are
shown). The main differences are: definitions are used in-
stead of conventional OO classes to define the models for
Ord; and we use a definition cmp to provide a nice inter-
face to the compare method. The first two models are im-
plicit, but ListOrd2 cannot be made implicit because it would
clash with ListOrd. The client code for the test functions is
pleasingly simplified, being comparable to the version with
Haskell type classes. Furthermore, it is still possible to de-
fine test2.
val test = cmp (l1, l2)
val test2= cmp (l1, l2) (ListOrd2)
val test3= sort (l1)

trait Set [S ] {
val empty :S
def insert (x :S,y : Int) :S
def contains (x :S,y : Int) :Boolean
def union (x :S,y :S) :S

}

class ListSet extends Set [List [Int ]] {
val empty= List ()
def insert (x :List [Int ],y : Int) = y :: x
def contains (x :List [Int ],y : Int) = x.contains (y)
def union (x :List [Int ],y :List [Int ]) = x.union (y)

}

class FunctionalSet extends Set [Int⇒ Boolean ] {
val empty= (x : Int) ⇒ false
def insert (f : Int⇒ Boolean,y : Int) =
z⇒ y.equals (z) ∨ f (z)

def contains (f : Int⇒ Boolean,y : Int) = f (y)
def union (f : Int⇒ Boolean,g : Int⇒ Boolean) =
y⇒ f (y) ∨ g (y)

}

Figure 5. An ADT signature and two implementations.

5.2 Abstract Data Types
Cook (2009) shows that type classes can be used to imple-
ment what is effectively the algebraic signature of an Ab-
stract Data Type (ADT). Programs using these type classes
in a certain disciplined way have the same abstraction bene-
fits as ADTs. Exploiting this observation, it is shown next a
simple and practical encoding of ADTs in an object-oriented
language with generics using the CONCEPT pattern. ADT
signatures show an application of the pattern that is different
from the traditional constraint polymorphism applications of
concepts, and it also shows a situation where explicitly pass-
ing the models is actually desirable.
Figure 5 models an ADT signature for sets of integers

using the CONCEPT pattern. The trait Set [S ], the concept
interface, defines the ADT signature for sets. The type S is
the modeled type. The method empty is an example of a
factory method: a new set is created without any previous
set instance. The methods insert and contains are examples
of consumer methods: they act on existing instances of sets
to achieve their goal. Finally union provides an example of
a binary-method: two set instances are needed to take their
union. Two alternative models are shown: ListSet, using a
lists to model sets; and FunctionalSet, which uses a boolean
predicate instead.
The client programs using models of ADT signatures can

be used in a very similar way to ADTs implemented using
ML modules (MacQueen 1984). For example:

8 2010/3/26
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Implicit Orderings
def cmp [T ] (x :T,y :T) (implicit ord :Ord [T ]) =

ord.compare (x,y)

implicit val IntOrd = new Ord [Int ] {. . .}
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def ListOrd2 [T ] (implicit ordD :Ord [T ]) =

new Ord [List [T ]] {. . .}

Figure 4. Variation of the Ordering solution using implicits.
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bidden.
In the OO version, it is necessary to first create the models

explicitly. For example:
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shown). The main differences are: definitions are used in-
stead of conventional OO classes to define the models for
Ord; and we use a definition cmp to provide a nice inter-
face to the compare method. The first two models are im-
plicit, but ListOrd2 cannot be made implicit because it would
clash with ListOrd. The client code for the test functions is
pleasingly simplified, being comparable to the version with
Haskell type classes. Furthermore, it is still possible to de-
fine test2.
val test = cmp (l1, l2)
val test2= cmp (l1, l2) (ListOrd2)
val test3= sort (l1)

trait Set [S ] {
val empty :S
def insert (x :S,y : Int) :S
def contains (x :S,y : Int) :Boolean
def union (x :S,y :S) :S

}

class ListSet extends Set [List [Int ]] {
val empty= List ()
def insert (x :List [Int ],y : Int) = y :: x
def contains (x :List [Int ],y : Int) = x.contains (y)
def union (x :List [Int ],y :List [Int ]) = x.union (y)

}

class FunctionalSet extends Set [Int⇒ Boolean ] {
val empty= (x : Int) ⇒ false
def insert (f : Int⇒ Boolean,y : Int) =
z⇒ y.equals (z) ∨ f (z)

def contains (f : Int⇒ Boolean,y : Int) = f (y)
def union (f : Int⇒ Boolean,g : Int⇒ Boolean) =
y⇒ f (y) ∨ g (y)

}

Figure 5. An ADT signature and two implementations.

5.2 Abstract Data Types
Cook (2009) shows that type classes can be used to imple-
ment what is effectively the algebraic signature of an Ab-
stract Data Type (ADT). Programs using these type classes
in a certain disciplined way have the same abstraction bene-
fits as ADTs. Exploiting this observation, it is shown next a
simple and practical encoding of ADTs in an object-oriented
language with generics using the CONCEPT pattern. ADT
signatures show an application of the pattern that is different
from the traditional constraint polymorphism applications of
concepts, and it also shows a situation where explicitly pass-
ing the models is actually desirable.
Figure 5 models an ADT signature for sets of integers

using the CONCEPT pattern. The trait Set [S ], the concept
interface, defines the ADT signature for sets. The type S is
the modeled type. The method empty is an example of a
factory method: a new set is created without any previous
set instance. The methods insert and contains are examples
of consumer methods: they act on existing instances of sets
to achieve their goal. Finally union provides an example of
a binary-method: two set instances are needed to take their
union. Two alternative models are shown: ListSet, using a
lists to model sets; and FunctionalSet, which uses a boolean
predicate instead.
The client programs using models of ADT signatures can

be used in a very similar way to ADTs implemented using
ML modules (MacQueen 1984). For example:
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Implicits for automatically 
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def cmp [T ] (x :T,y :T) (implicit ord :Ord [T ]) =
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new Ord [List [T ]] {. . .}

def ListOrd2 [T ] (implicit ordD :Ord [T ]) =

new Ord [List [T ]] {. . .}

Figure 4. Variation of the Ordering solution using implicits.

in Haskell two instances for the same modeled type are for-
bidden.
In the OO version, it is necessary to first create the models

explicitly. For example:
def sort [T ] (xs :List [T ]) (ordT :Ord [T ]) :List [T ] = . . .

val l1= List (7,2,6,4,5,9)
val l2= List (2,3)

val test = new ListOrd (new IntOrd ()).compare (l1, l2)
val test2= new ListOrd2 (new IntOrd ()).compare (l1, l2)
val test3= sort (l1) (new ListOrd (new IntOrd ()))

In the type class version, the equivalent code would be:
sort ::Ord t⇒ [t ] → [t ]
l1=[7,2,6,4,5,9]
l2=[2,3]
test = compare l1 l2
test3= sort l1

Clearly, in the OO version, the use of compare in test and
test2 is less convenient than simply calling compare l1 l2,
but it does offer the possibility of switching the implemen-
tation of the comparison operation in test2. In test3 creating
the models explicitly is also somewhat verbose and inconve-
nient.

Idiomatic solution using implicits The convenience of use
of type classes can recovered with implicits. Figure 4 shows
a variation of the code in Figure 3 (only the differences are
shown). The main differences are: definitions are used in-
stead of conventional OO classes to define the models for
Ord; and we use a definition cmp to provide a nice inter-
face to the compare method. The first two models are im-
plicit, but ListOrd2 cannot be made implicit because it would
clash with ListOrd. The client code for the test functions is
pleasingly simplified, being comparable to the version with
Haskell type classes. Furthermore, it is still possible to de-
fine test2.
val test = cmp (l1, l2)
val test2= cmp (l1, l2) (ListOrd2)
val test3= sort (l1)

trait Set [S ] {
val empty :S
def insert (x :S,y : Int) :S
def contains (x :S,y : Int) :Boolean
def union (x :S,y :S) :S

}

class ListSet extends Set [List [Int ]] {
val empty= List ()
def insert (x :List [Int ],y : Int) = y :: x
def contains (x :List [Int ],y : Int) = x.contains (y)
def union (x :List [Int ],y :List [Int ]) = x.union (y)

}

class FunctionalSet extends Set [Int⇒ Boolean ] {
val empty= (x : Int) ⇒ false
def insert (f : Int⇒ Boolean,y : Int) =
z⇒ y.equals (z) ∨ f (z)

def contains (f : Int⇒ Boolean,y : Int) = f (y)
def union (f : Int⇒ Boolean,g : Int⇒ Boolean) =
y⇒ f (y) ∨ g (y)

}

Figure 5. An ADT signature and two implementations.

5.2 Abstract Data Types
Cook (2009) shows that type classes can be used to imple-
ment what is effectively the algebraic signature of an Ab-
stract Data Type (ADT). Programs using these type classes
in a certain disciplined way have the same abstraction bene-
fits as ADTs. Exploiting this observation, it is shown next a
simple and practical encoding of ADTs in an object-oriented
language with generics using the CONCEPT pattern. ADT
signatures show an application of the pattern that is different
from the traditional constraint polymorphism applications of
concepts, and it also shows a situation where explicitly pass-
ing the models is actually desirable.
Figure 5 models an ADT signature for sets of integers

using the CONCEPT pattern. The trait Set [S ], the concept
interface, defines the ADT signature for sets. The type S is
the modeled type. The method empty is an example of a
factory method: a new set is created without any previous
set instance. The methods insert and contains are examples
of consumer methods: they act on existing instances of sets
to achieve their goal. Finally union provides an example of
a binary-method: two set instances are needed to take their
union. Two alternative models are shown: ListSet, using a
lists to model sets; and FunctionalSet, which uses a boolean
predicate instead.
The client programs using models of ADT signatures can

be used in a very similar way to ADTs implemented using
ML modules (MacQueen 1984). For example:
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Using Ordering

def cmp [T ] (x :T,y :T) (implicit ord :Ord [T ]) =

ord.compare (x,y)

implicit val IntOrd = new Ord [Int ] {. . .}

implicit def ListOrd [T ] (implicit ordD:Ord [T ]) =

new Ord [List [T ]] {. . .}

def ListOrd2 [T ] (implicit ordD :Ord [T ]) =

new Ord [List [T ]] {. . .}

Figure 4. Variation of the Ordering solution using implicits.

in Haskell two instances for the same modeled type are for-
bidden.
In the OO version, it is necessary to first create the models

explicitly. For example:
def sort [T ] (xs :List [T ]) (ordT :Ord [T ]) :List [T ] = . . .

val l1= List (7,2,6,4,5,9)
val l2= List (2,3)

val test = new ListOrd (new IntOrd ()).compare (l1, l2)
val test2= new ListOrd2 (new IntOrd ()).compare (l1, l2)
val test3= sort (l1) (new ListOrd (new IntOrd ()))

In the type class version, the equivalent code would be:
sort ::Ord t⇒ [t ] → [t ]
l1=[7,2,6,4,5,9]
l2=[2,3]
test = compare l1 l2
test3= sort l1

Clearly, in the OO version, the use of compare in test and
test2 is less convenient than simply calling compare l1 l2,
but it does offer the possibility of switching the implemen-
tation of the comparison operation in test2. In test3 creating
the models explicitly is also somewhat verbose and inconve-
nient.

Idiomatic solution using implicits The convenience of use
of type classes can recovered with implicits. Figure 4 shows
a variation of the code in Figure 3 (only the differences are
shown). The main differences are: definitions are used in-
stead of conventional OO classes to define the models for
Ord; and we use a definition cmp to provide a nice inter-
face to the compare method. The first two models are im-
plicit, but ListOrd2 cannot be made implicit because it would
clash with ListOrd. The client code for the test functions is
pleasingly simplified, being comparable to the version with
Haskell type classes. Furthermore, it is still possible to de-
fine test2.
val test = cmp (l1, l2)
val test2= cmp (l1, l2) (ListOrd2)
val test3= sort (l1)

trait Set [S ] {
val empty :S
def insert (x :S,y : Int) :S
def contains (x :S,y : Int) :Boolean
def union (x :S,y :S) :S

}

class ListSet extends Set [List [Int ]] {
val empty= List ()
def insert (x :List [Int ],y : Int) = y :: x
def contains (x :List [Int ],y : Int) = x.contains (y)
def union (x :List [Int ],y :List [Int ]) = x.union (y)

}

class FunctionalSet extends Set [Int⇒ Boolean ] {
val empty= (x : Int) ⇒ false
def insert (f : Int⇒ Boolean,y : Int) =
z⇒ y.equals (z) ∨ f (z)

def contains (f : Int⇒ Boolean,y : Int) = f (y)
def union (f : Int⇒ Boolean,g : Int⇒ Boolean) =
y⇒ f (y) ∨ g (y)

}

Figure 5. An ADT signature and two implementations.

5.2 Abstract Data Types
Cook (2009) shows that type classes can be used to imple-
ment what is effectively the algebraic signature of an Ab-
stract Data Type (ADT). Programs using these type classes
in a certain disciplined way have the same abstraction bene-
fits as ADTs. Exploiting this observation, it is shown next a
simple and practical encoding of ADTs in an object-oriented
language with generics using the CONCEPT pattern. ADT
signatures show an application of the pattern that is different
from the traditional constraint polymorphism applications of
concepts, and it also shows a situation where explicitly pass-
ing the models is actually desirable.
Figure 5 models an ADT signature for sets of integers

using the CONCEPT pattern. The trait Set [S ], the concept
interface, defines the ADT signature for sets. The type S is
the modeled type. The method empty is an example of a
factory method: a new set is created without any previous
set instance. The methods insert and contains are examples
of consumer methods: they act on existing instances of sets
to achieve their goal. Finally union provides an example of
a binary-method: two set instances are needed to take their
union. Two alternative models are shown: ListSet, using a
lists to model sets; and FunctionalSet, which uses a boolean
predicate instead.
The client programs using models of ADT signatures can

be used in a very similar way to ADTs implemented using
ML modules (MacQueen 1984). For example:
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Generic Programming

• Garcia et al. (JFP 2007) identified a set of 
criteria for language support for generic 
programming.

• Haskell type classes are a good mechanism 
to model generic programming concepts.

• How does Scala fare?
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Generic Programming in the Large
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Related Work

• JavaGI (Wehr et al., ECOOP 07)

• Generalized Interfaces - type class

• Generalized Interface implementation - type class 
instance

• C++0X concepts (Gregor et al., OOPSLA 06)

• Concept declarations - type class

• Models - type class instances
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Conclusions

• A Lightweight OO approach to type 
classes.

• Implicits: Simple and useful mechanism

• Could be ported to other languages

• Associated types through type members 
and dependent method types
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Questions?

Thursday, August 26, 2010



Implicits vs Haskell Type Classes

• Advantages of Implicits:

• Local Scoping

• Implicit arguments can be explicitly passed

• Any values can be implicit (first-classness)

• Advantages of  Type Classes

• A bit less syntactic overhead

• No imposed ordering of constraints
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