GMeta Tutorial

Part |: Datatype-Generic Programming
ROSAEC Center Workshop

Bruno C. d.S. Oliveira

bruno@ropas.snu.ac.kr
(joint work with Gyesik Lee, Sungkeun Cho and Kwangkeun Yi)

Friday, September 3, 2010

mailto:bruno@ropas.snu.ac.kr
mailto:bruno@ropas.snu.ac.kr

Motivation

“How close are we to a world where every
baper on programming languages is
accompanied by an electronic appendix with
machine- checked proofs?”

The POPL Mark challange

Friday, September 3, 2010

Introduction

® Approaches to formal meta-theory
mechanization:

® Higher-order (almost no overhead)

® First-order (works in Coq, easy to use & understand)

® (GMeta: first-order representations without
overhead using datatype-generic programming.

Friday, September 3, 2010

Main Challenge

® Binding: Dealing with binding requires a lot
of basic definitions and proofs

® (Qut of a total of around 550 lemmas, approximately
400 were tedious infrastructure lemmas (Rossberg
2010) - Formalization of ML-modules in Coqg

® Problem: How to reuse prior definitions
and proofs!?

Friday, September 3, 2010

Infrastructure Overhead

® common operations: free & bound
variables; substitutions; shifting, etc.

® |emmas about operations: permutation
lemmas.

® well-formedness: lemmas that only hold on
certain well-formedness conditions.

Friday, September 3, 2010

GMeta

® (GMeta: a generic metatheory library for
first-order representations

® |nfrastructure defined once, and reused for
each language.

® Parametrizable over:

® the object calculus/language

® the type of the first-order representation

Friday, September 3, 2010

Eliminating Overhead

Used GMeta in several case studies which were
compared against reference solutions by Aydemir

et al. (2008).

Savings
boilerplate | total
STLC GMETA basic vs Aydemir et al. 536% 29%
GMETA adv. vs Aydemir et al. 87.5% 45%
I GMETA basic vs Aydemir et al. 70% 43%
< GMETA adv. vs Aydemir et al. 82% 56%

Figure 3. Savings in various formalizations in terms of numbers
of definitions and lemmas.

Friday, September 3, 2010

GMeta Overview

This talk

DGP Layer [DGP Basic]

[Locally Nameless] [de Bruijn] [Locally Named] [Nominal]

Representations
Layer
Isomorphisms .
Layer Isomorphism
\ iSO_type
E‘Zygﬂlates [Typed Language |iso_term iso_term [Untyped Language]
End User) Simply typed Untyped
Layer [System F) [|ambda-ca|cu|us] [EtC.] [lambda-calculus]

Friday, September 3, 2010

Datatype Generic Programming

Friday, September 3, 2010

The Ultimate Goal

Define binding-related operations&lemmas once and
reuse them for various different object languages.

fu,. :V(re:Rep). [re] — 2"

- —] -:V(r; r2:Rep). N — [r;] — [[r2] — [r2]

Examples: Free variables and substitutions
functions for any language r.

Friday, September 3, 2010

Inductive Datatypes

We all know and love datatypes from
functional languages like Haskell or ML.

DATAN =z |s N

Friday, September 3, 2010

Inductive Families

Naturals using inductive families syntax:

. n : N
ATA WHERE

N : % z: N st : N
Vectors of size n:

A% n : Nat
DATA WHERE
Vectora n : %
n : Nat a: A as : Vectora n

vz : Vector4 z vs a as : Vectorg (s n)

Friday, September 3, 2010

Universes

® |nductive families can capture whole
families of datatypes (universes).

® Functions over inductive families work for
any datatype in the family.

® |dea: Define a universe defining a family of
languages with binders.

Friday, September 3, 2010

A Simple Universe

DATA Rep = 1| Rep 4+ Rep | Rep X Rep | K Rep | R

DATA

DATA

r,s : Rep

WHERE

[s]r @ x

s : Rep v [s]

O[]~ kov:[Ks],

s1,82 : Rep v [s1]r s1,82 : Rep v [s2]r
11V : [[81 —+ Sz]]r b U : [[81 -+ SQHT
s1,52 : Rep vy ¢ s1]r v2 @ [s2]r v 7]
(v1,v2) @ [[s1 X s2]r rv: [R],
s : Rep s : Rep v [s]s
WHERE

[s] : inv: [s]

Friday, September 3, 2010

A Simple

Modeling datatypes with

Universe

the universe:

RNat : Rep
RNat =1+ R

RList : Rep
RList =1+ K RNat x R

Traditional recursive types:

Nat=p R. 1+ R
List=n R. 1+ Nat X R

nil : [RList]
nil = in (i1 ())

cons : [RNat] — [RList] — [RList]

cons n ns = in (i (k n,r ns))

Friday, September 3, 2010

Generic functions

Generic size:

size :¥(r : Rep). [r] — N

size (in t) = size t

size :¥(r, s :Rep). [s], — N

size () =

size (kt) =

size (i1 t) = size t

size (ip t) = size t

size (t,v) = size t + size v
size (r t) =1+ size t

If r = RNat then size is
value of the natural
number.

If r = RList then size is the
length of the list.

More generally, size works
for any r.

Friday, September 3, 2010

Representing Binders

Extended universe:

DAaTA Rep = ... | ERep | B Rep Rep

Q :* (* Quantifier type *)
Voix (** Variable type *)

: R .
DATA P WhERE ... < Binders >
[s]r :

Y

s : Rep v [s] S1, 52 : Rep q:Q v [s2]r
e; v : [E s]. As1q.0 ¢ [B sy s2]r

DATA r: Rep WHERE ... s i Rep vV Variables
[r]] = = var v : [[]

Friday, September 3, 2010

Lambda Calculus

Representing the lambda calculus:

RLambda : Rep
RLambda =R xR+ BRR

fvar : N — [RLambda]
fvar n = var (inl n)

bvar : N — [RLambda]

bvar n. = var (inr n)

app : [RLambda] — [RLambda] — [RLambda]

app e1 e2 = in (i1 (r e, r e2))

lam : [RLambda]] — [RLambda]
lam e =in (i (ArL.r e))

Friday, September 3, 2010

Generic Functions

Free variables (locally nameless):

. . N

Instantiation of Q and V: ; :: (X](g : Rep). E“jﬂﬂrjf
Q=1 fv,.. (var (inl z)) = if r; = 72 then {z} else ()
V=N+N fu,, (var (inry)) =0

fu,. :V(re,s:Rep). [s]r, — N

for, O 0

for, (k) =0

for, (et) =fo, ¢

fop, (i1 t) = fu,, 1

fop, (i2 t) = fu,, 1

for, (bv) = (o, DU (fo,,

fvrl (Ary 1.2 — fvrl ¢

fo. (r) =fo t

Friday, September 3, 2010

Generic Functions

Substitution for free variables:

—] . :\V/(ﬁ T2 . Rep). N — [[7“1]] — [[7“2]] — [[7“2]]
:k — u] (in t) =in([k — ult)
k — wul (var (inlz)) =

if r; =r2 A k =z then u else (var (inl z))

k —] (var (inr y)) = var (inr y)

- —] i V(ri, 2, s :Rep). N — [re] — [s]r, — [s]r,
b — u] () "y

k — u] (kt) =kt

:k—>u:(e) =e([k — u]t)

k — u] (i1 t) =i1 ([k — ul]?)

k — u] (i2 t) =i ([k — u]t)

k — u](t,v) =(lk — u]t, [k — u]v)

k — ul (Ayl.z) =X, L1.(lk — ul2)

k — u](r t) =r ([k — ult

Friday, September 3, 2010

Generic Lemmas

It is possible to do generic lemmas too:

subst_fresh : ¥(r1, 72 : Rep) (t:|r:]) (u: [re]) (m:N).
m & (fv,., t) = [m—ult="1

bfsubst_perm : ¥ (rs,re,rs : Rep) (t: [r:]) (uw:[re]) (v:[rs])
(m k:N). (wfr, u) =
k= (Im —ufv); (Im —uf t) =[m —u| ({k = v}t)

Friday, September 3, 2010

Conclusion

® Boring lemmas and definitions can be dealt
with generically.

® Gyesik will show how to use this for

practical mechanizations of metatheory in
Cogq.

Friday, September 3, 2010

Related VWork

® Several clean settings that deal with binding:
® Parametric HOAS (POPL 2010)

® A Universe of Binding and Computation (ICFP
2009)

® Nominal Datatypes (Pitts 2003)

® But most practical development is done in Coq
with traditional first-order approaches:

® This is where our approach fits in

Friday, September 3, 2010

