
GMeta Tutorial
Part 1: Datatype-Generic Programming

ROSAEC Center Workshop

Bruno C. d. S. Oliveira
bruno@ropas.snu.ac.kr

(joint work with Gyesik Lee, Sungkeun Cho and Kwangkeun Yi)

Friday, September 3, 2010

mailto:bruno@ropas.snu.ac.kr
mailto:bruno@ropas.snu.ac.kr

Motivation

“How close are we to a world where every
paper on programming languages is
accompanied by an electronic appendix with
machine- checked proofs?”

The POPL Mark challange

Friday, September 3, 2010

Introduction

• Approaches to formal meta-theory
mechanization:

• Higher-order (almost no overhead)

• First-order (works in Coq, easy to use & understand)

• GMeta: first-order representations without
overhead using datatype-generic programming.

Friday, September 3, 2010

Main Challenge

• Binding: Dealing with binding requires a lot
of basic definitions and proofs

• Out of a total of around 550 lemmas, approximately
400 were tedious infrastructure lemmas (Rossberg
2010) - Formalization of ML-modules in Coq

• Problem: How to reuse prior definitions
and proofs?

Friday, September 3, 2010

Infrastructure Overhead

• common operations: free & bound
variables; substitutions; shifting, etc.

• lemmas about operations: permutation
lemmas.

• well-formedness: lemmas that only hold on
certain well-formedness conditions.

Friday, September 3, 2010

GMeta

• GMeta: a generic metatheory library for
first-order representations

• Infrastructure defined once, and reused for
each language.

• Parametrizable over:

• the object calculus/language

• the type of the first-order representation

Friday, September 3, 2010

Eliminating Overhead

(∗@Iso typ iso∗)
Inductive typ :=
| typ var : N → typ
| typ arrow : typ → typ → typ.

(∗@Iso trm iso{
Parameter trm fvar ,
Variable trm bvar ,
Binder trm abs

}∗)
Inductive trm :=
| trm bvar : N → trm
| trm fvar : N → trm
| trm abs : trm → trm
| trm app : trm → trm → trm.

Figure 2. Syntax definitions and GMETA isomorphism annota-
tions for the STLC in Coq.

• Templates Layer: The template layer provides templates
for the basic infrastrure lemmas and definitions required by
particular meta-theoretical developments. Examples of tem-
plates include functors (that is parametrized modules) such as
UntypedLanguage or SimpleTypeLanguage . Templates are
are parametrized by isomorphisms between the various syn-
tactical components of the concrete language and the generic
language from the representation layer. (Section 6)

• End User Layer: End users will use GMETA ’s libraries to de-
velop metatheory for particular languages such as for example,
the simply typed lambda calculus (STLC) or System F<: used
in our case studies. (Section 7)

2.2 Using GMETA

Most of GMETA framework is implemented as libraries in the Coq
theorem prover and it is readily usable for conducting formaliza-
tions of metatheory. Some modules for basic manipulations of finite
sets of natural numbers are borrowed from LNgen’s library (Ay-
demir and Weirich 2009) used in our own libraries.

Four basic steps are necessary to use GMETA. These are discussed
and illustrated next using the STLC as example.

1. Defining Syntax: The first step is to define the syntax for the
language or calculi that is going to be formalized, using one of
the first-order representations supported by GMETA. Figure 2
illustrates how this can be done in Coq using locally nameless
representations.

2. Defining isomorphisms for interfacing with GMETA: The
second step is to provide annotations to guide the isomorphism
generation tool to produce the isomorphism modules automati-
cally. An example of such annotations can be seen in Figure 2.
Essentially, the keyword Iso introduces an isomorphism anno-
tation for generating an isomorphism for the locally nameless
representation. The keywords Parameter, Variable and
Binder provide the generator with information about which
constructors correspond, respectively, to the parameters, vari-
ables1 or binders. In the case of types, there are no variables
or binders, so there is no need to specify such information.
Note that, alternatively, the isomorphism modules can also be
directly implemented by hand.

1 Note that throughout this paper we will follow Aydemir et al. (2008) and
use the term variable to mean a locally bound variable; and parameter to
mean a free, or globally bound variable.

Savings
boilerplate total

STLC GMETA basic vs Aydemir et al. 56% 29%
GMETA adv. vs Aydemir et al. 87.5% 45%

F<:
GMETA basic vs Aydemir et al. 70% 43%
GMETA adv. vs Aydemir et al. 82% 56%

Figure 3. Savings in various formalizations in terms of numbers
of definitions and lemmas.

3. Importing the infrastructure: After running the generator
tool on the file with the syntax definitions, we can use the
generated isomorphism modules to instantiate some of GMETA
infrastructure templates, and import these to obtain the desired
infrastructure lemmas and definitions. In the case of STLC, this
is as simple as adding the following line to the file where the
main formalization is going to be implemented:
Module Export M := TypedLang trm iso typ iso.

4. Metatheory formalization: Proceed with the formalization us-
ing the imported infrastructure.BRUNO: Add example here

BRUNO: Emphasize transparency! No need to know about generic
programming.

Just by following these basic steps a lot of infrastructure can be
readily made reusable. However, it is possible to obtain additional
reuse with some extra work. Such advanced uses of GMETA are
described in Section ??.

2.3 Summary of Case Studies Results
In order to verify the effectiveness of GMETA in reducing the
infrastructure overhead, we conducted two case studies using the
locally nameless approach. Our main case study is a solution to
the POPLMark challange parts 1A+2A. The other case study is a
formalization of the STLC.

Figure 3 shows a summary of the results of our case studies com-
pared against the reference solutions by Aydemir et al. (2008). For
each case study, we have developed two different versions which
differ with respect to the level of knowledge about GMETA: basic
or advanced knowledge. The percentages in the savings columns
are defined in terms of the numbers of definitions and lemmas used
in the formalizations. The boilerplate column considers only lem-
mas and definitions which we believe have mechanical definitions
(that is, they appear across many formalizations and could poten-
tially be automatically defined).BRUNO: shorter? The total column
considers all lemmas and definitions. The detailed results and in-
formation about those case studies are given in Section 7.

Quantitative evaluation In all case studies, the solution using
GMETA managed to save more than half of the number of boil-
erplate definitions and lemmas. When the advanced approach was
used this number rose to more than 85%. In terms of the number of
total definitions and lemmas, the saving were never inferior to 29%
and in the case of System F<: the savings were more than 50%
when using the advanced approach.

Qualitative evaluation It is also equally important to evaluate
what the cost-of-entry of the approach is. In particular, it is im-
portant to evaluate whether a end-user needs to know about DGP
in order to use GMETA and, if so, how much.

GMETA has a pay-as-you-go approach. The basic approach gives
us a good cost/benefit ratio. For the most part, the developments us-
ing the basic approach do not require knowledge of DGP. By using
the templates provided by GMETA and a few simple tactics (and
modulo some minor differences), a lot of infrastructure is provided

3 2010/7/9

Used GMeta in several case studies which were
compared against reference solutions by Aydemir
et al. (2008).

Friday, September 3, 2010

GMeta Overview

Since such an isomorphism can be mechanically generated from the

inductive definition of the concrete language or calculi, provided a

few annotations, GMETA includes optional tool support that is ca-

pable of generating such isomorphisms automatically. Therefore,

at the cost of just a few annotations or explicitly creating an iso-

morphism by hand, GMETA can automatically provide a large part

of the tedious infrastructure lemmas and definitions that would be

likely to dominate the total development cycle otherwise.

Closest to our work are generative approaches like LNGen (Ay-

demir and Weirich 2009) or Ott (SEWELL et al. 2010), which

use an external tool to generate the infrastrucure lemmas and def-

initions for a particular language automatically. Generative ap-

proaches allow similar benifits in terms of savings of infrastruc-

ture and they have the advantage that the generated lemmas and

definitions are directly defined in terms of the concrete language.

In GMETA, the infrastructure is defined in terms of generic defi-

nitions, which provides a layer of indirection. This can be trouble-

some because the user may need interact with the generic parts of

the library, increasing the cost of entry of the approach. To address

this issue, GMETA provides a set of templates and a few simple tac-

tics, that allows end-users to import infrastructure and use it just as

if it would have been specially produced for the concrete language

in hand.

There are three main advantages of GMETA when compared to

generative approaches. Firstly, all the generic infrastructure lem-

mas and definitions are implemented inside the meta-logic itself,

which guarantees the soundness of the development. In a genera-

tive approach it is hard to ensure that the produced code is always

sound, and neither LNgen nor Ott offer such guarantees. Secondly,

since GMETA is a library-based approach built on top of ML-style

modules, the whole infrastructure can be easily extended and cus-

tomized. In constrast in a generative approach extending and cus-

tomizing the infrastructure involves modifying the generator tool,

which is likely to be non-trivial (except for the authors of the tool

itself). Thirdly, from a theorectical perspective, a generic program-

ming approach allows generic functions and lemmas to be under-

stood as simple, clear specifications of the infrastructure indepen-

dently of particular concrete languages. Finally, one additional ad-

vantage of GMETA is that it works for multiple first-order represen-

tations, whereas LNgen only currently supports locallly nameless

representations.BRUNO: what about Ott

In order to validate the effectiveness of GMETA in reducing the

amount of infrastructure overhead, we conducted several case stud-

ies based on the POPLmark challenge. These case studies show that

GMETA’s generic infrastructure is sufficient to deal with languages

with challenging binding constructs like System F<:, and that the

majority of the boilerplate (Lämmel and Peyton Jones 2003) infras-

tructure can be saved.

The contributions of this paper are:

• Generic infrastructure for first-order representations: We pro-

vide a generic framework that allows first-order representations

to be generic in both the calculi and the particular type of first-

order representation. We show how popular first-order represen-

tations such as de Bruijn indixes and locally nameless represen-

tation fit our generic framework. For each first-order representa-

tions a wealth of reusable generic infrastructure definitions and

lemmas are provided. BRUNO: adequacy here?

• Support for challenging languages: We show that our generic

formal metatheory framework is capable of handling challeng-

ing aspects of programming languages that are known tricky to

formalize. In particular we show that variable binding at both

! !

!"#$%&'()

*+)&,,-$.&/0,0'' *+)&,,-$.&/0110$%23(45 .+/(5&,

6'+/+278('/

9-701$*&5:3&:0 ;5<-701$*&5:3&:0

=-'<0/$>
=(/7,-<-701

,&/?1&@)&,)3,3'
A<)B

;5<-701$

,&/?1&@)&,)3,3'

!"#$%&'()

*(+)(,(-.&./0-,

%&'()

1(2+3&.(,$

%&'()

4-5$6,()$

%&'()

7,020)+8/,2,

%&'()

,(?2&2-

3'02C'$D+2E

('+F<-70

('+F<02/ ('+F<02/

Figure 1. A simplified modular structure overview of GMETA.

the term and type level can be handled through heterogeneous

generic definitions.

• Extensible and customizable infrastructure: Our framework is

built on top of Coq modules and can be easily extended or cus-

tomized. It is easy to add new generic definitions or lemmas;

and it is also easy to modify existing modules to support varia-

tionsBRUNO: Quickly mention example.

• Case study using the POPLmark challenge: To validate our ap-

proach a case study using the POPLmark challenge has been

conducted. Compared to other solutions to the POPLMark chal-

lenge, our approach shows significant savings in the number

of definitions and lemmas required by formalizationsBRUNO:

Quantify.

• Interesting application of DGP: From the DGP perspective, our

generic framework provides an interesting practical application

of DGP.BRUNO: emphasize this more in the text

• Reusable Coq Libraries: Our results are implemented and read-

ily available as Coq libraries.BRUNO: link should come here.

2. Overview

This section presents an overview of GMETA and summarizes the

results of applying GMETA to various formalizations of metathe-

ory.

2.1 GMETA Overview and Paper Organization

Figure 1 shows an overview of the modular structure of GMETA.

The structure is hierarchical, with the more general modules at the

top and the more specific modules at the bottom. The paper organi-

zation follows the 5 layers in the modular structure of GMETA:

• DGP Layer: At the top-most layer the core DGP infrastructure

is defined. The main component at this level is the universe that

acts as a generic language that the lower-level modules use to

define the infrastructure lemmas and definitions. (Section 3)

• Representation Layer: At the representation layer the generic

infrastructure lemmas and definitions for particular first-order

representations are defined. GMETA currently supports locally

nameless and de Bruijn representations, and there is also some

minimal support for locally named and nominal representations

which should be extended in the future. (Section 4)

• Isomorphism Layer: This layer provides simple module sig-

natures for isomorphisms that serve as interfaces between the

concrete language and the generic language from the represen-

tation layer. The adequacy between generic and concrete rep-

resentations of a language follow from the isomorphism laws.

(Section 5)

2 2010/7/9

This talk

Friday, September 3, 2010

Datatype Generic Programming

Friday, September 3, 2010

The Ultimate Goal

Define binding-related operations&lemmas once and
reuse them for various different object languages.

Instantiation of Q and V :

Q =
V = N + N
Heterogeneous sets of parameters (free variable): Given r1 : Rep,

fvr1
: ∀(r2 : Rep). �r2 � → 2N

fvr1
(in t) = fvr1

t
fvr1

(var (inl x)) = if r1 ≡ r2 then {x } else ∅
fvr1

(var (inr y)) = ∅
fvr1

: ∀(r2 , s : Rep). �s�r2 → 2N

fvr1
() = ∅

fvr1
(k t) = ∅

fvr1
(e t) = fvr1

t
fvr1

(i1 t) = fvr1
t

fvr1
(i2 t) = fvr1

t
fvr1

(t , v) = (fvr1
t) ∪ (fvr1

v)
fvr1

(λr3 .t) = fvr1
t

fvr1
(r t) = fvr1

t

Heterogeneous substitution for parameters:

[· → ·] · : ∀(r1 r2 : Rep). N → �r1 � → �r2 � → �r2 �
[k → u] (in t) = in ([k → u] t)
[k → u] (var (inl x)) =

if r1 ≡ r2 ∧ k ≡ x then u else (var (inl x))
[k → u] (var (inr y)) = var (inr y)

[· → ·] · : ∀(r1 , r2 , s : Rep). N → �r1 � → �s�r2 → �s�r2
[k → u] () = ()
[k → u] (k t) = k t
[k → u] (e t) = e ([k → u] t)
[k → u] (i1 t) = i1 ([k → u] t)
[k → u] (i2 t) = i2 ([k → u] t)
[k → u] (t , v) = ([k → u] t , [k → u] v)
[k → u] (λr3 .z) = λr3 .([k → u] z)
[k → u] (r t) = r ([k → u] t)

Heterogeneous substitution for (bound) variables:

{· → ·} · : ∀(r1 , r2 : Rep). N → �r1 � → �r2 � → �r2 �
{k → u} (in t) = in ({k → u} t)
{k → u} (var (inl x)) = var (inl x)
{k → u} (var (inr y)) =

if r1 ≡ r2 ∧ k ≡ y then u else (var (inr y))

{· → ·} · : ∀(r1 , r2 , s : Rep). N → �r1 � → �s�r2 → �s�r2
{k → u} () = ()
{k → u} (k t) = k t
{k → u} (e t) = e ({k → u} t)
{k → u} (i1 t) = i1 ({k → u} t)
{k → u} (i2 t) = i2 ({k → u} t)
{k → u} (t , v) = ({k → u} t , {k → u} v)
{k → u} (λr3 .t) =

if (r3 ≡ R ∧ r1 ≡ r2) ∨ (r3 �≡ R ∧ r1 ≡ r3)
then λr3 .({(k + 1) → u} t else λr3 .({k → u} t)

{k → u} (r t) = r ({k → u} t)

Some heterogeneous lemmas:

subst fresh : ∀(r1 , r2 : Rep) (t : �r1 �) (u : �r2 �) (m : N).
m /∈ (fvr2

t) ⇒ [m → u] t = t
bfsubst perm : ∀(r1 , r2 , r3 : Rep) (t : �r1 �) (u : �r2 �) (v : �r3 �)

(m k : N). (wfr3 u) ⇒
{k → ([m → u] v)} ([m → u] t) = [m → u] ({k → v} t)

Figure 7. Generic definitions for the locally nameless approach.

Instantiation of Q and V : Q = and V = N.

Heterogeneous shifting: Given r1 : Rep,

↑· · : ∀(r2 : Rep). N → �r2 � → �r2 �
↑m (in t) = in (↑m t)
↑m (var n) =
if r1 ≡ r2 ∧ m � n then (var (n + 1)) else (var n)

↑· · : ∀(r1 , r2 , s : Rep). N → �s�r2 → �s�r2
↑m () = ()
↑m (k t) = k t
↑m (e t) = e (↑m t)
↑m (i1 t) = i1 (↑m t)
↑m (i2 t) = i2 (↑m t)
↑m (t , v) = (↑m t , ↑m v)
↑m (λr3 .t) = if (r3 ≡ R ∧ r2 ≡ r1) ∨ (r3 �≡ R ∧ r3 ≡ r1)

then λr3 .(↑(m+1) t) else λr3 .(↑m t)
↑m (r t) = r (↑m t)

Figure 8. Heterogeneous shifting for de Bruijn representations.

the computation of parameter sets depends on the representation r1.

For example, in System F, if r1 is the type representation for Sys-

tem F types, then fvr1 computes the set of type parameters which

occur in a term or a type (depending on what r2 represents). Note

that the constructor inl arises from the instantiation of V = N + N.

This constructor signals that the case under consideration is the left

case of the sum type, which represents parameters. Variables, on

the other hand, are represented by the right case of the sum type,

which is signaled by the inr constructor. The other cases of fvr1
are

straightforward.

In the generic definitions for substitutions
5

the interesting cases

are variables and binders. In the case of variables, the condition

r1 ≡ r2 is necessary to check whether the parameter (or variable)

and the term to be substituted have the same representation. The

binder case in the heterogeneous substitution for variables is more

interesting. The subscript r3 keeps the information about which

kind of variables is to be bound. When r3 = R, the binding is

homogeneous, that is, the variable to be bound and the body of the

binder have the same representation. For example, the term-level

abstraction in terms (λx : T.e) of System F is homogeneous. An

example of heterogeneous binding is the type-level abstraction in

terms (ΛX.e) of System F. In this case r3 is the representation for

System F types. Variable shifting happens when the bound variable

and the terms to be substituted have the same representation. Note

that, in the case of homogeneous binding (r3 ≡ R), we compare

r1 with r2 , not with r3 , because the bound variable and the body

of the binder have the same representation r2 .

The main advantage of representing the syntax of languages

with our generic universe is, of course, that all generic operations

are immediately available. For instance, the 8 substitution oper-

ations mentioned in Section 4.1 can be recovered through suit-

able instantiations of the type representations r1, r2, r3 in the two

generic substitutions presented in this section.

4.3 De Bruijn
A key advantage of our modular approach is that we do not have to

commit to using a particular first-order representation. Instead, by

suitably instantiating the types Q and V , we can define the generic

infrastructure for our own favored first-order representation. For

example we can use GMETA to define the generic infrastructure

for de Bruijn representations. In de Bruijn representations, binders

do not bind any names, therefore the type Q is instantiated with

5
Note that the notation for substitutions follows Aydemir et al. (2008).

7 2010/7/16

Instantiation of Q and V :

Q =
V = N + N
Heterogeneous sets of parameters (free variable): Given r1 : Rep,

fvr1
: ∀(r2 : Rep). �r2 � → 2N

fvr1
(in t) = fvr1

t
fvr1

(var (inl x)) = if r1 ≡ r2 then {x } else ∅
fvr1

(var (inr y)) = ∅
fvr1

: ∀(r2 , s : Rep). �s�r2 → 2N

fvr1
() = ∅

fvr1
(k t) = ∅

fvr1
(e t) = fvr1

t
fvr1

(i1 t) = fvr1
t

fvr1
(i2 t) = fvr1

t
fvr1

(t , v) = (fvr1
t) ∪ (fvr1

v)
fvr1

(λr3 .t) = fvr1
t

fvr1
(r t) = fvr1

t

Heterogeneous substitution for parameters:

[· → ·] · : ∀(r1 r2 : Rep). N → �r1 � → �r2 � → �r2 �
[k → u] (in t) = in ([k → u] t)
[k → u] (var (inl x)) =

if r1 ≡ r2 ∧ k ≡ x then u else (var (inl x))
[k → u] (var (inr y)) = var (inr y)

[· → ·] · : ∀(r1 , r2 , s : Rep). N → �r1 � → �s�r2 → �s�r2
[k → u] () = ()
[k → u] (k t) = k t
[k → u] (e t) = e ([k → u] t)
[k → u] (i1 t) = i1 ([k → u] t)
[k → u] (i2 t) = i2 ([k → u] t)
[k → u] (t , v) = ([k → u] t , [k → u] v)
[k → u] (λr3 .z) = λr3 .([k → u] z)
[k → u] (r t) = r ([k → u] t)

Heterogeneous substitution for (bound) variables:

{· → ·} · : ∀(r1 , r2 : Rep). N → �r1 � → �r2 � → �r2 �
{k → u} (in t) = in ({k → u} t)
{k → u} (var (inl x)) = var (inl x)
{k → u} (var (inr y)) =

if r1 ≡ r2 ∧ k ≡ y then u else (var (inr y))

{· → ·} · : ∀(r1 , r2 , s : Rep). N → �r1 � → �s�r2 → �s�r2
{k → u} () = ()
{k → u} (k t) = k t
{k → u} (e t) = e ({k → u} t)
{k → u} (i1 t) = i1 ({k → u} t)
{k → u} (i2 t) = i2 ({k → u} t)
{k → u} (t , v) = ({k → u} t , {k → u} v)
{k → u} (λr3 .t) =

if (r3 ≡ R ∧ r1 ≡ r2) ∨ (r3 �≡ R ∧ r1 ≡ r3)
then λr3 .({(k + 1) → u} t else λr3 .({k → u} t)

{k → u} (r t) = r ({k → u} t)

Some heterogeneous lemmas:

subst fresh : ∀(r1 , r2 : Rep) (t : �r1 �) (u : �r2 �) (m : N).
m /∈ (fvr2

t) ⇒ [m → u] t = t
bfsubst perm : ∀(r1 , r2 , r3 : Rep) (t : �r1 �) (u : �r2 �) (v : �r3 �)

(m k : N). (wfr3 u) ⇒
{k → ([m → u] v)} ([m → u] t) = [m → u] ({k → v} t)

Figure 7. Generic definitions for the locally nameless approach.

Instantiation of Q and V : Q = and V = N.

Heterogeneous shifting: Given r1 : Rep,

↑· · : ∀(r2 : Rep). N → �r2 � → �r2 �
↑m (in t) = in (↑m t)
↑m (var n) =
if r1 ≡ r2 ∧ m � n then (var (n + 1)) else (var n)

↑· · : ∀(r1 , r2 , s : Rep). N → �s�r2 → �s�r2
↑m () = ()
↑m (k t) = k t
↑m (e t) = e (↑m t)
↑m (i1 t) = i1 (↑m t)
↑m (i2 t) = i2 (↑m t)
↑m (t , v) = (↑m t , ↑m v)
↑m (λr3 .t) = if (r3 ≡ R ∧ r2 ≡ r1) ∨ (r3 �≡ R ∧ r3 ≡ r1)

then λr3 .(↑(m+1) t) else λr3 .(↑m t)
↑m (r t) = r (↑m t)

Figure 8. Heterogeneous shifting for de Bruijn representations.

the computation of parameter sets depends on the representation r1.

For example, in System F, if r1 is the type representation for Sys-

tem F types, then fvr1 computes the set of type parameters which

occur in a term or a type (depending on what r2 represents). Note

that the constructor inl arises from the instantiation of V = N + N.

This constructor signals that the case under consideration is the left

case of the sum type, which represents parameters. Variables, on

the other hand, are represented by the right case of the sum type,

which is signaled by the inr constructor. The other cases of fvr1
are

straightforward.

In the generic definitions for substitutions
5

the interesting cases

are variables and binders. In the case of variables, the condition

r1 ≡ r2 is necessary to check whether the parameter (or variable)

and the term to be substituted have the same representation. The

binder case in the heterogeneous substitution for variables is more

interesting. The subscript r3 keeps the information about which

kind of variables is to be bound. When r3 = R, the binding is

homogeneous, that is, the variable to be bound and the body of the

binder have the same representation. For example, the term-level

abstraction in terms (λx : T.e) of System F is homogeneous. An

example of heterogeneous binding is the type-level abstraction in

terms (ΛX.e) of System F. In this case r3 is the representation for

System F types. Variable shifting happens when the bound variable

and the terms to be substituted have the same representation. Note

that, in the case of homogeneous binding (r3 ≡ R), we compare

r1 with r2 , not with r3 , because the bound variable and the body

of the binder have the same representation r2 .

The main advantage of representing the syntax of languages

with our generic universe is, of course, that all generic operations

are immediately available. For instance, the 8 substitution oper-

ations mentioned in Section 4.1 can be recovered through suit-

able instantiations of the type representations r1, r2, r3 in the two

generic substitutions presented in this section.

4.3 De Bruijn
A key advantage of our modular approach is that we do not have to

commit to using a particular first-order representation. Instead, by

suitably instantiating the types Q and V , we can define the generic

infrastructure for our own favored first-order representation. For

example we can use GMETA to define the generic infrastructure

for de Bruijn representations. In de Bruijn representations, binders

do not bind any names, therefore the type Q is instantiated with

5
Note that the notation for substitutions follows Aydemir et al. (2008).

7 2010/7/16

Examples: Free variables and substitutions
functions for any language r2.

Friday, September 3, 2010

Inductive Datatypes
We all know and love datatypes from
functional languages like Haskell or ML.

representation fit our generic framework. For each first-order
representations a wealth of reusable generic metatheorectical
definitions and lemma’s are provided.

• Extensible and customizable generic metatheory: Our frame-
work is built on top of Coq modules and can be easily ex-
tended or customized. It is easy to add new generic definitions
or lemma’s; and it is also easy to modify existing modules to
support variationsBRUNO: Quickly mention example.

• Case study using the POPLmark challenge: To validate our ap-
proach a case study using the POPLMark challange has been
conducted. Compared to other solutions to the POPLMark chal-
lange, our approach shows significant savings in the number
of definitions and lemmas required by formalizationsBRUNO:
Quantify.

• Interesting, practical application of DGP: From the DGP per-
spective, our generic framework provides an interesting practi-
cal application of DGP.

• Reusable Coq Libraries: Our results are implemented and read-
ily available as Coq libraries.

• Identifying limitations of Coq and possible solutions: We also
identify some Coq limitations that make formalization of
generic metatheory hard and briefly discuss some possible so-
lutions.

2. Overview

• Show small example (Simply typed lambda calculus)
• Table summarizing results (number of lemmas)
• Show on overview of the library (supported representations and

variations)
• Talk more about the benifits

3. DGP for Formal Metatheory

This section briefly introduces Datatype Generic Programming us-
ing inductive families to define universes of datatypes, and shows
to adapt a conventional universe of datatypes to support binders and
variables. In the presentation of this section we will assume a type
theory with extended with inductive families, such as for example
the calculus of inductive constructionsBRUNO: references.

3.1 Inductive Families

Functional programming languages like ML or Haskell support
datatype declarations, which allow the description of simple induc-
tive structures. Using a datatype declaration we can, for example,
define the natural numbers as:

DATA N = z | s N
In this definition N is the type of natural numbers, whereas the
constructor z represents the number 0 and the constructor s gives
us the successor of a natural number.

Inductive families are a generalization of conventional datatypes
that has been introduced in dependently typed languages such as
Epigram, Agda or the Coq theorem prover. Using an inductive
family syntax, the definition of inductive natural numbers would
be:

DATA N : �
WHERE

z : N
n : N
s n : N

Essentially this definition describes the same information as the
conventional datatype definition, albeit in a more detailed form.

DATA τ = 1 | τ + τ | τ × τ | K � | R

DATA
t, r : τ

�t�r : �
WHERE

() : �1�r

T : � t : T

k t : �K T �r

A, B : τ v : �A�r

i1 v : �A + B�r

A, B : τ v : �B�r

i2 v : �A + B�r

A, B : τ v1 : �A�r v2 : �B�r

(v1, v2) : �A×B�r

x : �r�
r x : �R�r

DATA
t : τ

�t� : �
WHERE

t : �r�r

in t : �r�

Figure 1. A simple universe of types.

The notation is inspired by natural deduction rules, with the pre-
misses holding the information about the arguments of some def-
inition and conclusions holding information about the name and
type of the definition. A datatype definition introduces a new type.
Thus, the type of N is �, which is the ‘type’ of types.

While for natural numbers there is no apparent advantage on us-
ing this more longwinded notation for defining a datatype, the ex-
pressiveness of this notation reveals itself when we begin defining
whole families of datatypes. For example we can define a family of
vectors of size n as follows:

DATA
A : � n : N
V ector A n : �

WHERE
vz : V ector A z

n : N x : A v : V ector A n

vs x v : V ector A (s n)

In this definition the type of Vectors has two type arguments. The
first argument specifies the type A of the elements of the vector,
while the second argument is the natural number n describing
the size of the vector. The constructor vz provides a way to build
vectors of size 0, while the constructor vs provides a way to build
vectors of size 1 + n for some n given an element x and a vector v
of size n .

3.2 Datatype Generic Programming

Datatype-generic programming allows the definition of functions
that work for a family of datatype definitions. Using inductive fam-
ilies it is possible to define universes representing whole families
of datatypes. Figure 1 shows a simple universe that will be the ba-
sis for the work presented in this paper. The type datatype τ de-
scribes the ’grammar’ that can be used to construct the datatypes
in the family. In this case, for brevity, the conventional notation for
datatypes is used, since the power of inductive families in not nec-
essary. The three first constructs, represent unit, sum and product
types. The R constructor is just a label that represents the type of
recursive occurrence of terms. The K constructor allows the repre-
sentation of constants of some type. For example, the type repre-
sentation of lists of naturals is defined as follows:

RList = 1 + K N× R

Thus the type representation of a list is just a sum type whose left
component is unit and whose right component is a product of a
natural number and a recursive occurrence of lists.

2 2010/5/12

Friday, September 3, 2010

Inductive Families

representation fit our generic framework. For each first-order
representations a wealth of reusable generic metatheorectical
definitions and lemma’s are provided.

• Extensible and customizable generic metatheory: Our frame-
work is built on top of Coq modules and can be easily ex-
tended or customized. It is easy to add new generic definitions
or lemma’s; and it is also easy to modify existing modules to
support variationsBRUNO: Quickly mention example.

• Case study using the POPLmark challenge: To validate our ap-
proach a case study using the POPLMark challange has been
conducted. Compared to other solutions to the POPLMark chal-
lange, our approach shows significant savings in the number
of definitions and lemmas required by formalizationsBRUNO:
Quantify.

• Interesting, practical application of DGP: From the DGP per-
spective, our generic framework provides an interesting practi-
cal application of DGP.

• Reusable Coq Libraries: Our results are implemented and read-
ily available as Coq libraries.

• Identifying limitations of Coq and possible solutions: We also
identify some Coq limitations that make formalization of
generic metatheory hard and briefly discuss some possible so-
lutions.

2. Overview

• Show small example (Simply typed lambda calculus)
• Table summarizing results (number of lemmas)
• Show on overview of the library (supported representations and

variations)
• Talk more about the benifits

3. DGP for Formal Metatheory

This section briefly introduces Datatype Generic Programming us-
ing inductive families to define universes of datatypes, and shows
to adapt a conventional universe of datatypes to support binders and
variables. In the presentation of this section we will assume a type
theory with extended with inductive families, such as for example
the calculus of inductive constructionsBRUNO: references.

3.1 Inductive Families

Functional programming languages like ML or Haskell support
datatype declarations, which allow the description of simple induc-
tive structures. Using a datatype declaration we can, for example,
define the natural numbers as:

DATA N = z | s N
In this definition N is the type of natural numbers, whereas the
constructor z represents the number 0 and the constructor s gives
us the successor of a natural number.

Inductive families are a generalization of conventional datatypes
that has been introduced in dependently typed languages such as
Epigram, Agda or the Coq theorem prover. Using an inductive
family syntax, the definition of inductive natural numbers would
be:

DATA N : �
WHERE

z : N
n : N
s n : N

Essentially this definition describes the same information as the
conventional datatype definition, albeit in a more detailed form.

DATA τ = 1 | τ + τ | τ × τ | K � | R

DATA
t, r : τ

�t�r : �
WHERE

() : �1�r

T : � t : T

k t : �K T �r

A, B : τ v : �A�r

i1 v : �A + B�r

A, B : τ v : �B�r

i2 v : �A + B�r

A, B : τ v1 : �A�r v2 : �B�r

(v1, v2) : �A×B�r

x : �r�
r x : �R�r

DATA
t : τ

�t� : �
WHERE

t : �r�r

in t : �r�

Figure 1. A simple universe of types.

The notation is inspired by natural deduction rules, with the pre-
misses holding the information about the arguments of some def-
inition and conclusions holding information about the name and
type of the definition. A datatype definition introduces a new type.
Thus, the type of N is �, which is the ‘type’ of types.

While for natural numbers there is no apparent advantage on us-
ing this more longwinded notation for defining a datatype, the ex-
pressiveness of this notation reveals itself when we begin defining
whole families of datatypes. For example we can define a family of
vectors of size n as follows:

DATA
A : � n : N
V ector A n : �

WHERE
vz : V ector A z

n : N x : A v : V ector A n

vs x v : V ector A (s n)

In this definition the type of Vectors has two type arguments. The
first argument specifies the type A of the elements of the vector,
while the second argument is the natural number n describing
the size of the vector. The constructor vz provides a way to build
vectors of size 0, while the constructor vs provides a way to build
vectors of size 1 + n for some n given an element x and a vector v
of size n .

3.2 Datatype Generic Programming

Datatype-generic programming allows the definition of functions
that work for a family of datatype definitions. Using inductive fam-
ilies it is possible to define universes representing whole families
of datatypes. Figure 1 shows a simple universe that will be the ba-
sis for the work presented in this paper. The type datatype τ de-
scribes the ’grammar’ that can be used to construct the datatypes
in the family. In this case, for brevity, the conventional notation for
datatypes is used, since the power of inductive families in not nec-
essary. The three first constructs, represent unit, sum and product
types. The R constructor is just a label that represents the type of
recursive occurrence of terms. The K constructor allows the repre-
sentation of constants of some type. For example, the type repre-
sentation of lists of naturals is defined as follows:

RList = 1 + K N× R

Thus the type representation of a list is just a sum type whose left
component is unit and whose right component is a product of a
natural number and a recursive occurrence of lists.

2 2010/5/12

Naturals using inductive families syntax:

Vectors of size n:

Results The case studies measure the number of definitions and
lemmas that have been saved (both the total number and the num-
ber of boilerplate definitions and lemmas). The results are shown
in Figure 3 and presented in terms of the percentage of definitions
and lemmas saved when compared to the reference solutions by Ay-
demir et al. (2008). In all case studies, the solution using GMETA
managed to save more than half of the number of boilerplate def-
initions and lemmas. The maximum reuse was obtained with the
advanced approach for STLC (94%). In terms of the number of
total definitions and lemmas, the savings were never below 32%
and in the case of System F<: the savings were 52% when using
the advanced approach. The detailed numbers and an evaluation of
GMETA are presented in Section 7.

3. DGP for Datatypes with First-Order Binders

This section briefly introduces DGP using inductive families to de-
fine universes of datatypes, and shows how to adapt a conventional
universe of datatypes to support binders and variables. In our pre-
sentation we assume a type theory extended with inductive fami-
lies, such as the Calculus of Inductive Constructions (CIC) (Paulin-
Mohring 1996) or extensions of Martin-Löf type-theory (Martin-
Löf 1984) with inductive families (Dybjer 1997).

3.1 Inductive Families

Functional languages like ML or Haskell support datatype declara-
tions for simple inductive structures such as the natural numbers:

DATA Nat = z | s Nat

Nat is the type of natural numbers, the constructor z represents 0
and the constructor s gives us the successor of a natural.

Inductive families are a generalization of conventional datatypes
that has been introduced in dependently typed languages such as
Epigram (McBride and McKinna 2004), Agda (Norell 2007) or the
Coq theorem prover. Inductive families are one of the inspirations
for Generalized Algebraic Datatypes (GADTs) (Peyton Jones et al.
2006), which has been adopted by Haskell and other languages.

We adopt a notation similar to the one used by Epigram to
describe inductive families. In general, such notation is of the form:

DATA type-constructor-sig WHERE data-constructor-sigs

Using this notation, the definition of natural numbers is:

DATA
Nat : �

WHERE
z : Nat

n : Nat

s n : Nat

Essentially the same information as the conventional datatype
definition is described (albeit in a more detailed form). Both the
type and data constructors are written using sans serif. Signatures
use natural deduction rules, with the context with all the constructor
arguments and their types above the line, and the type of the fully
applied constructor below the line. Finally, note that the notation �
(in Nat : �) means the ‘type’ (or kind) of types.

The expressiveness of this notation reveals itself when we begin
defining whole families of datatypes. For example we can define a
family of vectors of size n as follows:

DATA
A : � n : Nat

VectorA n : �
WHERE

vz : VectorA z

n : Nat a : A as : VectorA n

vs a as : VectorA (s n)

In this definition the type constructor for vectors has two type
arguments. The first argument specifies the type A of elements
of the vector, while the second argument n is the size of the
vector. The type of the elements A is parametric; that is, it is a

DATA Rep = 1 | Rep + Rep | Rep× Rep | K Rep | R

DATA
r, s : Rep

�s�r : �
WHERE

() : �1�r

s : Rep v : �s�
k v : �K s�r

s1, s2 : Rep v : �s1�r

i1 v : �s1 + s2�r

s1, s2 : Rep v : �s2�r

i2 v : �s1 + s2�r

s1, s2 : Rep v1 : �s1�r v2 : �s2�r

(v1, v2) : �s1 × s2�r

v : �r�
r v : �R�r

DATA
s : Rep

�s� : �
WHERE

s : Rep v : �s�s

in v : �s�

Figure 4. A simple universe of types.

(globally visible) parameter of all the constructors (both type and
data constructors). In contrast, the type n for the size of vectors
varies for each constructor; it is z for the vz constructor and s n
for the vs constructor. We write parametric type arguments in type
constructors such as VectorA using subscript. Also, if a constructor
is not explicitly applied to some arguments (for example vs a as is
not applied to n), then those arguments are implicitly passed.

3.2 Datatype Generic Programming

The key idea behind DGP is that many functions can be defined
generically for whole families of datatype definitions. Inductive
families are useful to DGP because they allow us to define uni-
verses (Martin-Löf 1984) representing whole families of datatypes.
By defining functions over this universe we obtain generic func-
tions that work for any datatypes representable in that universe.

A Simple Universe Figure 4 shows a simple universe that is the
basis for GMETA’s universe. The datatype Rep (defined using the
simpler ML-style notation for datatypes) describes the “grammar”
of types that can be used to construct the datatypes representable
in the universe. The three first constructs represent unit, sum and
product types. The K constructor allows the representation of con-
stants of some representable type. The R constructor is the most
interesting construct: it is a reference to the recursive type that we
are defining. For example, the type representations for naturals and
lists of naturals are defined as follows:

RNat : Rep
RNat = 1 + R

RList : Rep
RList = 1 + K RNat× R

It is useful to compare these definitions with the more familiar
definitions for recursive types using µ-types (Pierce 2002):

Nat = µ R. 1 + R
List = µ R. 1 + Nat × R

The definitions RNat and RList are similar to Nat and List.
The main difference is that, in the later two definitions, type-level
fixpoints are used. Our grammar of types Rep can be seen as a
simplified way to describe recursive types, where instead of the full
power of type-level fixpoints, we have a single label R representing
an occurrence of the recursive type.

4 2010/7/16

Friday, September 3, 2010

Universes

• Inductive families can capture whole
families of datatypes (universes).

• Functions over inductive families work for
any datatype in the family.

• Idea: Define a universe defining a family of
languages with binders.

Friday, September 3, 2010

A Simple Universe
Results The case studies measure the number of definitions and
lemmas that have been saved (both the total number and the num-
ber of boilerplate definitions and lemmas). The results are shown
in Figure 3 and presented in terms of the percentage of definitions
and lemmas saved when compared to the reference solutions by Ay-
demir et al. (2008). In all case studies, the solution using GMETA
managed to save more than half of the number of boilerplate def-
initions and lemmas. The maximum reuse was obtained with the
advanced approach for STLC (94%). In terms of the number of
total definitions and lemmas, the savings were never below 32%
and in the case of System F<: the savings were 52% when using
the advanced approach. The detailed numbers and an evaluation of
GMETA are presented in Section 7.

3. DGP for Datatypes with First-Order Binders

This section briefly introduces DGP using inductive families to de-
fine universes of datatypes, and shows how to adapt a conventional
universe of datatypes to support binders and variables. In our pre-
sentation we assume a type theory extended with inductive fami-
lies, such as the Calculus of Inductive Constructions (CIC) (Paulin-
Mohring 1996) or extensions of Martin-Löf type-theory (Martin-
Löf 1984) with inductive families (Dybjer 1997).

3.1 Inductive Families

Functional languages like ML or Haskell support datatype declara-
tions for simple inductive structures such as the natural numbers:

DATA Nat = z | s Nat

Nat is the type of natural numbers, the constructor z represents 0
and the constructor s gives us the successor of a natural.

Inductive families are a generalization of conventional datatypes
that has been introduced in dependently typed languages such as
Epigram (McBride and McKinna 2004), Agda (Norell 2007) or the
Coq theorem prover. Inductive families are one of the inspirations
for Generalized Algebraic Datatypes (GADTs) (Peyton Jones et al.
2006), which has been adopted by Haskell and other languages.

We adopt a notation similar to the one used by Epigram to
describe inductive families. In general, such notation is of the form:

DATA type-constructor-sig WHERE data-constructor-sigs

Using this notation, the definition of natural numbers is:

DATA
Nat : �

WHERE
z : Nat

n : Nat

s n : Nat

Essentially the same information as the conventional datatype
definition is described (albeit in a more detailed form). Both the
type and data constructors are written using sans serif. Signatures
use natural deduction rules, with the context with all the constructor
arguments and their types above the line, and the type of the fully
applied constructor below the line. Finally, note that the notation �
(in Nat : �) means the ‘type’ (or kind) of types.

The expressiveness of this notation reveals itself when we begin
defining whole families of datatypes. For example we can define a
family of vectors of size n as follows:

DATA
A : � n : Nat

VectorA n : �
WHERE

vz : VectorA z

n : Nat a : A as : VectorA n

vs a as : VectorA (s n)

In this definition the type constructor for vectors has two type
arguments. The first argument specifies the type A of elements
of the vector, while the second argument n is the size of the
vector. The type of the elements A is parametric; that is, it is a

DATA Rep = 1 | Rep + Rep | Rep× Rep | K Rep | R

DATA
r, s : Rep

�s�r : �
WHERE

() : �1�r

s : Rep v : �s�
k v : �K s�r

s1, s2 : Rep v : �s1�r

i1 v : �s1 + s2�r

s1, s2 : Rep v : �s2�r

i2 v : �s1 + s2�r

s1, s2 : Rep v1 : �s1�r v2 : �s2�r

(v1, v2) : �s1 × s2�r

v : �r�
r v : �R�r

DATA
s : Rep

�s� : �
WHERE

s : Rep v : �s�s

in v : �s�

Figure 4. A simple universe of types.

(globally visible) parameter of all the constructors (both type and
data constructors). In contrast, the type n for the size of vectors
varies for each constructor; it is z for the vz constructor and s n
for the vs constructor. We write parametric type arguments in type
constructors such as VectorA using subscript. Also, if a constructor
is not explicitly applied to some arguments (for example vs a as is
not applied to n), then those arguments are implicitly passed.

3.2 Datatype Generic Programming

The key idea behind DGP is that many functions can be defined
generically for whole families of datatype definitions. Inductive
families are useful to DGP because they allow us to define uni-
verses (Martin-Löf 1984) representing whole families of datatypes.
By defining functions over this universe we obtain generic func-
tions that work for any datatypes representable in that universe.

A Simple Universe Figure 4 shows a simple universe that is the
basis for GMETA’s universe. The datatype Rep (defined using the
simpler ML-style notation for datatypes) describes the “grammar”
of types that can be used to construct the datatypes representable
in the universe. The three first constructs represent unit, sum and
product types. The K constructor allows the representation of con-
stants of some representable type. The R constructor is the most
interesting construct: it is a reference to the recursive type that we
are defining. For example, the type representations for naturals and
lists of naturals are defined as follows:

RNat : Rep
RNat = 1 + R

RList : Rep
RList = 1 + K RNat× R

It is useful to compare these definitions with the more familiar
definitions for recursive types using µ-types (Pierce 2002):

Nat = µ R. 1 + R
List = µ R. 1 + Nat × R

The definitions RNat and RList are similar to Nat and List.
The main difference is that, in the later two definitions, type-level
fixpoints are used. Our grammar of types Rep can be seen as a
simplified way to describe recursive types, where instead of the full
power of type-level fixpoints, we have a single label R representing
an occurrence of the recursive type.

4 2010/7/16

Friday, September 3, 2010

A Simple Universe

Results The case studies measure the number of definitions and
lemmas that have been saved (both the total number and the num-
ber of boilerplate definitions and lemmas). The results are shown
in Figure 3 and presented in terms of the percentage of definitions
and lemmas saved when compared to the reference solutions by Ay-
demir et al. (2008). In all case studies, the solution using GMETA
managed to save more than half of the number of boilerplate def-
initions and lemmas. The maximum reuse was obtained with the
advanced approach for STLC (94%). In terms of the number of
total definitions and lemmas, the savings were never below 32%
and in the case of System F<: the savings were 52% when using
the advanced approach. The detailed numbers and an evaluation of
GMETA are presented in Section 7.

3. DGP for Datatypes with First-Order Binders

This section briefly introduces DGP using inductive families to de-
fine universes of datatypes, and shows how to adapt a conventional
universe of datatypes to support binders and variables. In our pre-
sentation we assume a type theory extended with inductive fami-
lies, such as the Calculus of Inductive Constructions (CIC) (Paulin-
Mohring 1996) or extensions of Martin-Löf type-theory (Martin-
Löf 1984) with inductive families (Dybjer 1997).

3.1 Inductive Families

Functional languages like ML or Haskell support datatype declara-
tions for simple inductive structures such as the natural numbers:

DATA Nat = z | s Nat

Nat is the type of natural numbers, the constructor z represents 0
and the constructor s gives us the successor of a natural.

Inductive families are a generalization of conventional datatypes
that has been introduced in dependently typed languages such as
Epigram (McBride and McKinna 2004), Agda (Norell 2007) or the
Coq theorem prover. Inductive families are one of the inspirations
for Generalized Algebraic Datatypes (GADTs) (Peyton Jones et al.
2006), which has been adopted by Haskell and other languages.

We adopt a notation similar to the one used by Epigram to
describe inductive families. In general, such notation is of the form:

DATA type-constructor-sig WHERE data-constructor-sigs

Using this notation, the definition of natural numbers is:

DATA
Nat : �

WHERE
z : Nat

n : Nat

s n : Nat

Essentially the same information as the conventional datatype
definition is described (albeit in a more detailed form). Both the
type and data constructors are written using sans serif. Signatures
use natural deduction rules, with the context with all the constructor
arguments and their types above the line, and the type of the fully
applied constructor below the line. Finally, note that the notation �
(in Nat : �) means the ‘type’ (or kind) of types.

The expressiveness of this notation reveals itself when we begin
defining whole families of datatypes. For example we can define a
family of vectors of size n as follows:

DATA
A : � n : Nat

VectorA n : �
WHERE

vz : VectorA z

n : Nat a : A as : VectorA n

vs a as : VectorA (s n)

In this definition the type constructor for vectors has two type
arguments. The first argument specifies the type A of elements
of the vector, while the second argument n is the size of the
vector. The type of the elements A is parametric; that is, it is a

DATA Rep = 1 | Rep + Rep | Rep× Rep | K Rep | R

DATA
r, s : Rep

�s�r : �
WHERE

() : �1�r

s : Rep v : �s�
k v : �K s�r

s1, s2 : Rep v : �s1�r

i1 v : �s1 + s2�r

s1, s2 : Rep v : �s2�r

i2 v : �s1 + s2�r

s1, s2 : Rep v1 : �s1�r v2 : �s2�r

(v1, v2) : �s1 × s2�r

v : �r�
r v : �R�r

DATA
s : Rep

�s� : �
WHERE

s : Rep v : �s�s

in v : �s�

Figure 4. A simple universe of types.

(globally visible) parameter of all the constructors (both type and
data constructors). In contrast, the type n for the size of vectors
varies for each constructor; it is z for the vz constructor and s n
for the vs constructor. We write parametric type arguments in type
constructors such as VectorA using subscript. Also, if a constructor
is not explicitly applied to some arguments (for example vs a as is
not applied to n), then those arguments are implicitly passed.

3.2 Datatype Generic Programming

The key idea behind DGP is that many functions can be defined
generically for whole families of datatype definitions. Inductive
families are useful to DGP because they allow us to define uni-
verses (Martin-Löf 1984) representing whole families of datatypes.
By defining functions over this universe we obtain generic func-
tions that work for any datatypes representable in that universe.

A Simple Universe Figure 4 shows a simple universe that is the
basis for GMETA’s universe. The datatype Rep (defined using the
simpler ML-style notation for datatypes) describes the “grammar”
of types that can be used to construct the datatypes representable
in the universe. The three first constructs represent unit, sum and
product types. The K constructor allows the representation of con-
stants of some representable type. The R constructor is the most
interesting construct: it is a reference to the recursive type that we
are defining. For example, the type representations for naturals and
lists of naturals are defined as follows:

RNat : Rep
RNat = 1 + R

RList : Rep
RList = 1 + K RNat× R

It is useful to compare these definitions with the more familiar
definitions for recursive types using µ-types (Pierce 2002):

Nat = µ R. 1 + R
List = µ R. 1 + Nat × R

The definitions RNat and RList are similar to Nat and List.
The main difference is that, in the later two definitions, type-level
fixpoints are used. Our grammar of types Rep can be seen as a
simplified way to describe recursive types, where instead of the full
power of type-level fixpoints, we have a single label R representing
an occurrence of the recursive type.

4 2010/7/16

Traditional recursive types:

Results The case studies measure the number of definitions and
lemmas that have been saved (both the total number and the num-
ber of boilerplate definitions and lemmas). The results are shown
in Figure 3 and presented in terms of the percentage of definitions
and lemmas saved when compared to the reference solutions by Ay-
demir et al. (2008). In all case studies, the solution using GMETA
managed to save more than half of the number of boilerplate def-
initions and lemmas. The maximum reuse was obtained with the
advanced approach for STLC (94%). In terms of the number of
total definitions and lemmas, the savings were never below 32%
and in the case of System F<: the savings were 52% when using
the advanced approach. The detailed numbers and an evaluation of
GMETA are presented in Section 7.

3. DGP for Datatypes with First-Order Binders

This section briefly introduces DGP using inductive families to de-
fine universes of datatypes, and shows how to adapt a conventional
universe of datatypes to support binders and variables. In our pre-
sentation we assume a type theory extended with inductive fami-
lies, such as the Calculus of Inductive Constructions (CIC) (Paulin-
Mohring 1996) or extensions of Martin-Löf type-theory (Martin-
Löf 1984) with inductive families (Dybjer 1997).

3.1 Inductive Families

Functional languages like ML or Haskell support datatype declara-
tions for simple inductive structures such as the natural numbers:

DATA Nat = z | s Nat

Nat is the type of natural numbers, the constructor z represents 0
and the constructor s gives us the successor of a natural.

Inductive families are a generalization of conventional datatypes
that has been introduced in dependently typed languages such as
Epigram (McBride and McKinna 2004), Agda (Norell 2007) or the
Coq theorem prover. Inductive families are one of the inspirations
for Generalized Algebraic Datatypes (GADTs) (Peyton Jones et al.
2006), which has been adopted by Haskell and other languages.

We adopt a notation similar to the one used by Epigram to
describe inductive families. In general, such notation is of the form:

DATA type-constructor-sig WHERE data-constructor-sigs

Using this notation, the definition of natural numbers is:

DATA
Nat : �

WHERE
z : Nat

n : Nat

s n : Nat

Essentially the same information as the conventional datatype
definition is described (albeit in a more detailed form). Both the
type and data constructors are written using sans serif. Signatures
use natural deduction rules, with the context with all the constructor
arguments and their types above the line, and the type of the fully
applied constructor below the line. Finally, note that the notation �
(in Nat : �) means the ‘type’ (or kind) of types.

The expressiveness of this notation reveals itself when we begin
defining whole families of datatypes. For example we can define a
family of vectors of size n as follows:

DATA
A : � n : Nat

VectorA n : �
WHERE

vz : VectorA z

n : Nat a : A as : VectorA n

vs a as : VectorA (s n)

In this definition the type constructor for vectors has two type
arguments. The first argument specifies the type A of elements
of the vector, while the second argument n is the size of the
vector. The type of the elements A is parametric; that is, it is a

DATA Rep = 1 | Rep + Rep | Rep× Rep | K Rep | R

DATA
r, s : Rep

�s�r : �
WHERE

() : �1�r

s : Rep v : �s�
k v : �K s�r

s1, s2 : Rep v : �s1�r

i1 v : �s1 + s2�r

s1, s2 : Rep v : �s2�r

i2 v : �s1 + s2�r

s1, s2 : Rep v1 : �s1�r v2 : �s2�r

(v1, v2) : �s1 × s2�r

v : �r�
r v : �R�r

DATA
s : Rep

�s� : �
WHERE

s : Rep v : �s�s

in v : �s�

Figure 4. A simple universe of types.

(globally visible) parameter of all the constructors (both type and
data constructors). In contrast, the type n for the size of vectors
varies for each constructor; it is z for the vz constructor and s n
for the vs constructor. We write parametric type arguments in type
constructors such as VectorA using subscript. Also, if a constructor
is not explicitly applied to some arguments (for example vs a as is
not applied to n), then those arguments are implicitly passed.

3.2 Datatype Generic Programming

The key idea behind DGP is that many functions can be defined
generically for whole families of datatype definitions. Inductive
families are useful to DGP because they allow us to define uni-
verses (Martin-Löf 1984) representing whole families of datatypes.
By defining functions over this universe we obtain generic func-
tions that work for any datatypes representable in that universe.

A Simple Universe Figure 4 shows a simple universe that is the
basis for GMETA’s universe. The datatype Rep (defined using the
simpler ML-style notation for datatypes) describes the “grammar”
of types that can be used to construct the datatypes representable
in the universe. The three first constructs represent unit, sum and
product types. The K constructor allows the representation of con-
stants of some representable type. The R constructor is the most
interesting construct: it is a reference to the recursive type that we
are defining. For example, the type representations for naturals and
lists of naturals are defined as follows:

RNat : Rep
RNat = 1 + R

RList : Rep
RList = 1 + K RNat× R

It is useful to compare these definitions with the more familiar
definitions for recursive types using µ-types (Pierce 2002):

Nat = µ R. 1 + R
List = µ R. 1 + Nat × R

The definitions RNat and RList are similar to Nat and List.
The main difference is that, in the later two definitions, type-level
fixpoints are used. Our grammar of types Rep can be seen as a
simplified way to describe recursive types, where instead of the full
power of type-level fixpoints, we have a single label R representing
an occurrence of the recursive type.

4 2010/7/16

Modeling datatypes with the universe:
The interpretation of the universe is given by two mutually

inductive families �·�r and �·�, while the data constructors of these

two families provide the syntax to build terms of that universe. The

parametric type
3 r in the subscript in �·�r , is the recursive type

that is used when interpreting the constructor R (the label for the

recursive type). For illustrating the data constructors of terms of the

universe, we first define the constructors nil and cons for lists:

nil : �RList�
nil = in (i1 ())

cons : �RNat� → �RList� → �RList�
cons n ns = in (i2 (k n, r ns))

When interpreting �RList�, the representation type r in �·�r
stands for 1 + K RNat × R. The constructor k takes a value

of some interpretation for a type representation s and embeds it

in the interpretation for representations of type r . For example,

when building values of type �RList�, k is used to embed a natural

number in the list. Similarly, the constructor r embeds list values

in a larger list. The in constructor embeds values of type �r�r into

a value of inductive family �r�. The remaining data constructors

(for representing unit, sums and products values) have the expected

role, allowing sum-of-product values to be created.

As a final remark, note that, in this universe, in and �·� are re-

dundant because the occurrences of �·� in �·�r , in the data construc-

tors r and k, could have been replaced, respectively, by �r�r and

�R�s . However, the stratification into two inductive families plays

an important role in Section 3.3, when the universe is extended with

support for variables.

Generic Functions The key advantage of universes is that we

can define (generic) functions that work for any representable

datatypes. A simple example is a generic function counting the

number of recursive occurrences on a term:

size : ∀(r : Rep). �r� → N
size (in t) = size t

size : ∀(r , s : Rep). �s�r → N
size () = 0
size (k t) = 0
size (i1 t) = size t
size (i2 t) = size t
size (t , v) = size t + size v
size (r t) = 1 + size t

To define such generic function, two-mutually inductive defini-

tions are needed: one inductively defined on �r�; and another in-

ductively defined on �s�r . For convenience the same name size is

used in both definitions. Note that r and s (bound by ∀) are implic-

itly passed in the calls to size .

When interpreted on values of type �RNat�, size computes

the value of the represented natural number. When interpreted on

values of type �RList�, size computes the length of the list. What

is great about this function is that it works, not only for these types,

but for any datatypes representable in the universe.

3.3 A Universe for Representing First-Order Binding

In this paper our goal is to define common infrastructure definitions

and lemmas for first-order representations, once and for all, using

generic functions and lemmas. However, the universe presented in

Figure 4 is insufficient for this purpose because generic functions

such as substitution and free variables require structural informa-

3
Recall that, as explained in Section 3.1, parametric types are visible in

both the type and data constructors.

DATA Rep = . . . | E Rep | B Rep Rep

Q : � (* Quantifier type *)

V : � (* Variable type *)

DATA

r, s : Rep

�s�r : �
WHERE . . .

s : Rep v : �s�
e v : �E s�r

s1, s2 : Rep q : Q v : �s2�r

λs1q.v : �B s1 s2�r

DATA

s : Rep

�s� : �
WHERE . . .

s : Rep v : V

var v : �s�

Figure 5. Extending universe with representations of binders and

variables.

tion about binders and variables. Therefore, we first need to enrich

our universe to support these constructs.

Extended Universe Figure 5 shows the additional definitions re-

quired to support representations of binders, variables, and also

deeply embedded terms. The data constructor B of the datatype

Rep provides the type for representations of binders. The type Rep
is also extended with a constructor E which is the representation

type for deeply embedded terms. This constructor is very similar

to K. However, the fundamental difference is that generic func-

tions should go inside the terms represented by deeply embedded

terms, whereas terms built with K should be treated as constants

by generic functions. In Section 4 we will see why the distinction

between K and E is necessary.

The abstract types Q and V represent the types of quantifiers

and variables. Depending on the particular first-order representa-

tions of binders these types will be instantiated differently. The fol-

lowing table shows the instantiations of Q and V for 4 of the most

popular first-order representations:

Q V λx. x y
Nominal N N λx. x y
De Bruijn N λ. 0 1
Locally nameless N + N λ. 0 y
Locally named N N + N λx. x a

The last column of the table shows how the lambda term λx. x y
can be encoded in the different approaches. For the nominal ap-

proach there is only one sort of variables, which can be represented

by a natural number (alternatively a string could be used instead).

In this representation, the binders hold information about the bound

variables, thus the type Q is the same type as the type of variables

V : a natural number. De Bruijn indices do not need to hold in-

formation about variables in the binders, because the variables are

denoted positionally with respect to the current enclosing binder.

Thus, in the de Bruijn style, the type Q is just the unit type and

the type V is a natural number. The locally nameless approach can

be viewed as a variant of the de Bruijn style. Like de Bruijn, no

information is needed at the binders, thus the type Q is just the

unit type. The difference to the de Bruijn style is that parameters

and (bound) variables are distinguished: (bound) variables are rep-

resented in the same way as de Bruijn variables; but parameters be-

long to another sort of variables. Therefore in the locally nameless

style the type V is instantiated to a sum of two natural numbers.

Finally, in the locally named style, there are also two sorts of vari-

ables. However, bound variables are represented as in the nominal

style instead. Thus the type Q is a natural number and the type V
is a sum type of two naturals.

5 2010/7/16

Friday, September 3, 2010

Generic functions

The interpretation of the universe is given by two mutually

inductive families �·�r and �·�, while the data constructors of these

two families provide the syntax to build terms of that universe. The

parametric type
3 r in the subscript in �·�r , is the recursive type

that is used when interpreting the constructor R (the label for the

recursive type). For illustrating the data constructors of terms of the

universe, we first define the constructors nil and cons for lists:

nil : �RList�
nil = in (i1 ())

cons : �RNat� → �RList� → �RList�
cons n ns = in (i2 (k n, r ns))

When interpreting �RList�, the representation type r in �·�r
stands for 1 + K RNat × R. The constructor k takes a value

of some interpretation for a type representation s and embeds it

in the interpretation for representations of type r . For example,

when building values of type �RList�, k is used to embed a natural

number in the list. Similarly, the constructor r embeds list values

in a larger list. The in constructor embeds values of type �r�r into

a value of inductive family �r�. The remaining data constructors

(for representing unit, sums and products values) have the expected

role, allowing sum-of-product values to be created.

As a final remark, note that, in this universe, in and �·� are re-

dundant because the occurrences of �·� in �·�r , in the data construc-

tors r and k, could have been replaced, respectively, by �r�r and

�R�s . However, the stratification into two inductive families plays

an important role in Section 3.3, when the universe is extended with

support for variables.

Generic Functions The key advantage of universes is that we

can define (generic) functions that work for any representable

datatypes. A simple example is a generic function counting the

number of recursive occurrences on a term:

size : ∀(r : Rep). �r� → N
size (in t) = size t

size : ∀(r , s : Rep). �s�r → N
size () = 0
size (k t) = 0
size (i1 t) = size t
size (i2 t) = size t
size (t , v) = size t + size v
size (r t) = 1 + size t

To define such generic function, two-mutually inductive defini-

tions are needed: one inductively defined on �r�; and another in-

ductively defined on �s�r . For convenience the same name size is

used in both definitions. Note that r and s (bound by ∀) are implic-

itly passed in the calls to size .

When interpreted on values of type �RNat�, size computes

the value of the represented natural number. When interpreted on

values of type �RList�, size computes the length of the list. What

is great about this function is that it works, not only for these types,

but for any datatypes representable in the universe.

3.3 A Universe for Representing First-Order Binding

In this paper our goal is to define common infrastructure definitions

and lemmas for first-order representations, once and for all, using

generic functions and lemmas. However, the universe presented in

Figure 4 is insufficient for this purpose because generic functions

such as substitution and free variables require structural informa-

3
Recall that, as explained in Section 3.1, parametric types are visible in

both the type and data constructors.

DATA Rep = . . . | E Rep | B Rep Rep

Q : � (* Quantifier type *)

V : � (* Variable type *)

DATA

r, s : Rep

�s�r : �
WHERE . . .

s : Rep v : �s�
e v : �E s�r

s1, s2 : Rep q : Q v : �s2�r

λs1q.v : �B s1 s2�r

DATA

s : Rep

�s� : �
WHERE . . .

s : Rep v : V

var v : �s�

Figure 5. Extending universe with representations of binders and

variables.

tion about binders and variables. Therefore, we first need to enrich

our universe to support these constructs.

Extended Universe Figure 5 shows the additional definitions re-

quired to support representations of binders, variables, and also

deeply embedded terms. The data constructor B of the datatype

Rep provides the type for representations of binders. The type Rep
is also extended with a constructor E which is the representation

type for deeply embedded terms. This constructor is very similar

to K. However, the fundamental difference is that generic func-

tions should go inside the terms represented by deeply embedded

terms, whereas terms built with K should be treated as constants

by generic functions. In Section 4 we will see why the distinction

between K and E is necessary.

The abstract types Q and V represent the types of quantifiers

and variables. Depending on the particular first-order representa-

tions of binders these types will be instantiated differently. The fol-

lowing table shows the instantiations of Q and V for 4 of the most

popular first-order representations:

Q V λx. x y
Nominal N N λx. x y
De Bruijn N λ. 0 1
Locally nameless N + N λ. 0 y
Locally named N N + N λx. x a

The last column of the table shows how the lambda term λx. x y
can be encoded in the different approaches. For the nominal ap-

proach there is only one sort of variables, which can be represented

by a natural number (alternatively a string could be used instead).

In this representation, the binders hold information about the bound

variables, thus the type Q is the same type as the type of variables

V : a natural number. De Bruijn indices do not need to hold in-

formation about variables in the binders, because the variables are

denoted positionally with respect to the current enclosing binder.

Thus, in the de Bruijn style, the type Q is just the unit type and

the type V is a natural number. The locally nameless approach can

be viewed as a variant of the de Bruijn style. Like de Bruijn, no

information is needed at the binders, thus the type Q is just the

unit type. The difference to the de Bruijn style is that parameters

and (bound) variables are distinguished: (bound) variables are rep-

resented in the same way as de Bruijn variables; but parameters be-

long to another sort of variables. Therefore in the locally nameless

style the type V is instantiated to a sum of two natural numbers.

Finally, in the locally named style, there are also two sorts of vari-

ables. However, bound variables are represented as in the nominal

style instead. Thus the type Q is a natural number and the type V
is a sum type of two naturals.

5 2010/7/16

Generic size:

If r = RNat then size is
value of the natural
number.

If r = RList then size is the
length of the list.

More generally, size works
for any r.

Friday, September 3, 2010

Representing Binders

RList : Rep
RList = 1 + K RNat× R

It is useful to compare these definitions with the more familiar
definitions for recursive types using µ-types (Pierce 2002):

Nat = µ R. 1 + R
List = µ R. 1 + Nat × R

The definitions RNat and RList are similar to Nat and List. The
main difference is that, in the later two definitions, type-level fix-
points are used. Our grammar of types Rep can be seen as a sim-
plified way to describe recursive types, where instead of the full
power of type-level fixpoints, we have a single label R representing
an occurrence of the recursive type.

The interpretation of the universe is given by two mutually induc-
tive families �·�r and �·�, while the data constructors of these two
families provide the syntax to build terms of that universe. The type
r , in the subscript in �·�r , is the recursive type that is used when in-
terpreting the constructor R (the label for the recursive type). The
data constructors for terms of the universe are better illustrated with
a concrete example. For instance, we can define list constructors nil
and cons for lists represented by the universe with:

nil : �RList�
nil = in (i1 1)

cons : �RNat� → �RList� → �RList�
cons n ns = in (i2 (k n, r ns))

When interpreting �RList�, the representation type r in �·�r stands
for 1 + K RNat × R. The constructor k takes a value of some
interpretation for a type representation s and embeds it in the
interpretation for representations of type r . For example, when
building values of type �RList�, k is used to embed a natural
number in the list. Similarly, the constructor r embeds list values
in a larger list. The in constructor embeds values of type �r�r into
a value of inductive family �r�. In some sense, in plays the role of
a fixpoint. The remaining data constructors (for representing unit,
sums and products values) have the expected role, allowing sum-
of-product values to be created.

Generic Functions The key advantage of working with universes
is that we can define (generic) functions that work for any datatype
representable in that universe. As a simple example, consider the
generic function which counts the number of recursive ocurrences
on a term:

size : ∀(r : Rep). �r� → N
size (in t) = size t

size : ∀(r , s : Rep). �s�r → N
size () = 0
size (k t) = 0
size (i1 t) = size t
size (i2 t) = size t
size (t , v) = size t + size v
size (r t) = 1 + size t

To define such generic function two-mutually inductive definitions
are needed: one definition inductively defined on �r�; and another
definition inductively defined on �s�r . For convenience we use the
same name size for both definitions. Note that the type representa-
tions bound by the ∀ quantifier are implicitly passed in the calls to
size .

DATA Rep = . . . | E Rep | B Rep Rep

Q : � (* Quantifier type *)
V : � (* Variable type *)

DATA
r, s : Rep

�s�r : �
WHERE . . .

s : Rep v : �s�
es v : �E s�r

s1, s2 : Rep q : Q v : �s2�r

λs1q.v : �B s1 s2�r

DATA
r : Rep

�r� : �
WHERE . . .

s : Rep v : V

var v : �s�

Figure 5. Extending universe with representations of binders and
variables

When interpreted on values of type �RNat�, size computes the
value of the represented natural number. When interpreted on val-
ues of type �RList�, size computes the length of the list. What is
great about this function is that it works, not only for values of the
natural and list types, but for any datatypes that can be represented
in the universe.

3.3 A Universe for Representing First-Order Binding

In this paper our goal is to define common infrastructure definitions
and lemmas for first-order representations, once and for all, using
generic functions and lemmas. However, the universe presented in
Figure 4 is insufficient for this purpose because generic functions
such as substitution and free variables require structural informa-
tion about binders and variables. Therefore, we first need to enrich
our universe to support these constructs.

Extended Universe Figure 5 shows the additional definitions
required to support representations of binders, variables an also
deeply embeded terms. The data constructor B of the datatype
Rep provides the type for representations of binders. The type Rep
is also extended with a constructor E which is the representation
type for deeply embedded terms. This constructor is very similar
to K. However, the fundamental difference is that generic func-
tions should go inside the terms represented by deeply embedded
terms, whereas terms built with K should be treated as constants
by generic functions. In Section 4 we will see why the distinction
between K and E is necessary.

The abstract types Q and V represent the types of quantifiers and
variables. Depending on the particular first-order representations of
binders these types will be instantiated differently. The following
table shows the instantiations of Q and V for 4 of the most popular
first-order representations:

Q V λx. x y
Nominal N N λx. x y
De Bruijn N λ. 0 1
Locally nameless N + N λ. 0 y
Locally named N N + N λx. x a

The last column of the table shows how the lambda term λx. x y
can be encoded in the different approaches. For the nominal ap-
proach there is only one sort of variables, which can be represented
by a natural number (alternatively a string could be used instead).
In this representation, the binders hold information about the bound
variables, thus the type Q is the same type as the type of variables
V : a natural number. De Bruijn indexes do not need to hold in-
formation about variables in the binders, because the variables are

5 2010/7/9

Extended universe:

Binders

Variables

Friday, September 3, 2010

Lambda Calculus

RLambda : Rep
RLambda = R×R + B R R

fvar : N → �RLambda�
fvar n = var (inl n)

bvar : N → �RLambda�
bvar n = var (inr n)

app : �RLambda� → �RLambda� → �RLambda�
app e1 e2 = in (i1 (r e1, r e2))

lam : �RLambda� → �RLambda�
lam e = in (i2 (λR . r e))

Figure 6. The untyped lambda calculus using the locally nameless

approach.

The inductive family �·�r is extended with two new data con-

structors. The constructor e is similar to the constructor k and is

used to build deeply embedded terms. The other constructor uses

the standard lambda notation λs1q.v to denote the constructor for

binders. The type representation s1 is the representation of the syn-

tactic sort of the variables that are bound by the binder, whereas

the type representation s2 is the representation of the syntactic sort

of the body of the abstraction. We use s1 = R to denote that the

syntactic sort of the variables to be bound is the same as that of the

body. This distinction is necessary because in certain languages the

syntactic sorts of variables to be bound and the body of the abstrac-

tion are not the same. For example, in System F, type abstractions

in terms such as ΛX.e bind type variables X in a term e .

The inductive family �·� is also extended with one additional

data constructor for variables. This constructor allows terms to be

constructed using a variable instead of a concretely defined term.

Untyped lambda calculus using locally nameless representations
As a simple example demonstrating the use of the universe to repre-

sent languages with binding constructs, we show how the untyped

lambda calculus is encoded in Figure 6. The definition RLambda is

the representation type for the untyped lambda calculus. Note that

the variable case is automatically built in, so the representation only

needs to account for the application and abstraction cases. Applica-

tion consists of a constructor with two recursive arguments and it is

represented by the product type on the left side of the sum. Abstrac-

tion is a binder with a recursive argument and is represented by the

right side of the sum. The four definitions fvar, bvar, app and lam
provide shorthands the corresponding parameters, variables, appli-

cation and abstraction constructors. Terms can be built using these

constructors. For example, the identity function is defined as:

idRLambda : �RLambda�
idRLambda = lam (bvar 0)

4. Modular Parametrization on Representations
This section shows how generic operations and lemmas defined

over the universe presented in Section 3 can be used to provide

much of the basic infrastructure boilerplate once and for all for the

languages representable in the universe. We start by motivating the

need for heterogeneous operations and lemmas for supporting bind-

ing constructs in realistic languages and proceed with showing how

to define the generic infrastructure for two of the most important

first-order representations: locally nameless and de Bruijn.

4.1 The Need for Heterogeneous Generic Operations
Many realistic languages have binding constructs that require het-

erogeneous operations, which are operations like a substitution that

deals with multiple syntactic sorts:

hsubst : N → Type → Term → Term

In this case, hsubst is an operation that substitutes a type vari-

able in a term by some type. Operations such as hsubst are needed,

for example, to deal with System F type abstractions in terms

(ΛX.e). In general, when the object language has many syntac-

tic sorts, it is possible that several different kinds of heterogeneous

substitutions are needed for various combinations of syntactic sorts.

For instance, consider the possible substitution operations for the

locally nameless style with only two syntactic sorts: types and

terms. In this case, there are 8 different kinds of substitution:

Term Type

Term
Variables tbsubst thbsubst

Parameters tfsubst thfsubst

Type
Variables yhbsubst ybsubst

Parameters yhfsubst yfsubst

Basically we need substitutions for parameters and variables,

and for each of these we need to consider all four combinations of

substitutions using types and terms. While not all operations are

usually needed in formalizations, many of them are. For example,

the System F family of languages will typically need 6 out of

the 8 substitutions. We believe that heterogeneous operations are

one of the main causes of tedious and burdensome boilerplate

that is observed in larger formalizations such as the type-directed

translation of ML-modules to System Fω by Rossberg et al. (2010).

Therefore, in order to support basic infrastructure that deals

with realistic languages, we should have generic functions that can

be instantiated to operations such as hsubst . In other words we

should have heterogeneous generic functions and lemmas that can

be used with multiple syntactic sorts.

4.2 Locally Nameless
Figure 7 presents generic definitions for the locally nameless ap-

proach. In this approach binders do not bind names, and (bound)

variables and parameters (free variables) are distinguished. Thus,

as discussed in Section 3.3, the types Q and V are, respectively,

the unit type
4

and a sum of two naturals. Using these instantiations

for Q and V , the set of parameters and substitution operations can

be defined generically for the locally nameless approach. Further-

more the operation for instantiating a (bound) variable with a term

is also defined in a generic way. Finally, generic lemmas can be de-

fined using the generic operations. The statements for subst fresh
– which states that if a parameter does not occur in a term, then

substitution of that parameter is the identity – and bfsubst perm –

which states that substitutions for parameters and variables can be

exchanged under certain well-formedness conditions – are shown

as examples of such generic lemmas.

As explained in Section 3, generic operations are defined over

terms of the universe by two mutually-inductive operations defined

over the �·� and �·�r (mutually-)inductive families. Note that, for

convenience, we use same function names for mutual definitions.

The operation fvr1
computes the set of parameters in a term.

The only interesting case happens with parameters:

fvr1
(var (inl x)) = if r1 ≡ r2 then {x } else ∅

In this case a singleton set containing the parameter is returned

only when the type representations r1 and r2 are the same. That is,

4
For convenience, we use for both the unit type and the unique term of

that type.

6 2010/7/16

Representing the lambda calculus:

Friday, September 3, 2010

Generic Functions

example, it does not make sense to talk about free variables and

open in the de Bruijn approach.

4.2 Locally Nameless

Figure 3 presents generic definitions for the locally nameless ap-

proach. In this approach binders do not bind names and bound and

free variables are distinguished: de Bruijn indices are used for the

former, while names are used for the latter. Thus, as discussed in

Section ?? the types Q and V are, respectively, the unit type and

a sum of two naturals. Using these instantiations for Q and V ,

the usual free variables and substitution operations can be defined

generically for the locally nameless approach. Furthermore the op-

eration for opening an abstraction by instantiating a bound variable

with a term, which we refer to as open, is also defined in a generic

way. Finally, a number of generic lemmas are definable using the

generic definitions for the operations. The statements for the substi-

tution lemma (?) subst cross and subst fresh — which states that

if a variable does not occur in the free variables of a term then sub-

stitution of that variable is the identity — are shown as examples of

such generic lemmas.

As explained in Section ??, generic operations can be defined over

terms of the universe by defining two mutually-inductive opera-

tions that are defined over the �r� and �s�r (mutually-)inductive

families. In general generic operations are straightforward to de-

fine. In the case of free variables, the interesting case happens with

free variables:

fv (var (inl x)) = {x }

In this case a singleton set containing the free variable is returned.

Note that the constructor inl arizes from the instantiation of V =
N + N. This constructor signals that the case under consideration

is the left case of the sum type, which represents free variables.

Bound variables, on the other hand, are represented by the right

case of the sum type, which is signalled by the inr constructor. The

other cases of the generic definition for free variables are entirely

straightforward and unsurprising. The only case worth of remark

is the case for binders, where the instantiation of the type Q as

the unit type is reflected by the ocurrence of the unit value in the

pattern and constructors for binders. The generic definitions for

substitution and open are equally straightforward, with the only

interesting cases being the cases for variables and binders. Note

that the notation for substitution and open follows ?. To express the

types of the operations using these notations, lifted dots are used

to denote occurrences of positional arguments. For example, in the

case of substitution the three lifted dots occurring in [· → ·] ·
denote the positions of the 3 arguments of the operation following

a left-to-right order.

Untyped lambda calculus using locally nameless As a simple

example demonstrating the use of the generic operations on a con-

crete language, we show how the untyped lambda calculus is en-

coded in Figure 4. The definition Rlambda defines the represen-

tation type for the untyped lambda calculus. Note that the variable

cases are automatically built in, so the representation only needs

to account for the application and abstraction cases. Application

consists of a constructor with two recursive arguments and it is

represented by the product type on the left side of the sum. Ab-

straction is a binder with a recursive argument and is represented

by the right side of the sum. The four definitions fvar, bvar, app and

lam provide shorthands the corresponding free variables, bounded

variables, application and abstraction constructors. Terms can be

built using these constructors. For example, the identity function is

defined as:

Instantiation of Q and V:

Q =
V = N + N

Free variables:

fv : ∀(r : τ). �r� → {N}
fv (in x) = fv x
fv (var (inl x)) = {x }
fv (var (inr)) = ∅
fv : ∀(r , s : τ). �s�r → {N}
fv 1 = ∅
fv (k t) = ∅
fv (i1 x) = fv x
fv (i2 y) = fv y
fv (x , y) = fv x ∪ fv y
fv (λ .z) = fv z
fv (r x) = fv x

Substitution:

[· → ·] · : ∀(r : τ). N → �r� → �r� → �r�
[k → u] (in x) = in ([k → u] x)
[k → u] (var (inl x)) = if (k ≡ x) then u else (var (inl x))
[k → u] (var (inr y)) = var (inr y)

[· → ·] · : ∀(r , s : τ). N → �r� → �s�r → �s�r

[k → u] 1 = 1
[k → u] (k t) = k t
[k → u] (i1 x) = i1 ([k → u] x)
[k → u] (i2 y) = i2 ([k → u] y)
[k → u] (x , y) = ([k → u] x , [k → u] y)
[k → u] (λ .z) = λ .([k → u] z)
[k → u] (r x) = r ([k → u] x)

Open:

{· → ·} · : ∀(r : τ). N → �r� → �r� → �r�
{k → u} (in x) = in ({k → u} x)
{k → u} (var (inl x)) = var (inl x)
{k → u} (var (inr y)) = if (k ≡ y) then u else (var (inr y))

{· → ·} · : ∀(r , s : τ). N → �r� → �s�r → �s�r

{k → u} 1 = 1
{k → u} (k t) = k t
{k → u} (i1 x) = i1 ({k → u} x)
{k → u} (i2 y) = i2 ({k → u} y)
{k → u} (x , y) = ({k → u} x , {k → u} y)
{k → u} (λ .z) = λ .({(k + 1) → u} z)
{k → u} (r x) = r ({k → u} x)

Some lemmas:

subst fresh : ∀(r : τ) (t , u : �r�) (m : N).
m /∈ (fv t) ⇒ [m → u] t = t

subst cross : ∀(r : τ) (t u v : �r�) (x y : N).
x �= y ⇒ x /∈ (fv v) ⇒
[y → v] ([x → u] t) =

[x → ([y → v] u)] ([y → v] t)

Figure 3. Generic definitions for the locally nameless approach.

4 2010/5/13

Instantiation of Q and V :

Q =
V = N + N
Heterogeneous sets of parameters (free variable): Given r1 : Rep,

fvr1
: ∀(r2 : Rep). �r2 � → 2N

fvr1
(in t) = fvr1

t
fvr1

(var (inl x)) = if r1 ≡ r2 then {x } else ∅
fvr1

(var (inr y)) = ∅
fvr1

: ∀(r2 , s : Rep). �s�r2 → 2N

fvr1
() = ∅

fvr1
(k t) = ∅

fvr1
(e t) = fvr1

t
fvr1

(i1 t) = fvr1
t

fvr1
(i2 t) = fvr1

t
fvr1

(t , v) = (fvr1
t) ∪ (fvr1

v)
fvr1

(λr3 .t) = fvr1
t

fvr1
(r t) = fvr1

t

Heterogeneous substitution for parameters:

[· → ·] · : ∀(r1 r2 : Rep). N → �r1 � → �r2 � → �r2 �
[k → u] (in t) = in ([k → u] t)
[k → u] (var (inl x)) =

if r1 ≡ r2 ∧ k ≡ x then u else (var (inl x))
[k → u] (var (inr y)) = var (inr y)

[· → ·] · : ∀(r1 , r2 , s : Rep). N → �r1 � → �s�r2 → �s�r2
[k → u] () = ()
[k → u] (k t) = k t
[k → u] (e t) = e ([k → u] t)
[k → u] (i1 t) = i1 ([k → u] t)
[k → u] (i2 t) = i2 ([k → u] t)
[k → u] (t , v) = ([k → u] t , [k → u] v)
[k → u] (λr3 .z) = λr3 .([k → u] z)
[k → u] (r t) = r ([k → u] t)

Heterogeneous substitution for (bound) variables:

{· → ·} · : ∀(r1 , r2 : Rep). N → �r1 � → �r2 � → �r2 �
{k → u} (in t) = in ({k → u} t)
{k → u} (var (inl x)) = var (inl x)
{k → u} (var (inr y)) =

if r1 ≡ r2 ∧ k ≡ y then u else (var (inr y))

{· → ·} · : ∀(r1 , r2 , s : Rep). N → �r1 � → �s�r2 → �s�r2
{k → u} () = ()
{k → u} (k t) = k t
{k → u} (e t) = e ({k → u} t)
{k → u} (i1 t) = i1 ({k → u} t)
{k → u} (i2 t) = i2 ({k → u} t)
{k → u} (t , v) = ({k → u} t , {k → u} v)
{k → u} (λr3 .t) =

if (r3 ≡ R ∧ r1 ≡ r2) ∨ (r3 �≡ R ∧ r1 ≡ r3)
then λr3 .({(k + 1) → u} t else λr3 .({k → u} t)

{k → u} (r t) = r ({k → u} t)

Some heterogeneous lemmas:

subst fresh : ∀(r1 , r2 : Rep) (t : �r1 �) (u : �r2 �) (m : N).
m /∈ (fvr2

t) ⇒ [m → u] t = t
bfsubst perm : ∀(r1 , r2 , r3 : Rep) (t : �r1 �) (u : �r2 �) (v : �r3 �)

(m k : N). (wfr3 u) ⇒
{k → ([m → u] v)} ([m → u] t) = [m → u] ({k → v} t)

Figure 7. Generic definitions for the locally nameless approach.

Instantiation of Q and V : Q = and V = N.

Heterogeneous shifting: Given r1 : Rep,

↑· · : ∀(r2 : Rep). N → �r2 � → �r2 �
↑m (in t) = in (↑m t)
↑m (var n) =
if r1 ≡ r2 ∧ m � n then (var (n + 1)) else (var n)

↑· · : ∀(r1 , r2 , s : Rep). N → �s�r2 → �s�r2
↑m () = ()
↑m (k t) = k t
↑m (e t) = e (↑m t)
↑m (i1 t) = i1 (↑m t)
↑m (i2 t) = i2 (↑m t)
↑m (t , v) = (↑m t , ↑m v)
↑m (λr3 .t) = if (r3 ≡ R ∧ r2 ≡ r1) ∨ (r3 �≡ R ∧ r3 ≡ r1)

then λr3 .(↑(m+1) t) else λr3 .(↑m t)
↑m (r t) = r (↑m t)

Figure 8. Heterogeneous shifting for de Bruijn representations.

the computation of parameter sets depends on the representation r1.

For example, in System F, if r1 is the type representation for Sys-

tem F types, then fvr1 computes the set of type parameters which

occur in a term or a type (depending on what r2 represents). Note

that the constructor inl arises from the instantiation of V = N + N.

This constructor signals that the case under consideration is the left

case of the sum type, which represents parameters. Variables, on

the other hand, are represented by the right case of the sum type,

which is signaled by the inr constructor. The other cases of fvr1
are

straightforward.

In the generic definitions for substitutions
5

the interesting cases

are variables and binders. In the case of variables, the condition

r1 ≡ r2 is necessary to check whether the parameter (or variable)

and the term to be substituted have the same representation. The

binder case in the heterogeneous substitution for variables is more

interesting. The subscript r3 keeps the information about which

kind of variables is to be bound. When r3 = R, the binding is

homogeneous, that is, the variable to be bound and the body of the

binder have the same representation. For example, the term-level

abstraction in terms (λx : T.e) of System F is homogeneous. An

example of heterogeneous binding is the type-level abstraction in

terms (ΛX.e) of System F. In this case r3 is the representation for

System F types. Variable shifting happens when the bound variable

and the terms to be substituted have the same representation. Note

that, in the case of homogeneous binding (r3 ≡ R), we compare

r1 with r2 , not with r3 , because the bound variable and the body

of the binder have the same representation r2 .

The main advantage of representing the syntax of languages

with our generic universe is, of course, that all generic operations

are immediately available. For instance, the 8 substitution oper-

ations mentioned in Section 4.1 can be recovered through suit-

able instantiations of the type representations r1, r2, r3 in the two

generic substitutions presented in this section.

4.3 De Bruijn
A key advantage of our modular approach is that we do not have to

commit to using a particular first-order representation. Instead, by

suitably instantiating the types Q and V , we can define the generic

infrastructure for our own favored first-order representation. For

example we can use GMETA to define the generic infrastructure

for de Bruijn representations. In de Bruijn representations, binders

do not bind any names, therefore the type Q is instantiated with

5
Note that the notation for substitutions follows Aydemir et al. (2008).

7 2010/7/16

Free variables (locally nameless):

Friday, September 3, 2010

Generic Functions

Instantiation of Q and V :

Q =
V = N + N
Heterogeneous sets of parameters (free variable): Given r1 : Rep,

fvr1
: ∀(r2 : Rep). �r2 � → 2N

fvr1
(in t) = fvr1

t
fvr1

(var (inl x)) = if r1 ≡ r2 then {x } else ∅
fvr1

(var (inr y)) = ∅
fvr1

: ∀(r2 , s : Rep). �s�r2 → 2N

fvr1
() = ∅

fvr1
(k t) = ∅

fvr1
(e t) = fvr1

t
fvr1

(i1 t) = fvr1
t

fvr1
(i2 t) = fvr1

t
fvr1

(t , v) = (fvr1
t) ∪ (fvr1

v)
fvr1

(λr3 .t) = fvr1
t

fvr1
(r t) = fvr1

t

Heterogeneous substitution for parameters:

[· → ·] · : ∀(r1 r2 : Rep). N → �r1 � → �r2 � → �r2 �
[k → u] (in t) = in ([k → u] t)
[k → u] (var (inl x)) =

if r1 ≡ r2 ∧ k ≡ x then u else (var (inl x))
[k → u] (var (inr y)) = var (inr y)

[· → ·] · : ∀(r1 , r2 , s : Rep). N → �r1 � → �s�r2 → �s�r2
[k → u] () = ()
[k → u] (k t) = k t
[k → u] (e t) = e ([k → u] t)
[k → u] (i1 t) = i1 ([k → u] t)
[k → u] (i2 t) = i2 ([k → u] t)
[k → u] (t , v) = ([k → u] t , [k → u] v)
[k → u] (λr3 .z) = λr3 .([k → u] z)
[k → u] (r t) = r ([k → u] t)

Heterogeneous substitution for (bound) variables:

{· → ·} · : ∀(r1 , r2 : Rep). N → �r1 � → �r2 � → �r2 �
{k → u} (in t) = in ({k → u} t)
{k → u} (var (inl x)) = var (inl x)
{k → u} (var (inr y)) =

if r1 ≡ r2 ∧ k ≡ y then u else (var (inr y))

{· → ·} · : ∀(r1 , r2 , s : Rep). N → �r1 � → �s�r2 → �s�r2
{k → u} () = ()
{k → u} (k t) = k t
{k → u} (e t) = e ({k → u} t)
{k → u} (i1 t) = i1 ({k → u} t)
{k → u} (i2 t) = i2 ({k → u} t)
{k → u} (t , v) = ({k → u} t , {k → u} v)
{k → u} (λr3 .t) =

if (r3 ≡ R ∧ r1 ≡ r2) ∨ (r3 �≡ R ∧ r1 ≡ r3)
then λr3 .({(k + 1) → u} t else λr3 .({k → u} t)

{k → u} (r t) = r ({k → u} t)

Some heterogeneous lemmas:

subst fresh : ∀(r1 , r2 : Rep) (t : �r1 �) (u : �r2 �) (m : N).
m /∈ (fvr2

t) ⇒ [m → u] t = t
bfsubst perm : ∀(r1 , r2 , r3 : Rep) (t : �r1 �) (u : �r2 �) (v : �r3 �)

(m k : N). (wfr3 u) ⇒
{k → ([m → u] v)} ([m → u] t) = [m → u] ({k → v} t)

Figure 7. Generic definitions for the locally nameless approach.

Instantiation of Q and V : Q = and V = N.

Heterogeneous shifting: Given r1 : Rep,

↑· · : ∀(r2 : Rep). N → �r2 � → �r2 �
↑m (in t) = in (↑m t)
↑m (var n) =
if r1 ≡ r2 ∧ m � n then (var (n + 1)) else (var n)

↑· · : ∀(r1 , r2 , s : Rep). N → �s�r2 → �s�r2
↑m () = ()
↑m (k t) = k t
↑m (e t) = e (↑m t)
↑m (i1 t) = i1 (↑m t)
↑m (i2 t) = i2 (↑m t)
↑m (t , v) = (↑m t , ↑m v)
↑m (λr3 .t) = if (r3 ≡ R ∧ r2 ≡ r1) ∨ (r3 �≡ R ∧ r3 ≡ r1)

then λr3 .(↑(m+1) t) else λr3 .(↑m t)
↑m (r t) = r (↑m t)

Figure 8. Heterogeneous shifting for de Bruijn representations.

the computation of parameter sets depends on the representation r1.

For example, in System F, if r1 is the type representation for Sys-

tem F types, then fvr1 computes the set of type parameters which

occur in a term or a type (depending on what r2 represents). Note

that the constructor inl arises from the instantiation of V = N + N.

This constructor signals that the case under consideration is the left

case of the sum type, which represents parameters. Variables, on

the other hand, are represented by the right case of the sum type,

which is signaled by the inr constructor. The other cases of fvr1
are

straightforward.

In the generic definitions for substitutions
5

the interesting cases

are variables and binders. In the case of variables, the condition

r1 ≡ r2 is necessary to check whether the parameter (or variable)

and the term to be substituted have the same representation. The

binder case in the heterogeneous substitution for variables is more

interesting. The subscript r3 keeps the information about which

kind of variables is to be bound. When r3 = R, the binding is

homogeneous, that is, the variable to be bound and the body of the

binder have the same representation. For example, the term-level

abstraction in terms (λx : T.e) of System F is homogeneous. An

example of heterogeneous binding is the type-level abstraction in

terms (ΛX.e) of System F. In this case r3 is the representation for

System F types. Variable shifting happens when the bound variable

and the terms to be substituted have the same representation. Note

that, in the case of homogeneous binding (r3 ≡ R), we compare

r1 with r2 , not with r3 , because the bound variable and the body

of the binder have the same representation r2 .

The main advantage of representing the syntax of languages

with our generic universe is, of course, that all generic operations

are immediately available. For instance, the 8 substitution oper-

ations mentioned in Section 4.1 can be recovered through suit-

able instantiations of the type representations r1, r2, r3 in the two

generic substitutions presented in this section.

4.3 De Bruijn
A key advantage of our modular approach is that we do not have to

commit to using a particular first-order representation. Instead, by

suitably instantiating the types Q and V , we can define the generic

infrastructure for our own favored first-order representation. For

example we can use GMETA to define the generic infrastructure

for de Bruijn representations. In de Bruijn representations, binders

do not bind any names, therefore the type Q is instantiated with

5
Note that the notation for substitutions follows Aydemir et al. (2008).

7 2010/7/16

Substitution for free variables:

Friday, September 3, 2010

Generic Lemmas

It is possible to do generic lemmas too:

Instantiation of Q and V :

Q =
V = N + N
Heterogeneous sets of parameters (free variable): Given r1 : Rep,

fvr1
: ∀(r2 : Rep). �r2 � → 2N

fvr1
(in t) = fvr1

t
fvr1

(var (inl x)) = if r1 ≡ r2 then {x } else ∅
fvr1

(var (inr y)) = ∅
fvr1

: ∀(r2 , s : Rep). �s�r2 → 2N

fvr1
() = ∅

fvr1
(k t) = ∅

fvr1
(e t) = fvr1

t
fvr1

(i1 t) = fvr1
t

fvr1
(i2 t) = fvr1

t
fvr1

(t , v) = (fvr1
t) ∪ (fvr1

v)
fvr1

(λr3 .t) = fvr1
t

fvr1
(r t) = fvr1

t

Heterogeneous substitution for parameters:

[· → ·] · : ∀(r1 r2 : Rep). N → �r1 � → �r2 � → �r2 �
[k → u] (in t) = in ([k → u] t)
[k → u] (var (inl x)) =

if r1 ≡ r2 ∧ k ≡ x then u else (var (inl x))
[k → u] (var (inr y)) = var (inr y)

[· → ·] · : ∀(r1 , r2 , s : Rep). N → �r1 � → �s�r2 → �s�r2
[k → u] () = ()
[k → u] (k t) = k t
[k → u] (e t) = e ([k → u] t)
[k → u] (i1 t) = i1 ([k → u] t)
[k → u] (i2 t) = i2 ([k → u] t)
[k → u] (t , v) = ([k → u] t , [k → u] v)
[k → u] (λr3 .z) = λr3 .([k → u] z)
[k → u] (r t) = r ([k → u] t)

Heterogeneous substitution for (bound) variables:

{· → ·} · : ∀(r1 , r2 : Rep). N → �r1 � → �r2 � → �r2 �
{k → u} (in t) = in ({k → u} t)
{k → u} (var (inl x)) = var (inl x)
{k → u} (var (inr y)) =

if r1 ≡ r2 ∧ k ≡ y then u else (var (inr y))

{· → ·} · : ∀(r1 , r2 , s : Rep). N → �r1 � → �s�r2 → �s�r2
{k → u} () = ()
{k → u} (k t) = k t
{k → u} (e t) = e ({k → u} t)
{k → u} (i1 t) = i1 ({k → u} t)
{k → u} (i2 t) = i2 ({k → u} t)
{k → u} (t , v) = ({k → u} t , {k → u} v)
{k → u} (λr3 .t) =

if (r3 ≡ R ∧ r1 ≡ r2) ∨ (r3 �≡ R ∧ r1 ≡ r3)
then λr3 .({(k + 1) → u} t else λr3 .({k → u} t)

{k → u} (r t) = r ({k → u} t)

Some heterogeneous lemmas:

subst fresh : ∀(r1 , r2 : Rep) (t : �r1 �) (u : �r2 �) (m : N).
m /∈ (fvr2

t) ⇒ [m → u] t = t
bfsubst perm : ∀(r1 , r2 , r3 : Rep) (t : �r1 �) (u : �r2 �) (v : �r3 �)

(m k : N). (wfr3 u) ⇒
{k → ([m → u] v)} ([m → u] t) = [m → u] ({k → v} t)

Figure 7. Generic definitions for the locally nameless approach.

Instantiation of Q and V : Q = and V = N.

Heterogeneous shifting: Given r1 : Rep,

↑· · : ∀(r2 : Rep). N → �r2 � → �r2 �
↑m (in t) = in (↑m t)
↑m (var n) =
if r1 ≡ r2 ∧ m � n then (var (n + 1)) else (var n)

↑· · : ∀(r1 , r2 , s : Rep). N → �s�r2 → �s�r2
↑m () = ()
↑m (k t) = k t
↑m (e t) = e (↑m t)
↑m (i1 t) = i1 (↑m t)
↑m (i2 t) = i2 (↑m t)
↑m (t , v) = (↑m t , ↑m v)
↑m (λr3 .t) = if (r3 ≡ R ∧ r2 ≡ r1) ∨ (r3 �≡ R ∧ r3 ≡ r1)

then λr3 .(↑(m+1) t) else λr3 .(↑m t)
↑m (r t) = r (↑m t)

Figure 8. Heterogeneous shifting for de Bruijn representations.

the computation of parameter sets depends on the representation r1.

For example, in System F, if r1 is the type representation for Sys-

tem F types, then fvr1 computes the set of type parameters which

occur in a term or a type (depending on what r2 represents). Note

that the constructor inl arises from the instantiation of V = N + N.

This constructor signals that the case under consideration is the left

case of the sum type, which represents parameters. Variables, on

the other hand, are represented by the right case of the sum type,

which is signaled by the inr constructor. The other cases of fvr1
are

straightforward.

In the generic definitions for substitutions
5

the interesting cases

are variables and binders. In the case of variables, the condition

r1 ≡ r2 is necessary to check whether the parameter (or variable)

and the term to be substituted have the same representation. The

binder case in the heterogeneous substitution for variables is more

interesting. The subscript r3 keeps the information about which

kind of variables is to be bound. When r3 = R, the binding is

homogeneous, that is, the variable to be bound and the body of the

binder have the same representation. For example, the term-level

abstraction in terms (λx : T.e) of System F is homogeneous. An

example of heterogeneous binding is the type-level abstraction in

terms (ΛX.e) of System F. In this case r3 is the representation for

System F types. Variable shifting happens when the bound variable

and the terms to be substituted have the same representation. Note

that, in the case of homogeneous binding (r3 ≡ R), we compare

r1 with r2 , not with r3 , because the bound variable and the body

of the binder have the same representation r2 .

The main advantage of representing the syntax of languages

with our generic universe is, of course, that all generic operations

are immediately available. For instance, the 8 substitution oper-

ations mentioned in Section 4.1 can be recovered through suit-

able instantiations of the type representations r1, r2, r3 in the two

generic substitutions presented in this section.

4.3 De Bruijn
A key advantage of our modular approach is that we do not have to

commit to using a particular first-order representation. Instead, by

suitably instantiating the types Q and V , we can define the generic

infrastructure for our own favored first-order representation. For

example we can use GMETA to define the generic infrastructure

for de Bruijn representations. In de Bruijn representations, binders

do not bind any names, therefore the type Q is instantiated with

5
Note that the notation for substitutions follows Aydemir et al. (2008).

7 2010/7/16

Friday, September 3, 2010

Conclusion

• Boring lemmas and definitions can be dealt
with generically.

• Gyesik will show how to use this for
practical mechanizations of metatheory in
Coq.

Friday, September 3, 2010

Related Work
• Several clean settings that deal with binding:

• Parametric HOAS (POPL 2010)

• A Universe of Binding and Computation (ICFP
2009)

• Nominal Datatypes (Pitts 2003)

• But most practical development is done in Coq
with traditional first-order approaches:

• This is where our approach fits in

Friday, September 3, 2010

