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 (Presidential) election (or preference on fashion brands) 

 Centralized/decentralized algorithm

 Problem:  How to identify the most frequent item(candidate) by locally 
exchanging information between the nodes.
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Decentralized Ranking Learning Problem

 Local message exchange: Bloger sees Blog around her.

 Extended (General) version of this problem: How to 
identify k most frequent items in order.   
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 Classical voter model – two candidates, {1,2}.

 Using Three States for Binary Consensus on Complete Graphs, Infocom 2009
(Perron, Vasudevan, and Vojnovic)

• Complete graph

• Comparison between ternary signaling & state and binary signaling & 
ternary state

 Convergence Speed of Binary Interval Consensus, Infocom 2010 (Draief and 
Vojnovic)

• Upper bound on the expected convergence time that holds for arbitrary 
connected graph e.g. Complete, star-shaped, Erdos-Renyi random graphs
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 Finding the most frequent sorting state  = Learning top-k ranking 

 Sorting state assignment - Using a rule, we assign a k-tuple as its new state 
instead of its initial single state for each node.  Randomized Algorithm

 Deviation between the random number and its expectation is small.
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Ranking Learning 
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 Introduction of Strong state, weak state

 Distributed algorithm for the most frequent item

• If the instigator node is in a strong state, then it switches to the corresponding 
weak state if the encountered node holds a different strong state.

• If the instigator node is in a weak state, then it copies the state of the 
encountered node. 

 We proved convergence for complete graph theoretically.

 We showed convergence for random graphs (Erdos-Renyi and Scale-free) empirically.
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Finding the Most Frequent Item
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 Conclusion

• For m-candidate case, we  developed a distributed algorithm that is 
parsimonious w.r.t the memory per node and information exchanged between 
the nodes for each node to identify the most frequent item.

• Using the above algorithm, we learn the top-k ranking(in order or w/o order).

 Future work

• Study on theoretical convergence for other networks of interest, including 
random graphs (Erdos-Renyi and Scale-free).

• Improvement on the speed and the probability of error.

• Suggestion of distributed algorithm two-way communication case.
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Future Works and Conclusion


