
FortressCheck: Automatic Testing for
Implicit Parallelism and Generic Properties

Kang Seonghoon
(Joint work with Sukyoung Ryu)

PLRG @ KAIST

August 26, 2010

QuickCheck

...is an automatic random testing tool, originally designed for
Haskell.

In detail:

“automatic” We don’t have to write test cases ourselves; we just
have to write descriptive properties.

“random” QuickCheck generates random test cases using static
types.

“testing” QuickCheck is not a substitute for the proof of
correctness; it can be used to show a
counter-example of the property, however.

QuickCheck

...is an automatic random testing tool, originally designed for
Haskell. In detail:

“automatic” We don’t have to write test cases ourselves; we just
have to write descriptive properties.

“random” QuickCheck generates random test cases using static
types.

“testing” QuickCheck is not a substitute for the proof of
correctness; it can be used to show a
counter-example of the property, however.

QuickCheck

...is an automatic random testing tool, originally designed for
Haskell. In detail:

“automatic” We don’t have to write test cases ourselves; we just
have to write descriptive properties.

“random” QuickCheck generates random test cases using static
types.

“testing” QuickCheck is not a substitute for the proof of
correctness; it can be used to show a
counter-example of the property, however.

QuickCheck

...is an automatic random testing tool, originally designed for
Haskell. In detail:

“automatic” We don’t have to write test cases ourselves; we just
have to write descriptive properties.

“random” QuickCheck generates random test cases using static
types.

“testing” QuickCheck is not a substitute for the proof of
correctness; it can be used to show a
counter-example of the property, however.

QuickCheck for Other Languages

Due to the conceptual simplicity of QuickCheck, it has been ported
to many other languages.

Many implementations depend on the features available to the
target languages. For example:

I Those for dynamically typed languages need manual
specifications of types.

I Those for object-oriented languages use different ways to
determine the most appropriate generator.

Challenge: Port QuickCheck to Fortress.

Why FortressCheck?

A major difference between Fortress and Haskell.

square(x) = do

println(“Calculating ” x “^2...”)

x2

end

run() = println
(
square(3) + square(4)

)
In this code, square(3) and square(4) may run in parallel and the
output is nondeterministic. In general, any side effects within
parallel code may produce an unexpected result.

What’s New in FortressCheck?

Unlike Haskell, Fortress provides both subtype polymorphism and
parametric polymorphism.

Subtype Polymorphism:

property commutativeAddition =

∀(x :Number, y :Number) (x + y = y + x)

It is impossible to make a single test generator for Number in
general, as new subtypes of Number can be added later.

What’s New in FortressCheck?

Unlike Haskell, Fortress provides both subtype polymorphism and
parametric polymorphism.

Parametric Polymorphism:

property mapLengthInvariant1JKey,ValK =

∀
(
map:MapJKey,ValK, k :Key, v :Val

)(
0 ≤

∣∣map.add(k, v)
∣∣− |map| ≤ 1

)
It is impossible to test mapLengthInvariant1 for every instantiation
of Key and Val.

Testing Polymorphism via Reflection

Reflection gives a simple but general way to test polymorphic
properties.

property commutativeAddition =

∀(x :Number, y :Number) (x + y = y + x)

...can be rewritten to a non-polymorphic property:

property commutativeAddition′ =

∀(xtype:Type, ytype:Type)

((xtype SUBTYPEOF numberType) ∧
(ytype SUBTYPEOF numberType))→
commutativeAddition(generate(xtype),

generate(ytype))

Testing Polymorphism via Reflection

Reflection gives a simple but general way to test polymorphic
properties.

property mapLengthInvariant1JKey,ValK =
∀
(
map:MapJKey,ValK, k :Key, v :Val

)(
0 ≤

∣∣map.add(k, v)
∣∣− |map| ≤ 1

)
...can be similarly rewritten to a non-polymorphic property:

property mapLengthInvariant ′1 =
∀(keytype:Type, valtype:Type) (do

prop = applyStaticParams(mapLengthInvariant1,
(keytype, valtype))

prop
(
generate

(
mapType(keytype, valtype)

)
,

generate(keytype), generate(valtype)
)

end)

Future Work

I Better support for testing implicit parallelism.

I Concise testing language using the extensible syntax of
Fortress.

