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Results
1. We propose a novel approximation algorithm for energy minimization under all label count constraints.
2. We develop a fast heuristic algorithm to compute solutions under almost all label count, which we show to work well empirically.

Label Counts in Computer Vision

DP produces results for almost all LCC, while PP is not.

Constraints on label count is useful for many problems like the Theorem. DD outputs e-approximate solutions for all label count
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Decomposed Dynamic (DD)

Procedure

1. Decompose an image

2. For each decomposed, compute solutions for all label counts using
dynamic programming.

3. Merge results of 2.
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Decomposed Parametric (DP) |

Same procedure as DD except that we apply PP to each subimage.
N m

DD: dynamic programming
DP : parametric maxflow

decomposition

DP runs fast and works well empirically.

Experiments on Segmentation |

Our Model:

Unary potentials are obtained by user given hints about the appearance of foreground and
background segments. Pairwise potentials are defined as

7o (X X)) = X, =X, [ (4 +4,9(u,V))

where 9(U,V) is proportional to the distance of u and v's RGB colors, and A, 4, are
parameters of the model. We denote p =4,/ 4,

The numbers are

(average energy of solutions by our algorithms) / (average energy of optimal solutions)

DP is much faster than DD, and reasonably slower than PP.
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DP performs well even on the binary image denoising problem.
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Werner’s method

[Werner et al. 2008]



