
CUDA Programming Assist Tool
Development

Postech Graphics Lab

이 승 용

1

Contents

• GPU

• GPGPU

• CUDA

• Difficulties in CUDA Programming

• CUDA Programming Assist Tool

2

GPU?

 A massively parallel

programmable processor

 Present in almost every PC

 Have large amount of arithmetic capability

(especially floating-point operation)

3

GPGPU !

 Various application with heavy computation

– Accelerated using computational power of GPU

– Expanded for general purpose

4

GPGPU Programming

• Goal

– Increase the overall throughput of the
computer system on the given task

– Use CPU and GPU synergistically

• Difficulties:

– programmer should know about traditional
graphics rendering pipeline (GLSL ,HLSL, Cg)

5

CUDA- Compute Unified Device Architecture

 Co-designed HW and SW to expose the
computational horsepower of nVIDIA GPUs

for GPU computing

 Most popular GPGPU language

 C language with minimal extension

- easy to learn

- more similar to ordinary programming

6

Parallel Computing with CUDA

 By specifying the number
of parallel kernels, we can

get data parallelism easily

 SIMT – all threads execute

the same kernel code with

different data

7

Sequential Execution (CPU)

Parallel Execution (GPU)

Parallel Execution (GPU)

General CUDA Programming

 In HOST program

- Device management

- Memory allocation & deallocation

- Memory Copy (CPU->GPU, GPU->CPU)

- Thread launch

- Synchronization

 In DEVICE program

- Actual kernel function.

8

Difficulties in CUDA Programming

 HOST program parts are

error-prone, but not essential

parts of actual parallel codes.

 Writing these repeated codes

is a tedious, boring task.

 Effective tool support needed.

-> frame based programming

(XVCL)

9

XVCL- xml based variant configuration language

 General-purpose mark-up language for configuring
variants in a variety of software assets.

 Can be used for managing variants in any collection of
textual documents so that SW reusability will increase.

 XVCL processor traverses related x-frames, interprets
XVCL commands, and assembles the output (a custom
program) into one or more files.

(x-frame is an XML file with program code + XVCL
commands)

10

CUDA Assistant Tool using XVCL

11

Reusable
Frames

User Input
(Variants)

+ CUDA
Assist

Complete
CUDA

Program

CUDA Assistant Tool using XVCL

 User can specify thread dimension, block
dimension, data array variables, and kernel
function as variant features.

 Reusable frames, such as memory
management, thread launch, can be combined

with variant features to make complete CUDA
program.

12

13

x-frame SPC
x-frame SPC<set funcName = initDenoiseCUDA/>
<set arguments = int imageh, int imagew />
<set data_array = R, G, B, L, a, b />
<set array_size = imageh*imagew />
<set data_type = float />
<adapt initCUDA />

x-frame initCUDA
void @funcName
(<while arguments>

@arguments
</while>

)
{

std::cout << "Allocate GPU memory..." << std::endl;
<while data_array>
cutilSafeCall(cudaMalloc((void **)& @data_array ,
@array_size * sizeof(@data_type)));
</while>

}

void initDenoiseCUDA(int imageh, int imagew)
{

std::cout << "Allocate GPU memory..." << std::endl;

cutilSafeCall(cudaMalloc((void **)&R, imageh*imagew * sizeof(float)));
cutilSafeCall(cudaMalloc((void **)&G, imageh*imagew * sizeof(float)));
cutilSafeCall(cudaMalloc((void **)&B, imageh*imagew * sizeof(float)));
cutilSafeCall(cudaMalloc((void **)&L, imageh*imagew * sizeof(float)));
cutilSafeCall(cudaMalloc((void **)&a, imageh*imagew * sizeof(float)));
cutilSafeCall(cudaMalloc((void **)&b, imageh*imagew * sizeof(float)));

}

XVCL Processor

CUDA Assistant Tool Implementation

 Reusable frame

- device initialization

- memory allocation/deallocation

- memory copy (CPU->GPU, GPU->CPU)

- thread launch

 Variant

- number of threads, blocks

- data type

- data array names

- actual kernel function

14

Advantage of CUDA Assist Tool

 Easy memory management

- will reduce error-prone coding

- will increase productivity

 Extract parallelism as an independent concern

and program it explicitly

- pluggable (or attachable) parallelism

- will allow effective management and reuse of

CUDA programs

15

Future Direction

• High-level programming assist tool for
CUDA

– BSGP (Bulk-Synchronous GPU Programming)

– Productive development of error-free SWs

• Programming assist tool for massive
parallelism

– Hundreds of threds

– Shared and local memory

16

Thank you!
http://cg.postech.ac.kr

17

