
CUDA Programming Assist Tool
Development

Postech Graphics Lab

이 승 용

1

Contents

• GPU

• GPGPU

• CUDA

• Difficulties in CUDA Programming

• CUDA Programming Assist Tool

2

GPU?

 A massively parallel

programmable processor

 Present in almost every PC

 Have large amount of arithmetic capability

(especially floating-point operation)

3

GPGPU !

 Various application with heavy computation

– Accelerated using computational power of GPU

– Expanded for general purpose

4

GPGPU Programming

• Goal

– Increase the overall throughput of the
computer system on the given task

– Use CPU and GPU synergistically

• Difficulties:

– programmer should know about traditional
graphics rendering pipeline (GLSL ,HLSL, Cg)

5

CUDA- Compute Unified Device Architecture

 Co-designed HW and SW to expose the
computational horsepower of nVIDIA GPUs

for GPU computing

 Most popular GPGPU language

 C language with minimal extension

- easy to learn

- more similar to ordinary programming

6

Parallel Computing with CUDA

 By specifying the number
of parallel kernels, we can

get data parallelism easily

 SIMT – all threads execute

the same kernel code with

different data

7

Sequential Execution (CPU)

Parallel Execution (GPU)

Parallel Execution (GPU)

General CUDA Programming

 In HOST program

- Device management

- Memory allocation & deallocation

- Memory Copy (CPU->GPU, GPU->CPU)

- Thread launch

- Synchronization

 In DEVICE program

- Actual kernel function.

8

Difficulties in CUDA Programming

 HOST program parts are

error-prone, but not essential

parts of actual parallel codes.

 Writing these repeated codes

is a tedious, boring task.

 Effective tool support needed.

-> frame based programming

(XVCL)

9

XVCL- xml based variant configuration language

 General-purpose mark-up language for configuring
variants in a variety of software assets.

 Can be used for managing variants in any collection of
textual documents so that SW reusability will increase.

 XVCL processor traverses related x-frames, interprets
XVCL commands, and assembles the output (a custom
program) into one or more files.

(x-frame is an XML file with program code + XVCL
commands)

10

CUDA Assistant Tool using XVCL

11

Reusable
Frames

User Input
(Variants)

+ CUDA
Assist

Complete
CUDA

Program

CUDA Assistant Tool using XVCL

 User can specify thread dimension, block
dimension, data array variables, and kernel
function as variant features.

 Reusable frames, such as memory
management, thread launch, can be combined

with variant features to make complete CUDA
program.

12

13

x-frame SPC
x-frame SPC<set funcName = initDenoiseCUDA/>
<set arguments = int imageh, int imagew />
<set data_array = R, G, B, L, a, b />
<set array_size = imageh*imagew />
<set data_type = float />
<adapt initCUDA />

x-frame initCUDA
void @funcName
(<while arguments>

@arguments
</while>

)
{

std::cout << "Allocate GPU memory..." << std::endl;
<while data_array>
cutilSafeCall(cudaMalloc((void **)& @data_array ,
@array_size * sizeof(@data_type)));
</while>

}

void initDenoiseCUDA(int imageh, int imagew)
{

std::cout << "Allocate GPU memory..." << std::endl;

cutilSafeCall(cudaMalloc((void **)&R, imageh*imagew * sizeof(float)));
cutilSafeCall(cudaMalloc((void **)&G, imageh*imagew * sizeof(float)));
cutilSafeCall(cudaMalloc((void **)&B, imageh*imagew * sizeof(float)));
cutilSafeCall(cudaMalloc((void **)&L, imageh*imagew * sizeof(float)));
cutilSafeCall(cudaMalloc((void **)&a, imageh*imagew * sizeof(float)));
cutilSafeCall(cudaMalloc((void **)&b, imageh*imagew * sizeof(float)));

}

XVCL Processor

CUDA Assistant Tool Implementation

 Reusable frame

- device initialization

- memory allocation/deallocation

- memory copy (CPU->GPU, GPU->CPU)

- thread launch

 Variant

- number of threads, blocks

- data type

- data array names

- actual kernel function

14

Advantage of CUDA Assist Tool

 Easy memory management

- will reduce error-prone coding

- will increase productivity

 Extract parallelism as an independent concern

and program it explicitly

- pluggable (or attachable) parallelism

- will allow effective management and reuse of

CUDA programs

15

Future Direction

• High-level programming assist tool for
CUDA

– BSGP (Bulk-Synchronous GPU Programming)

– Productive development of error-free SWs

• Programming assist tool for massive
parallelism

– Hundreds of threds

– Shared and local memory

16

Thank you!
http://cg.postech.ac.kr

17

