보다 친숙한 Coq 증명을 위한 방안 연구

이계식

서울대 , ROPAS ROSAEC Center 4th Workshop

Gyesik Lee (ROPAS, SNU)

Easier Access to Coq Proofs

ERC Worshop 1 / 17

< 回 > < 回 > < 回 >

Outline

• • • • • • • • • • •

What You Usually Start with

- Choice of a theorem prover
 - ► Coq, Isabelle\HOL, Agda, ACL2, Nuprl, PVS, Mizar, ...
- Choice of a representation style
 - de Bruijn indices
 - Locally nameless approach
 - Locally-named approach
 - Nominal approach
 - Higher-Order Abstract Syntax
 - ▶ ...
- Specification of the target language
- There are many other choices to be made.

Representation of $\lambda x . xy$

Nominal	$\lambda x \cdot x y$	where $x, y \in V$	
de Bruijn	λ .01		
Locally nameless	$\lambda . 0 y$	where $x, y \in FV$	
Locally-named	$\lambda x \cdot x a$	where $x \in \mathbf{BV}$ and $a \in \mathbf{FV}$	

A (10) A (10)

What does GMeta say besides saving some boilerplate?

- A slight extension of DGP core
 - to make the expressions more familiar,
 - to deal with languages without variables in a general way
 - to include systems from mathematics
- Extension of the meta-level library
 - Quantification style in locally nameless approach

Term: Locally nameless	
Inductive trm : Set :=	
trm_bvar : nat -> trm	
trm_fvar : var -> trm	
trm_abs : typ -> trm -> trm $(\lambda T. 0 y)$	
trm_app : trm -> trm -> trm.	

Term: Locally-named

Inductive trm : Set :=	
trm_bvar : nat -> trm	
trm_fvar : var -> trm	
trm_abs : nat -> typ -> trm -> trm	$(\lambda \ x:T \ . \ x \ y)$
trm_app : trm -> trm -> trm.	

Gyesik Lee (ROPAS, SNU)

A (10) > (10) =

DGP Core

Universe of Rep	ores	entat	ion	S				
Inducti	ve	Rep	:	Type	:=			
UNIT	:	Rep						
CONSI	:	Rep	->	Rep				
REPR	:	Rep	->	Rep				
PLUS	:	Rep	->	Rep	->	Rep		
PROD	:	Rep	->	Rep	->	Rep		
BIND	:	Rep	->	Rep	->	Rep		
REC	:	Rep.						

iso_term

PLUS (PROD Rtyp (BIND REC REC)) (PROD REC REC)

Gyesik Lee (ROPAS, SNU)

Easier Access to Coq Proofs

ERC Worshop 9 / 17

<ロ> <四> <四> <四> <四> <四</p>

• BIND : Rep -> Rep -> Rep -> Rep

• PLUS (PROD Rtyp (BIND REC REC)) (PROD REC REC)

Gyesik Lee (ROPAS, SNU)

Easier Access to Coq Proofs

ERC Worshop 10 / 17

- Development of the library for locally-named approach
- Extension of DGP core with multi-binders and mutually inductive definitions

A .

- Development of the library for nominal approach
- Other well-known representation styles should be included.

3 + 4 = +

About GMeta library

- Are all these goals related the issue of easier access to Coq?
- The answer is implicitly there in the structure of GMeta library.
- Using GMeta: It is not just about saving boilerplate.
- The structure and contents of GMeta library shows you what to do when you want to use Coq for a formalization of something.
- And more:
 - quantification style,
 - presentation of environment,
 - look-up function, etc.

- How much should I pay to learn Coq?
- I learned Coq and wish to do some formalization. Now what to do?
- Which choice should I do? Any criteria?

GMeta and Some Criteria for Formalization

• Cost of entry

- how much does a user need to know in order to successfully develop a formalization
- Difficulty
 - in defining syntax and proving properties
 - POPLmark
- Efficiency
 - in handling of definitions and proofs
 - Appel and Leroy's CIVmark
- Transparency
 - how intuitive a formalization technique is.

GMeta could be helpful in these respects.

Gyesik Lee (ROPAS, SNU)

Easier Access to Coq Proofs

GMeta and Some Criteria for Formalization

Cost of entry

- how much does a user need to know in order to successfully develop a formalization
- Difficulty
 - in defining syntax and proving properties
 - POPLmark
- Efficiency
 - in handling of definitions and proofs
 - Appel and Leroy's CIVmark
- Transparency
 - how intuitive a formalization technique is.

GMeta could be helpful in these respects.

Gyesik Lee (ROPAS, SNU)

Easier Access to Coq Proofs

Focus: easier and conventional approach

- Formalization of AI framework (jointwork with Sungkeun Cho, Kwangkeun Yi, and others)
- Formalization of context-free type systems (jointwork with Sungwoo Park)
- Thinking of nominal approach in Coq (extension of GMeta library)

イヨト イモト イモト

Focus: easier and conventional approach

- Formalization of AI framework (jointwork with Sungkeun Cho, Kwangkeun Yi, and others)
- Formalization of context-free type systems (jointwork with Sungwoo Park)
- Thinking of nominal approach in Coq (extension of GMeta library)

Thank you for listening!

Questions and Comments?

Gyesik Lee (ROPAS, SNU)

Easier Access to Coq Proofs

ERC Worshop 17 / 17