20104 8 27

O & &k

wclee@ropas.snu.ac.kr

(O] 4= Bow-Yaw Wang w5, A oi 72 o|& 2 wHnte| 35 7L)

mailto:wclee@ropas.snu.ac.kr
mailto:wclee@ropas.snu.ac.kr

Inferring Loop Invariant
Automatically

Problem:
Loop Invariant Generation

For the annotated loop
{6} while pdo S end {¢}
Find an invariant ¢ satisfying the following conditions:

(A) §=1 (L holds when entering the loop)

(B) tA—p=c¢ (L gives € after leaving the loop)
(C) ¢Ap= Pre(s,S) (L holds at each iteration)

Problem:
Loop Invariant Generation

For the annotated loop
{6} while pdo S end {¢}

Find an invariant ¢ satisfying the following conditions:

(A) §=1 (L holds when entering the loop)
(B) tA—p=c¢ (L gives € after leaving the loop)
(C) ¢Ap= Pre(s,S) (¢ holds at each iteration)

0 =>L=>€Vp -

L strongest [weakest
under-approximation over-approximation
of an loop invariant of an loop invariant

CDNF Learning Algorithm

Query
<€
Answer
CDNF
S Algorithm
< Answer

Boolean
Formulae

CDNF Learning Algorithm

Query
<€
Answer
CDNF
Query Algorithm
< Answer

Boolean
Formulae
Membership query MEM(u) Can 1t be a model of boolean formula?
=>Yes / No
Equivalence query EQ(3) Is 3 equivalent to boolean formula?

=>Yes / counterexample

Solution:
Giving Answers to CDNF

< Query
Answer
CDNF
Teacher : :
Query Algorithm
<
Answer
Boolean
Formulae
Membership query MEM(u) Can 1t be a model of boolean formula?
=> Yes / No
Equivalence query EQ(3) Is 3 equivalent to boolean formula?

=> Yes / counterexample

But, Boolean Formulae?

< Query
Answer
CDNF
Teacher : :
Query Algorithm
<
Answer
We want Boolean

propositional formulae! Formulae

Algorithmic Learning with
Predicate Abstraction

Query

Answer

<€

CDNF

I IR Algorithm

<

Answer

Propositional Predicate Boolean
Formulae Abstraction Formulae

Atomic
propositions

9

How about query resolution?

< Query
Answer
CDNF
Teacher - :
Query Algorithm
< Answer

We have to answers about invariants
without knowing invariants!

10

How about query resolution?

Search space of invariants

over approx.

under approx.

How about query resolution?

Membership query MEM (;1)

over approx.

under approx.

12

How about query resolution?

Membership query MEM (;1)

®No
e Unknown

v () O

over approx.

under approx.

13

How about query resolution?

Membership query MEM (;1)

®No
0 Unknown

v () O

Random answer!

over approx.

under approx.

14

How about query resolution?

Equivalence query EQ(3)

over approx.

under approx.

15

How about query resolution?

Equivalence query EQ(3)

over approx.

under approx.

16

How about query resolution?

Equivalence query EQ(3)

over approx.

under approx.

17

How about query resolution?

Equivalence query EQ(p)

Random counterexample!

over approx.
[] under approx.

18

\.,\Q
(,P\ : Deriving Invariants by Algorithmic Learning,
\‘§| \ Decision Procedures, and Predicate Abstraction*

Yungbum Jung!, Soonho Kong!, Bow-Yaw Wang?, and Kwangkeun Yi'

! School of Computer Science and Engineering, Seoul National University
{dreameye,soon,kwang}@ropas.snu.ac.kr
2 Institute of Information Science, Academia Sinica
bywang@iis.sinica.edu.tw

Abstract. By combining algorithmic learning, decision procedures, and
predicate abstraction, we present an automated technique for finding
loop invariants in propositional formulae. Given invariant approxima-
tions derived from pre- and post-conditions, our new technique exploits
the flexibility in invariants by a simple randomized mechanism. The pro-
posed technique is able to generate invariants for some Linux device
drivers and SPEC2000 benchmarks in our experiments.

1 Introduction

Algorithmic learning has been applied to assumption generation in composi-
tional reasoning [9]. In contrast to traditional techniques, the learning approach
does not derive assumptions in an off-line manner. It instead finds assumptions
by interacting with a model checker progressively. Since assumptions in compo-
sitional reasoning are generally not unique, algorithmic learning can exploit the
flexibility in assumptions to attain preferable solutions. Applications in formal
verification and interface synthesis have also been reported [9,1, 2,18, 7].

Finding loop invariants follows a similar pattern. Invariants are often not
unique. Indeed, programmers derive invariants incrementally. They usually have
their guesses of invariants in mind, and gradually refine their guesses by observ-
ing program behavior more. Since in practice there are many invariants for given
pre- and post-conditions, programmers have more freedom in deriving invariants.
Yet traditional invariant generation techniques do not exploit the flexibility. They
have a similar impediment to traditional assumption generation.

This article reports our first findings in applying algorithmic learning to in-
variant generation. We show that the three technologies (algorithmic learning,

* This work was supported by (A) the Engineering Research Center of Excellence
Program of Korea Ministry of Education, Science and Technology(MEST) / Korea
Science and Engineering Foundation(KOSEF) Grant Number R11-2008-007-01002-
0, (B) the Brain Korea 21 Project, School of Electrical Engineering and Computer
Science, Seoul National University, (C) SK Telecom, and (D) National Science Coun-
cil of Taiwan Grant Numbers 95-2221-E-001-024-MY 3 and 97-2221-E-001-006-MY 3.

19

s\Q

?\/ Automatically Inferring Quantified Loop Invariants
by Algorithmic Learning from Simple Templates

Soonho Kong!, Yungbum Jung!, Cristina David?, Bow-Yaw Wang®, and Kwangkeun Yi'

! Seoul National University
? National University of Singapore
3 INRIA, Tsinghua University, and Academia Sinica

Abstract. By combining algorithmic learning, decision procedures, pred-
icate abstraction, and simple templates, we present an automated tech-
nique for finding quantified loop invariants. Our technique can find arbi-
trary first-order invariants (modulo a fixed set of atomic propositions and
an underlying SMT solver) in the form of the given template and exploits
the flexibility in invariants by a simple randomized mechanism. The pro-
posed technique is able to find quantified invariants for loops from the
Linux source, as well as for the benchmark code used in the previous
works. Our contribution is a simpler technique than the previous works
yet with the same derivation power.

1 Introduction

Recently, algorithmic learning has been successfully applied to invariant gen-
eration. The new approach formalizes the invariant generation problem as an
instance of algorithmic learning: to generate an invariant is to learn a concept
from a teacher. Using a learning algorithm as a black box, one only needs to de-
sign design a mechanical teacher that guides the learning algorithm to invariants.
The learning-based framework not only simplifies the design of invariant gener-
ation algorithms, the new approach can also automatically generate invariants
for realistic C loops at a reasonable cost [15].

Figure 1 shows the new framework proposed in [15]. In the figure, the CDNF
algorithm is used to drive the search of quantifier-free invariants. The CDNF
algorithm is an exact learning algorithm for Boolean formulae. It computes a
representation of an unknown target formula by asking a teacher two types of
queries. A membership query asks if a valuation to Boolean variables satisfies the
unknown target; an equivalence query asks if a candidate formula is equivalent to
the target. With predicate abstraction, the new approach formulates an unknown
quantifier-free invariant as the unknown target Boolean formula. One only needs
to automate the query resolution process to infer an invariant.

If an invariant was known, it would be easy to design a mechanical teacher
to resolve queries. In the context of invariant generation, no invariant is known.
However, a simple randomized automatic teacher is proposed in [15]. With the

20

Generating
Atomic Propositions

One Drawback of
Previous Approach

Query

Answer

<€

CDNF

I IR Algorithm

<

Answer

Propositional Predicate Boolean
Formulae Abstraction Formulae

Atomic

propositions

manually chosen!

22

Our Thesis

Query
(
Answer
CDNF
Teacher : .
Query Algorithm
<
Answer
Propositional Predicate Boolean
Formulae Abstraction Formulae
Atomic

propositions
can be generated using interpolation!

23

Why bothers!?

Simply use all atomic propositions in the program.

24

Why bothers!?

Simply use all atomic propositions in the program.

Counterexample:

{Xx=n/\Ny=n/\n>= 0}
while(x > @) {
X =X - 1;
y :=y - 1
¥
assert(x + y = 0)

25

Why bothers!?

Simply use all atomic propositions in the program.

Counterexample:

X=n/Ny=n/\n>=29
iTotk > 05 T L2
T
y :=y - 1
Iy
assertgém:mzé:mgp

26

Why bothers!?

Simply use all atomic propositions in the program.

Counterexample:

Whller N @){ Nt~
X 1= X - 1:
y :=y - 1

}

assert(x + Yy = @)

We cannot generate any invariants even as simple as
these: x>0, y > 0

27

Why bothers!?

Simply use all atomic propositions in the program.

Counterexample:

{X=n/\Ny=n/\n>= 0}
while(x > @) {

X :=Xx - 1; Invariant:
y:=y—1, r=yANzx >0

}
assert(x + y = 0)

Interpolation could generate an atomic proposition
like this: * =1y

28

Craig’s
Interpolation Theorem'

b Interpolant / of A = B is defined as,

(A) A= 1
@ (B) I = B
(C) Var(I) € Var(A) N Var(B)

Tw. Craig, Linear Reasoning. A New Form of the Herbrand-Gentzen Theorem, The Journal of Symbolic Logic, Vol. 22, No. 3 (Sep., 1957), pp. 250-268
29

Craig’s
Interpolation Theorem'

b Interpolant / of A = B is defined as,

A A= 1
@ B) I =208
(©) Var(l) €

Tw. Craig, Linear Reasoning. A New Form of the Herbrand-Gentzen Theorem, The Journal of Symbolic Logic, Vol. 22, No. 3 (Sep., 1957), pp. 250-268
30

Initial Atomic Propositions

Interpolation using ¢ = ©

over approx.

under approx.

31

Initial Atomic Propositions

Interpolation using ¢t = ©

over approx.

under approx.

32

Interpolating Failed Conjecture

Equivalence query EQ(3)

Y(B) A p # Pre(v(B),S)

over approx.

under approx.

33

Interpolating Failed Conjecture

Equivalence query EQ(3)

Two possibilities

(A) sufficient atomic propositions
(in the middle of computation)

(B) insufficient atomic propositions
B> need to generate more!

Y(B) A p # Pre(v(B),S)

over approx.

under approx.

34

Interpolating Failed Conjecture

Equivalence query EQ(3)

Y(B) A p # Pre(v(B),S)

over approx.

under approx.

35

Interpolating Failed Conjecture

Equivalence query EQ(3)

/\/t//ﬁ' U

Add no information

Y(B) A p # Pre(v(B),S)

over approx.

under approx.

36

Interpolating Failed Conjecture

Equivalence query EQ(3)

Y(B) ApA[S] =7

transition
formula

Y(B) A p # Pre(v(B),S)

over approx.

under approx.

37

Interpolating Failed Conjecture

Equivalence query EQ(3)

YB)ANpAN[S] =T

Y(B) A p # Pre(v(B),S)

over approx.

under approx.

38

Interpolating Failed Conjecture

Equivalence query EQ(3)

Y(B) A p # Pre(v(B),S)

YB)ANpAN[S] =T

For every loop invariant ¢
LN\ p= Pre(t,S)and L =1
thus, ¢t A p = Pre(z, S)

over approx.

under approx.

39

Interpolating Failed Conjecture

Equivalence query EQ(3)

what if Y(B) ApA[S] % 7'?

m)> we can give a correct
counterexample here!

over approx.

under approx.

40

Experiment Results

FOCI CSIsAaT
Case S 2B A BT EMTEQ | RE Time (5)| AP|MEM|EQ| RE| Time (s)
ide-ide-tape 16| 6 9 5| 1 0.05] 6 9 5| 1 0.05
ide-wait-ireason 91 5| 120 89| 7 1.02] 5| 130} 96| 7 1.24
parser 37 12 118 33| 1 0.56| 12| 119| 33| 1 0.56
usb-message 18 3 7 6] 1 0.03] 3 7 6] 1 0.04
Vpr 8 1 1p 31 1 0.01] 1 1 3] 1 0.01
case SIZE|AP| MEM| FEQ)|coin tossing|iterations|time (sec)
ide-ide-tape 16| 6| 18.2| 5.2 4.1 1.2 0.059
ide-wait-ireason 9] 6| 216.1|111.8 47.2 9.9 0.602
parser 37| 20(6694.5|819.4 990.3 12.5 32.120
usb-message 18| 10| 20.1| 6.8 1.0 1.0 0.128
vVpr 8 7| 14.5] 8.9 11.8 2.9 0.055

Table 2. VMCAI'10 Performance Numbers, the average of 500 runs

41

Experiment Results

FOCI CSIsAaT
Case S 2B S BT EMTEQ | RE Time (5)| AP|MEM|EQ|RE| Time (s)
ide-ide-tape 14| 6 9 5| 1 0.05] 6 9 5| 1 0.05
ide-wait-ireason 91 5| 120 89| 7 1.02] 5| 130} 96| 7 1.24
parser 34 12]| 118} 33| 1 0.56| 12| 119| 33| 1 0.56
usb-message 1§ 3 7 6] 1 0.03] 3 7 6] 1 0.04
Vpr g 1 1p 31 1 0.01] 1 1 3] 1 0.01
case SIZE|AP| MEM| FEQ)|coin tossing|iterations|time (sec)
ide-ide-tape 16| 6| 18.2| 5.2 4.1 1.2 0.059
ide-wait-ireason 9/ 6| 216.1|111.8 47.2 9.9 0.602
parser 37| 20(6694.5|819.4 990.3 12.5 32.120
usb-message 18] 10| 20.1| 6.8 1.0 1.0 0.128
vVpr 8 7| 14.5] 8.9 11.8 2.9 0.055

Table 2. VMCAT’10

42

erformance Numbers, the average of 500 runs

Experiment Results

FOCI CSIsAT
ase S B B EQIRE Time(3)| AP|MEM|EQ[RE| Time (s)
ide-ide-tape 16| 6 9 5| 1 0.05]| 6 9 5| 1 0.05
ide-wait-ireason 91 5| 120 89| 7 1.02) 5| 130} 96| 7 1.24
parser 37 12 118 33| 1 0.56| 12| 119| 33| 1 0.56
usb-message 18 3 7 6] 1 0.03 3 7 6] 1 0.04
Vpr 8 1 1p 31 1 0.01} 1 1 3] 1 0.01
case SIZE|AP| MEM| FEQ)|coin tossing|iterations|time (sec)
ide-ide-tape 16| 6| 18.2| 5.2 4.1 1.2 0.059
ide-wait-ireason 9/ 6| 216.1|111.8 47.2 9.9 0.602
parser 37| 20(6694.5|819.4 990.3 12.5 32.120
usb-message 18| 10| 20.1| 6.8 1.0 1.0 0.128
vVpr 8 7| 14.5] 8.9 11.8 2.9 0.055

Table 2. VMCAI'10 Performance Numbers, the average of 500 runs

43

Thank you!

