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Inferring Loop Invariant
Automatically
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Problem:
Loop Invariant Generation
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For the annotated loop

{δ} while ρ do S end {ε}

Find an invariant ι satisfying the following conditions:

(A) δ ⇒ ι

(B)
(C) ι ∧ ρ⇒ Pre(ι, S)

ι ∧ ¬ρ⇒ ε

(   holds when entering the loop)

(   holds at each iteration)

(   gives    after leaving the loop)

ι
ι
ι

ε
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Query

Answer

Query

Answer

...
out

Boolean
Formulae

Membership query MEM(µ) Can    be a model of boolean formula? µ

Equivalence query EQ(β) Is    equivalent to boolean formula?β

CDNF Learning Algorithm

CDNF
Algorithm

=> Yes / No

=> Yes / counterexample
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Solution:
Giving Answers to CDNF 

CDNF
Algorithm

Membership query MEM(µ) Can    be a model of boolean formula? µ

Equivalence query EQ(β) Is    equivalent to boolean formula?β
=> Yes / No

=> Yes / counterexample
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Teacher

Boolean
Formulae

We want 
propositional formulae!

CDNF
Algorithm

But, Boolean Formulae?



Algorithmic Learning with 
Predicate Abstraction
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How about query resolution?
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Query
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Query

Answer

...Teacher
CDNF

Algorithm

We have to answers about invariants
without knowing invariants!
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How about query resolution?

under approx.
over approx.

Search space of invariants
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How about query resolution?

under approx.
over approx.

Membership query MEM (µ)

γ∗(µ)
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How about query resolution?

under approx.
over approx.

Membership query MEM (µ)

No
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How about query resolution?

under approx.
over approx.

Membership query MEM (µ)

Random answer!

No

Yes

γ∗(µ)

Unknown?
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How about query resolution?

under approx.
over approx.

Equivalence query EQ(β)

γ(β)
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How about query resolution?

under approx.
over approx.

Equivalence query EQ(β)

γ(β)

No

No
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How about query resolution?

under approx.
over approx.

Equivalence query EQ(β)

γ(β)

No

No

γ(β)

what if                                   ?γ(β) ∧ ρ ! Pre(γ(β), S)
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How about query resolution?

under approx.
over approx.

Equivalence query EQ(β)

γ(β)

No

No

γ(β)

No

No

Random counterexample!
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Deriving Invariants by Algorithmic Learning,
Decision Procedures, and Predicate Abstraction!
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Abstract. By combining algorithmic learning, decision procedures, and
predicate abstraction, we present an automated technique for finding
loop invariants in propositional formulae. Given invariant approxima-
tions derived from pre- and post-conditions, our new technique exploits
the flexibility in invariants by a simple randomized mechanism. The pro-
posed technique is able to generate invariants for some Linux device
drivers and SPEC2000 benchmarks in our experiments.

1 Introduction

Algorithmic learning has been applied to assumption generation in composi-
tional reasoning [9]. In contrast to traditional techniques, the learning approach
does not derive assumptions in an off-line manner. It instead finds assumptions
by interacting with a model checker progressively. Since assumptions in compo-
sitional reasoning are generally not unique, algorithmic learning can exploit the
flexibility in assumptions to attain preferable solutions. Applications in formal
verification and interface synthesis have also been reported [9, 1, 2, 18, 7].

Finding loop invariants follows a similar pattern. Invariants are often not
unique. Indeed, programmers derive invariants incrementally. They usually have
their guesses of invariants in mind, and gradually refine their guesses by observ-
ing program behavior more. Since in practice there are many invariants for given
pre- and post-conditions, programmers have more freedom in deriving invariants.
Yet traditional invariant generation techniques do not exploit the flexibility. They
have a similar impediment to traditional assumption generation.

This article reports our first findings in applying algorithmic learning to in-
variant generation. We show that the three technologies (algorithmic learning,

! This work was supported by (A) the Engineering Research Center of Excellence
Program of Korea Ministry of Education, Science and Technology(MEST) / Korea
Science and Engineering Foundation(KOSEF) Grant Number R11-2008-007-01002-
0, (B) the Brain Korea 21 Project, School of Electrical Engineering and Computer
Science, Seoul National University, (C) SK Telecom, and (D) National Science Coun-
cil of Taiwan Grant Numbers 95-2221-E-001-024-MY3 and 97-2221-E-001-006-MY3.
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Automatically Inferring Quantified Loop Invariants
by Algorithmic Learning from Simple Templates

Soonho Kong1, Yungbum Jung1, Cristina David2, Bow-Yaw Wang3, and Kwangkeun Yi1

1 Seoul National University
2 National University of Singapore
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Abstract. By combining algorithmic learning, decision procedures, pred-
icate abstraction, and simple templates, we present an automated tech-
nique for finding quantified loop invariants. Our technique can find arbi-
trary first-order invariants (modulo a fixed set of atomic propositions and
an underlying SMT solver) in the form of the given template and exploits
the flexibility in invariants by a simple randomized mechanism. The pro-
posed technique is able to find quantified invariants for loops from the
Linux source, as well as for the benchmark code used in the previous
works. Our contribution is a simpler technique than the previous works
yet with the same derivation power.

1 Introduction

Recently, algorithmic learning has been successfully applied to invariant gen-
eration. The new approach formalizes the invariant generation problem as an
instance of algorithmic learning: to generate an invariant is to learn a concept
from a teacher. Using a learning algorithm as a black box, one only needs to de-
sign design a mechanical teacher that guides the learning algorithm to invariants.
The learning-based framework not only simplifies the design of invariant gener-
ation algorithms, the new approach can also automatically generate invariants
for realistic C loops at a reasonable cost [15].

Figure 1 shows the new framework proposed in [15]. In the figure, the CDNF
algorithm is used to drive the search of quantifier-free invariants. The CDNF
algorithm is an exact learning algorithm for Boolean formulae. It computes a
representation of an unknown target formula by asking a teacher two types of
queries. A membership query asks if a valuation to Boolean variables satisfies the
unknown target; an equivalence query asks if a candidate formula is equivalent to
the target. With predicate abstraction, the new approach formulates an unknown
quantifier-free invariant as the unknown target Boolean formula. One only needs
to automate the query resolution process to infer an invariant.

If an invariant was known, it would be easy to design a mechanical teacher
to resolve queries. In the context of invariant generation, no invariant is known.
However, a simple randomized automatic teacher is proposed in [15]. With the
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One Drawback of 
Previous Approach
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Our Thesis
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Why bothers?
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Simply use all atomic propositions in the program.



Why bothers?
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Simply use all atomic propositions in the program.

Counterexample:
Tiny Example

{x = n /\ y = n /\ n >= 0}
while(x > 0) {
x := x - 1;
y := y - 1;

}
assert(x + y = 0)

{x = n, y = n, n ≥ 0, x > 0, x+ y = 0}

These propositions cannot generate 
even any invariants like x ≥ 0, y ≥ 0

�����������	���	
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Simply use all atomic propositions in the program.

Counterexample:
Tiny Example

{x = n /\ y = n /\ n >= 0}
while(x > 0) {
x := x - 1;
y := y - 1;

}
assert(x + y = 0)
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Why bothers?
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Simply use all atomic propositions in the program.

Counterexample:

We cannot generate any invariants even as simple as 
these:          ,x ≥ 0 y ≥ 0

Tiny Example
{x = n /\ y = n /\ n >= 0}
while(x > 0) {
x := x - 1;
y := y - 1;

}
assert(x + y = 0)

{x = n, y = n, n ≥ 0, x > 0, x+ y = 0}

These propositions cannot generate 
even any invariants like x ≥ 0, y ≥ 0

�����������	���	



Why bothers?
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Simply use all atomic propositions in the program.

Counterexample:

Interpolation could generate an atomic proposition 
like this:

Tiny Example
{x = n /\ y = n /\ n >= 0}
while(x > 0) {
x := x - 1;
y := y - 1;

}
assert(x + y = 0)

{x = n, y = n, n ≥ 0, x > 0, x+ y = 0}

These propositions cannot generate 
even any invariants like x ≥ 0, y ≥ 0

�����������	���	

x = y

Invariant:
x = y ∧ x ≥ 0



Craig’s 
Interpolation Theorem
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A

B

I

†

†W. Craig, Linear Reasoning. A New Form of the Herbrand-Gentzen Theorem, The Journal of Symbolic Logic, Vol. 22, No. 3 (Sep., 1957), pp. 250–268

A⇒ BInterpolant    of               is defined as,I
(A)
(B)
(C)

A⇒ I
I ⇒ B
Var(I) ⊆ Var(A) ∩Var(B)
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Interpolation using ι⇒ ι

under approx.
over approx.
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Interpolation using ι⇒ ι

under approx.
over approx.



Interpolating Failed Conjecture
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γ(β)

Equivalence query EQ(β)

γ(β) ∧ ρ ! Pre(γ(β), S)

under approx.
over approx.



Interpolating Failed Conjecture
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γ(β)

Equivalence query EQ(β)

γ(β) ∧ ρ ! Pre(γ(β), S)

under approx.
over approx.

Two possibilities
(A)

(B)

sufficient atomic propositions
(in the middle of computation)

insufficient atomic propositions
need to generate more!



Interpolating Failed Conjecture
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γ(β)

Equivalence query EQ(β)

γ(β) ∧ ρ ! Pre(γ(β), S)

under approx.
over approx.

γ(β)⇒ ι



Interpolating Failed Conjecture
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γ(β)

Equivalence query EQ(β)

γ(β) ∧ ρ ! Pre(γ(β), S)

under approx.
over approx.

Add no information

γ(β)⇒ ι



Interpolating Failed Conjecture
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γ(β)

Equivalence query EQ(β)

γ(β) ∧ ρ ! Pre(γ(β), S)

under approx.
over approx.

γ(β) ∧ ρ ∧ [[S]]⇒?
transition 
formula



Interpolating Failed Conjecture
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γ(β)

Equivalence query EQ(β)

γ(β) ∧ ρ ! Pre(γ(β), S)

under approx.
over approx.

γ(β) ∧ ρ ∧ [[S]]⇒ ι′



Interpolating Failed Conjecture
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γ(β)

Equivalence query EQ(β)

γ(β) ∧ ρ ! Pre(γ(β), S)

under approx.
over approx.

γ(β) ∧ ρ ∧ [[S]]⇒ ι′

For every loop invariant ι
ι ∧ ρ⇒ Pre(ι, S) ι⇒ ιand

ι ∧ ρ⇒ Pre(ι, S)thus,



Interpolating Failed Conjecture
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Equivalence query EQ(β)

under approx.
over approx.

what if                             ?γ(β) ∧ ρ ∧ [[S]] ! ι′

we can give a correct 
counterexample here!

γ(β) ∧ ρ ∧ [[S]]

No
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(result > start ∨ tolen ≤ fromlen)
∨(start ≤ 0 ∧ result ≤ 0 ∧ (1 ≤ count ∨ (start > 0 ∧ 2 ≤ tolen)))

new atomic propositions

{2 ≤ tolen, 1 ≤ count}

– tar
found invariant

(N = copy ∧ copy + size = N + M) ∨ (M $= size ∧ copy + size = N + M)

case SIZE AP MEM EQ coin tossing iterations time (sec)
ide-ide-tape 16 6 18.2 5.2 4.1 1.2 0.055

ide-wait-ireason 9 6 216.1 111.8 47.2 9.9 0.602
parser 37 20 6694.5 819.4 990.3 12.5 32.120

usb-message 18 10 20.1 6.8 1.0 1.0 0.128
vpr 8 7 14.5 8.9 11.8 2.9 0.055

Table 2. VMCAI’10 Performance Numbers, the average of 500 runs

5.1 bytearrayobject from Python Interpreter

Figure 2 is a while statement extracted from Python interpreter.4 It originally
replaces every occurrences of certain sub-string with the given string. We simu-
lates only pointer arithmetic part; i.e. all memory copies are eliminated. Source
string is represented by the pointer start and target buffer to store replaced
string is pointed by result s. from len denotes the length of the string to be re-
placed (target string) and to len denotes the length of the string to be inserted
newly. After finding the start position of the target string in the source string,
offset , both pointers, start and result s are incremented by from len and to len,
respectively.

Since every occurrence of target string is replaced with the given string, we
can easily find that both pointers are proceeded at the same time, maybe by
different amounts. From this fact, we can conclude that if the given string is
longer than the target string, the string after replacement becomes longer than
the original string. This can be stated as the post-condition of Figure 2.

After generating 9 atomic propositions, 3 initially and 6 during learning, our
algorithm finds the following invariant (This is the simplest one among we found.

4 The source code can be found in function replace substring() of
Objects/bytearrayobject.c in Python 2.7

14

The goal of experiments are twofolds. One thing to show is that we can find
invariants faster with the set of atomic propositions smaller than the one we
used in [5]. The number of atomic propositions determines the search space of
algorithmic learning, which affects the performance significantly. Secondly, we
show examples for which we could find atomic propositions implicitly implied
by the meaning of the loop. One can argue that we can simply use all atomic
propositions appeared in the program text and annotations. The examples that
we show can dispel this argument.

case SIZE
FOCI CSIsat

AP MEM EQ RE Time(s) AP MEM EQ RE Time(s)
ide-ide-tape 16 6 9 5 1 0.05 6 9 5 1 0.05

ide-wait-ireason 9 5 120 89 7 1.02 5 130 96 7 1.24
parser 37 12 118 33 1 0.56 12 119 33 1 0.56

usb-message 18 3 7 6 1 0.03 3 7 6 1 0.04
vpr 8 1 1 3 1 0.01 1 1 3 1 0.01

bytearray 19 21 1163 133 4 4.41 21 1384 150 5 4.91
small 5 7 116 78 18 0.59 7 120 80 18 0.60
tiny 4 1 1 3 1 0.01 1 1 3 1 0.01

Table 1. Experimental Results.
AP : # of generated atomic propositions, MEM : # of membership queries, EQ : #
of equivalence queries, RE : # of the CDNF algorithm restarts

Contrary to the previous work [5], the proposed technique generates atomic
propositions automatically, which has two advantages. First, generated atomic
propositions are usually more compact than the atomic propositions extracted
manually from program texts. Since users cannot know invariants before find-
ing them, user cannot decide which one should be selected. Hence all possible
atomic propositions are conservatively chosen for the successful generation of
invariants. For the parser example, the previous work uses manually chosen 20
atomic propositions. Now, only 10 atomic propositions are generated. All these
atomic propositions contribute to invariants. As a result, it takes only a XX in
average, the previous work requires more than 30 seconds to generate invari-
ants in average. Second, the technique can generate new atomic propositions
which cannot be extracted from the annotated loops intactly. In our experi-
ment, programs bytearray and YYY require such new atomic propositions. If
we manually but blindly select all atomic propositions from program texts then
the algorithm learning never succeeds to find invariants for these programs.

12
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