Approach for Real-Time Software

September 3, 2010
Eunkyoung Jee*, Shaohui Wang, Jeong Ki Kim, Jaewoo Lee,
Oleg Sokolsky, Insup Lee
PRECISE center, Department of Computer and Information Science

University of Pennsylvania

Penn
Engineering

» Introduction

» Case Study: Pacemaker
» A Safety-Assured Development Approach for RTS

» Formal Modeling and Verification
» Implementation and Timing Analysis

» Property Preservation
» Related Work
» Limitations and Possibilities

» Conclusion and Future Work

Penn

Introduction

Guaranteeing timing properties is crucial
for real-time safety critical systems

We can have a formally verified model

How can we implement time-guaranteed

real-time software from a verified

model?

Present a safety-assured development
approach for real-time software

» Model-driven development + timing analysis

- » Pacemaker case study
Penn
@ Engineering 3

Case Study: Pacemaker

» Electronic device implanted in the
body to regulate the heart beat

» A life-critical real-time embedded system

» The Pacemaker Grand Challenge

» The first certification challenge problem
issued by the Software Certification
Consortium (SCC)

» Boston Scientific has released into the
public domain the system specification
for a previous generation pacemaker

Penn
@’ Engineering 4

Left Atrium

Left Ventricle

img src: http://www.odec.ca/projects /2007 /
torr7m2 /images/pacemaker.gif

» Two basic functions
» Pace

» Sense intrinsic rhythm and inhibit

» Fundamental timing cycles of VVI mode (simplest mode)

VENTRI VENTRI- VENTRI4 VENTRI-
CULAR CULAR CULAR CULAR
PACE PACE SENSE PACE
1
[RO ! !
! [RO |
" VRP CVRP " VRP VRP

* LRI: Lower Rate Interval (e.g., 1000ms)
* HRI: Hysteresis Rate Interval (e.g., 1200m:s)
Peﬂ]fl * VRP: Ventricular Refractory Period (e.g., 320ms)

A Safety-Assured Development

Develop-
ment
process

Verification
and
validation
process

Penn
Engineering

System
spec.

Software Requirement ! :
! : 3 Implementation Integration
life cycle analysis

/(1) _ A (3) 4 Y
Timed
automata C code
model
(2) (4)
Model checking Meas:::(rjnent

(with UPPAAL)

(5)

timing analysis

_ Re-checking
with A

ﬂ Manual

Semi-automatic

» Automatic

Formal Modeling in UPPAAL

Pacemaker on VVI mode

X >= minwait
Heart VSense! VPUEGE?
— 'x:
x=0 Ready

X <= maxwait

Ventricular x>=Rl VPace!l x=0,RI=LRI hp=false
controller
? — = =
VSense' Xx =0, Rl =HRI, hp = true WaitVRP
x <=VRP
x>=VRP hpenable = hp, started = true
Penn

Engineering ¢

Formal Verification

Model checking using UPPAAL

Covered properties
» ProplLRI: Hysteresis pacing is deactivated = a ventricular pace or sense
should be no later than LRI
A[] ('Ventricle.hpenable imply Ventricle.x <= Ventricle.LRI)

» PropHRI: Hysteresis pacing is activated = a ventricular pace or sense
should be no later than HRI

A[] (Ventricle.hpenable imply Ventricle.x <= Ventricle.HRI)
» PropVRP: Sensing cannot occur before VRP ends

A[] ((Ventricle. WaitRl && Ventricle.started) imply Ventricle.x >=
Ventricle.VRP)

All these properties were satisfied on the model
» Deadlock freeness

A[] (not deadlock) We assume that users capture all the important
properties correctly.
Penn
Engineering 8

Implementation Goal

Goal

Generate C code guaranteeing properties transferred from the verified
model within specific bounds

Obstacles

» Instantaneous responses in the model are not implementable
» Models use continuous clocks and implementations use digital clocks with
finite precision

x>=RlI VPace! x=0,Rl=LRI hp =false

VSense? = = =
VSense” x =0, RI =HRI, hp =true N \WailVRD

x<=VRP

VT =]

x <= RI \ « >= VRP hpenable = hp, started = true

Penn
@’ Engineering 9

"
Code Synthesis & Timing Analysis

. ™ Produce C code from the timed

(1) B automata model systematically

|
auvtomata
del
i Check whether the timing properties are

\ l’ ~ . l satisfied in the code (by testing)
(2) (4) For each of violating properties,

Model checking Measurement measure how much deviations occur

(with UPPAAL) baseg = Find a

timing analysis

(5)

R . Modify the code and the model with A
e-checking
with A

Check again that the model and the
code satisfy all the properties within A

» Single-threaded
» Multi-threaded

, A
Timed

automata
model of a

pacemaker L :
/

\

Penn
Engineering

» Generated two flavors of implementation code

Thread support

Vs

Single threaded C code

Timing analysis

A

No thread support

Vs

Multiple threaded C code

Timing analysis

11

Single-threaded Code Structure

» One big loop

» Inspired by TIMES tool’s code generation

>=RlI VPace! x=0,RI=LRIl hp =false

X >= minwait
VVPace?
! ‘ \VSense? £ = =
\VVSense! x=0 O VSense x =0, Rl = HRI, hp = true i
x=0 & x<=VRP
Ready WaitR

X <= maxwait x >= VRP hpenable = hp, started = true

Penn
Engineering

for each trn do
if (trn is active) and (eval guard(trn))
if (there is synchronization)
if (compl trn exists) and (eval guard(compl trn))
update variables of both trn and compl trn;
take both trn and comp trn to new states;
set trn to -1; /* check all outgoing transitions again */
end if
else /* no synchronization */
update variables of trn;
take the transition trn to new state;
set trn to -1;
end if
end if
end for

12

Inserted “if-then-else” checking statement inside the loop for

Property Checking in Code

the properties which should be satisfied all the times

PropLRI: A[] (IVentricle.hpenable imply Ventricle.x <=

Ventricle.LRI)

Penn

Engineering

}

else/

}

if (Ventricle hpenable == false) {
if (Ventricle clock <= Ventricle LRI) {

print “T” and clock wvalue;

print “F” and clock wvalue;

13

Property Checking by Testing in Code

Performed simulation-based black box testing
» CPU: Microchip PIC18F4520 (40 MHz)
» Compiler: MPLAB® C Compiler for PIC18 MCUs

» Triggered a pin interrupt manually to represent a heart sense

Tested with sequences of test cases covering the following

scenarios

1.

AN I

:E;I%ﬂun

Engineering

Pacing—Pacing: >= LRI

Pacing—Sensing (during VRP): < VRP & < LRI
Pacing—Sensing (after VRP): >= VRP & < LRI
Sensing—Pacing: >= HRI

Sensing—Sensing: < HRI
| | |

I I I
0 320 1000
(VRP) (LRI)

14

| >
1200 Time (ms)
(HRI)

Result of Property Checking in Code

| Heart Event (ms) | VRP | LRI | HRI
1 P:1000.960 - No -
2 P:1000.448 - No -
3 | S:910.464 Yes — —
4 S:1059.328 Yes - -
5 P:1200.832 — — No
6 P:1000.448 - No -

Findings

» Code execution time harms property preservation

» Characteristics of timing properties matters

clock_var > limit (e.g. PropVRP) are guaranteed

clock_var < limit (e.g. PropLRI, PropHRI) are not guaranteed

» Time deviations were bounded in the tested scenarios (E.g., < 1ms)

Penn

Engineering 15

Timing Tolerance A

Modify the code and the model referring to the violated
properties to keep the properties transferred from the model in
the code satisfied

Strategy for converting the violated properties to the satisfied
ones

Find a timing tolerance A by measuring deviations from
the desired time

Make the desired events happen no later than the
predetermined time T by evaluating guard at A time units
earlier than T, while not violating all other properties
Penn

\ Engineering 16

Modify the Code with A

» To make guard evaluated A time units earlier

##define DELTA

(some value)

bool eval guard(int trn) {
switch (trn) {

case O:
case 2:
case 4:

.

return
return
return

Heart flag>0);
rdClock (Ventricle x)>=Ventricle RI - DELTA;

(raClock (Ventricle x)>=Ventricle VRP);

» Experimented using several values of A

» Three properties are satisfied in the code with A greater than

or equal to 2ms for all tested scenarios

Penn

Engineering

17

» Make the corresponding changes in the model

x >= Rl — DELTA

VPace! x=0, RI=LRI hp =false

1=) = = =5
VSense? x=0, RI=HRI, hp =true 2 WaltVRP

x <=VRP

WaitRI

s x >=VRP hpenable = hp

» Verify the modified model again w.r.t. all the properties

» Confirm that the modified model satisfies all the properties
with the timing tolerance

Penn
Cogmenng e

» A thread per each transition

» Uses semaphores for each
location and each input
event

int main(..)
{
pthread create (&threadvl,
NULL, transV1l, NULL);
pthread create (&threadvz,
NULL, transV2, NULL);
pthread create (&threadv3i,
NULL, transV3, NULL);

pthread join ();
}

Penn
Engineering

x>=Rl VPace! x=0 RlI=LRl, hp=false

transVl1
? = - i
VSense” x =0, RI=HRI, hp = true WaitVRP
x <=VRP
WaitR
x <= Rl

x>=VRP hpenable = hp, started = true

void *transVl (void *ptr)

{
while (1) {

Evaluate L:>sem_wait(&WaitRI);
guard t=wait2 (&v x,&ri);

Update current=ST W VRP;

F7rclearTimer(&v_x);

sem post (&WailtVRP);
sem post (&Pace);

19

Result of Property Checking in Code

Simulation-based black box testing on Linux
Test inputs: Randomly generated heart sensing signals

Execution delay was shown to be bounded by 2ms

| # | Heart Event (ms) | VRP | LRI | HRI || # | Heart Event (ms) | VRP | LRI | HRI
| P:1001 - No - | 3:872 Yes - —
2 | 8:395 Yes | - - 2 | P:1200 - — | Yes
3 P:1202 - - No 3 g+398 Yes _ _
i :fg;g ¥Z§ - | - \ 5 1] 3:1153 Yes | - | -
z : - - : £ZMmSs . _ —
6 | P:1202 | - | No) | 5:351 Yes .
T 5:419 Yes — — 6 | P:1200 - - es
8 | 5:1184 Yes | - | - /| P:1000 - | Yes | -
9 | P:1202 - — No 8 | S:444 Yes — —
10 | s:642 Yes - - O | P:1200 - - Yes
I1 | P:1202 — — No I1 | P:1000 - Yes -
12 | P:1001 - No - 12 | p:999 _ Yes _
First checking result Re-checking result
Penn
¥ Engineering 20

Related Work: Code Gen. from TA

TIMES tool [AFP+03]
» Generate code from TA extended with tasks for BrickOS platform

» Under synchrony hypothesis (SH), the code synthesis is guaranteed to preserve
safety properties transferred from models

> & Supports enriched TA, provides many types of automatic analysis

» < Preservation of properties is not guaranteed without SH
ELASTIC2BRICK tool [DDRO4]

» Generate code from a simplified TA for BrickOS platform

» Safety properties proven correct with A in the model are preserved

» © Formalized treatment of the synchrony hypothesis and correctness proofs

» ¢ Limited and difficult applicability (e.g. no shared variables, no broadcasting,
etc.)

Our approach

» Applicable without much restrictions while guaranteeing timing properties to
some extents without SH
Penn

Engineering 21

Limitations and Possibilities

Type of timing properties
» Considered two types of timing properties in the proposed approach
» Combinations of complex timing properties need to be considered
Instrumentation overhead

» Time overhead from instrumentation may cause the code to fail in
satisfying timing properties, although not in our example

» Existing techniques for improving the performance and accuracy of time
profilers based on code instrumentation can be applied to our
approach

Timing analysis on C code

» Simple measurement technique to find timing tolerances can be
replaced by WCET techniques

Penn

Engineering 22

Limitations and Possibilities (cont.)

Scalability

» Semi-automatic code synthesis and manual modifications to the model
can be automated by development of proper tools

Generalization

» Although we showed a few specific decisions for modeling languages,
verification tools, code synthesis techniques, and timing analysis
techniques, others can be used as long as they satisfy minimum
requirements

Other code synthesis techniques can be used as long as it is systematic and sound

Other timing analysis techniques can be used as long as it can give information for
finding A

Penn

| Engineering 23

Conclusion & Future Work

Proposed a safety-assured development approach for real-
time software

» Combined the model-driven development methodology and the
measurement-based timing analysis

» Suggested a way to achieve property preservation within the timing
tolerance in the code

» Demonstrated the proposed approach using pacemaker software

Future Work

» Complement measurement-based timing analysis with formal analysis
(e.g. WCET)

» Complement testing by code level verification
» Compare different code generation schemes

Penn

' Engineering 24

Questions?

