
A Safety-Assured Development

Approach for Real-Time SoftwareApproach for Real-Time Software

September 3, 2010

Eunkyoung Jee*, Shaohui Wang, Jeong Ki Kim, Jaewoo Lee,

Oleg Sokolsky, Insup Lee

PRECISE center, Department of Computer and Information Science

University of Pennsylvania

Outline

� Introduction

� Case Study: Pacemaker

� A Safety-Assured Development Approach for RTS

� Formal Modeling and Verification

� Implementation and Timing Analysis� Implementation and Timing Analysis

� Property Preservation

� Related Work

� Limitations and Possibilities

� Conclusion and Future Work

2

Introduction

� Guaranteeing timing properties is crucial
for real-time safety critical systems

� We can have a formally verified model

How can we implement time-guaranteed � How can we implement time-guaranteed
real-time software from a verified
model?

� Present a safety-assured development
approach for real-time software

� Model-driven development + timing analysis

� Pacemaker case study

3

Case Study: Pacemaker

� Electronic device implanted in the
body to regulate the heart beat

� A life-critical real-time embedded system

� The Pacemaker Grand Challenge� The Pacemaker Grand Challenge

� The first certification challenge problem
issued by the Software Certification
Consortium (SCC)

� Boston Scientific has released into the
public domain the system specification
for a previous generation pacemaker

4

img src: http://www.odec.ca/projects/2007/
torr7m2/images/pacemaker.gif

Pacemaker Timing

� Two basic functions

� Pace

� Sense intrinsic rhythm and inhibit

� Fundamental timing cycles of VVI mode (simplest mode)

5

LRILRI

HRI (> LRI)HRI (> LRI)

LRILRI

VRPVRP VRPVRP VRPVRP

• LRI: Lower Rate Interval (e.g., 1000ms)
• HRI: Hysteresis Rate Interval (e.g., 1200ms)
• VRP: Ventricular Refractory Period (e.g., 320ms)

VRPVRP

A Safety-Assured Development

System

C code

Timed

automata

model

Software

life cycle

Requirement

analysis
ImplementationDesign Integration

synthesis

Develop-

ment

process
compile

 (1) (3)

6

Automatic

System

spec.

Model checking

(with UPPAAL)

Measurement

based

timing analysis

modelprocess

Verification

and

validation

process

(2) (4)

(5)

Re-checking

with ∆

Manual

Semi-automatic

Automatic

Formal Modeling in UPPAAL

Heart

Pacemaker on VVI mode

7

Ventricular

controller

Formal Verification

� Model checking using UPPAAL

� Covered properties

� PropLRI: Hysteresis pacing is deactivated � a ventricular pace or sense
should be no later than LRI

� A[] (!Ventricle.hpenable imply Ventricle.x <= Ventricle.LRI)� A[] (!Ventricle.hpenable imply Ventricle.x <= Ventricle.LRI)

� PropHRI: Hysteresis pacing is activated � a ventricular pace or sense
should be no later than HRI

� A[] (Ventricle.hpenable imply Ventricle.x <= Ventricle.HRI)

� PropVRP: Sensing cannot occur before VRP ends

� A[] ((Ventricle.WaitRI && Ventricle.started) imply Ventricle.x >=
Ventricle.VRP)

� Deadlock freeness

� A[] (not deadlock)

8

All these properties were satisfied on the model

We assume that users capture all the important

properties correctly.

Implementation Goal

Generate C code guaranteeing properties transferred from the verified
model within specific bounds

Obstacles

Goal

9

� Instantaneous responses in the model are not implementable
� Models use continuous clocks and implementations use digital clocks with

finite precision

Code Synthesis & Timing Analysis

C code
Timed

automata
model

synthesis

 (1) (3)

Check whether the timing properties are
satisfied in the code (by testing)

Produce C code from the timed
automata model systematically

10

Model checking
(with UPPAAL)

Measurement
based

timing analysis

(2) (4)

(5)
Re-checking

with ∆

satisfied in the code (by testing)

For each of violating properties,
measure how much deviations occur
� Find a timing tolerance ∆

Modify the code and the model with ∆

Check again that the model and the
code satisfy all the properties within ∆

Code Synthesis

�Generated two flavors of implementation code

�Single-threaded

�Multi-threaded

Single threaded C code

Thread support

11

Timed
automata
model of a
pacemaker

Multiple threaded C code

Timing analysis

No thread support

Timing analysis

Single-threaded Code Structure

� One big loop

� Inspired by TIMES tool’s code generation

…

12

…

for each trn do

if (trn is active) and (eval_guard(trn))

if (there is synchronization)

if (compl_trn exists) and (eval_guard(compl_trn))

update variables of both trn and compl_trn;

take both trn and comp_trn to new states;

set trn to -1; /* check all outgoing transitions again */

end if

else /* no synchronization */

update variables of trn;

take the transition trn to new state;

set trn to -1;

end if

end if

end for

…

Property Checking in Code

� Inserted “if-then-else” checking statement inside the loop for
the properties which should be satisfied all the times

� PropLRI: A[] (!Ventricle.hpenable imply Ventricle.x <=
Ventricle.LRI)Ventricle.LRI)

13

if(Ventricle_hpenable == false){

if(Ventricle_clock <= Ventricle_LRI){

print “T” and clock value;

}

else{

print “F” and clock value;

}

}

Property Checking by Testing in Code

� Performed simulation-based black box testing

� CPU: Microchip PIC18F4520 (40 MHz)

� Compiler: MPLAB® C Compiler for PIC18 MCUs

� Triggered a pin interrupt manually to represent a heart sense

� Tested with sequences of test cases covering the following � Tested with sequences of test cases covering the following
scenarios

1. Pacing–Pacing: >= LRI

2. Pacing–Sensing (during VRP): < VRP & < LRI

3. Pacing–Sensing (after VRP): >= VRP & < LRI

4. Sensing–Pacing: >= HRI

5. Sensing–Sensing: < HRI

14

0
320
(VRP)

1000
(LRI)

1200
(HRI)

Time (ms)

Result of Property Checking in Code

� Findings

� Code execution time harms property preservation

� Characteristics of timing properties matters

� clock_var ≥ limit (e.g. PropVRP) are guaranteed

� clock_var ≤ limit (e.g. PropLRI, PropHRI) are not guaranteed

� Time deviations were bounded in the tested scenarios (E.g., ≤ 1ms)

15

Timing Tolerance ∆

� Modify the code and the model referring to the violated
properties to keep the properties transferred from the model in
the code satisfied

� Strategy for converting the violated properties to the satisfied � Strategy for converting the violated properties to the satisfied
ones

16

Make the desired events happen no later than the
predetermined time T by evaluating guard at ∆ time units

earlier than T, while not violating all other properties

Find a timing tolerance ∆ by measuring deviations from
the desired time

Modify the Code with ∆

� To make guard evaluated ∆ time units earlier

#define DELTA (some value)

…

bool eval_guard(int trn) {

switch(trn) {

case 0: return (Heart_flag>0);

case 2: return (rdClock(Ventricle_x)>=Ventricle_RI - DELTA;

17

� Experimented using several values of ∆

� Three properties are satisfied in the code with ∆ greater than
or equal to 2ms for all tested scenarios

case 2: return (rdClock(Ventricle_x)>=Ventricle_RI - DELTA;

case 4: return (rdClock(Ventricle_x)>=Ventricle_VRP);

… }

}

Modify the Model with ∆

� Make the corresponding changes in the model

x >= RI – DELTA

� Verify the modified model again w.r.t. all the properties

� Confirm that the modified model satisfies all the properties
with the timing tolerance

18

Multi-threaded C code Structure

� A thread per each transition

� Uses semaphores for each
location and each input
event

transV1

19

int main(…)

{

pthread_create(&threadV1,

NULL, transV1, NULL);

pthread_create(&threadV2,

NULL, transV2, NULL);

pthread_create(&threadV3,

NULL, transV3, NULL);

…

pthread_join ();

}

void *transV1(void *ptr)

{

while(1) {

sem_wait(&WaitRI);

t=wait2(&v_x,&ri);

clearTimer(&v_x);

current=ST_W_VRP;

sem_post(&WaitVRP);

sem_post(&Pace);

}

}

Evaluate

guard

Update

Result of Property Checking in Code

� Simulation-based black box testing on Linux

� Test inputs: Randomly generated heart sensing signals

� Execution delay was shown to be bounded by 2ms

20

Re-checking resultFirst checking result

∆: 2ms

Related Work: Code Gen. from TA
� TIMES tool [AFP+03]

� Generate code from TA extended with tasks for BrickOS platform

� Under synchrony hypothesis (SH), the code synthesis is guaranteed to preserve
safety properties transferred from models

� � Supports enriched TA, provides many types of automatic analysis

� � Preservation of properties is not guaranteed without SH� � Preservation of properties is not guaranteed without SH

� ELASTIC2BRICK tool [DDR04]

� Generate code from a simplified TA for BrickOS platform

� Safety properties proven correct with ∆ in the model are preserved

� � Formalized treatment of the synchrony hypothesis and correctness proofs

� � Limited and difficult applicability (e.g. no shared variables, no broadcasting,
etc.)

� Our approach

� Applicable without much restrictions while guaranteeing timing properties to
some extents without SH

21

Limitations and Possibilities

� Type of timing properties

� Considered two types of timing properties in the proposed approach

� Combinations of complex timing properties need to be considered

� Instrumentation overhead

� Time overhead from instrumentation may cause the code to fail in � Time overhead from instrumentation may cause the code to fail in
satisfying timing properties, although not in our example

� Existing techniques for improving the performance and accuracy of time
profilers based on code instrumentation can be applied to our
approach

� Timing analysis on C code

� Simple measurement technique to find timing tolerances can be
replaced by WCET techniques

22

Limitations and Possibilities (cont.)

� Scalability

� Semi-automatic code synthesis and manual modifications to the model
can be automated by development of proper tools

� Generalization

� Although we showed a few specific decisions for modeling languages, � Although we showed a few specific decisions for modeling languages,
verification tools, code synthesis techniques, and timing analysis
techniques, others can be used as long as they satisfy minimum
requirements
� Other code synthesis techniques can be used as long as it is systematic and sound

� Other timing analysis techniques can be used as long as it can give information for
finding ∆

23

Conclusion & Future Work

� Proposed a safety-assured development approach for real-
time software
� Combined the model-driven development methodology and the

measurement-based timing analysis

� Suggested a way to achieve property preservation within the timing
tolerance in the codetolerance in the code

� Demonstrated the proposed approach using pacemaker software

� Future Work
� Complement measurement-based timing analysis with formal analysis

(e.g. WCET)

� Complement testing by code level verification

� Compare different code generation schemes

24

Questions?

25

Questions?

