
Abstract parsing of string updates and user

input

Kyung-Goo Doh1 ⋆, Hyunha Kim1⋆, and David A. Schmidt2 ⋆⋆

1 Hanyang University, Ansan, South Korea
2 Kansas State University, Manhattan, Kansas, USA

Abstract. We extend our formulation of demand-driven, static-analysis-
based, abstract parsing of the strings generated by PHP scripts to include
strings that are generated from string-replacement operators and user
input. Our approach combines LR(k)-parsing technology and data-flow
analysis to analyze, in advance of execution, the documents generated
dynamically by a script. String-replacement operations are computed
statically by composing the finite-state automaton defined by a string
replacement with the finite-state control of the LR(k)-parser, and user
input is predicted and processed by characterizing the input by an LR(k)-
grammer and analyzing the strings generated by the grammer. Our work
is implemented in Objective Caml.

1 Introduction

Scripting languages like PHP, Perl, Ruby, and Python use string values to encode
data structures, queries, web pages, etc., and then pass the strings to another
processor. For example, one might write a PHP script that assembles as a string
an SQL query or an HTML page or an XML document. The script might as-
semble the string incorrectly or include input submitted by a malicious user,
generating a cross-site-scripting or injection attack.

In earlier work [6], we showed how to employ LR(k)-parsing technology and
data-flow analysis to analyze statically a program that dynamically generates
documents as strings and to parse statically those strings with respect to the the
context-free reference grammar for the document language to which the strings
must conform. We did this by implementing a demand-drived abstract inter-
pretation that computed not the strings themselves but abstract parse stacks
that encode the context-free structure of the strings that would be generated
by the script at run-time. (For example, if a script must generate well-formed
SQL queries, then the analyzer uses a reference grammar for SQL to analyze

⋆ Supported in part by grant R01-2006-000-10926-0 from the Basic Research Program
of the Korea Science and Engineering Foundation and in part by the Engineering
Research Center of Excellence Program of Korea Ministry of Education, Science and
Technology(MEST) / Korea Science and Engineering Foundation(KOSEF), R11-
2008-007-01003-0.

⋆⋆ Supported by NSF CNS-0939431.

the strings that will be constructed by the script, in advance of running the
script.) This is done by using the states within the LR(k) parser’s controller, or-
ganized into parse stacks, as abstract-interpretation values, so that rather than
tracking the approximate value of a string assigned to a variable, we track the
state of the parser applied to that string. This gives better precision, because
the approximate parse stacks represent context-free structure rather than just
regular-language structure [2–5, 10, 11].

The implementation proved successful at analyzing PHP programs that dy-
namically generate HTML documents [6], detecting coding errors that generate
misspelled, missing, and mismatched tags in generated documents.

This paper documents the next stage of work: extending the demand-driven
static analysis to handle string-replacement operators and to handle user input.
Both problems and their solutions are nontrivial:

– A PHP-style string replacement operator, e.g.,

y = replace ’aa’ by ’b’ in x

defines a finite-state string transducer to which x’s string-value is supplied as
input. The transducer’s output is saved in y’s cell. The static analyzer models
the transducer by composing it with the finite-state control of the LR(k)-
parser for the reference grammar. The compound parser is used to verify
that the string-replacement’s output conforms to the reference grammar.

– It is impossible to know in advance the input a user will supply to a script.
But if the input is limited to fall within the set of strings generated by a
reference grammar, then that grammar’s start nonterminal can be supplied
an the input to the static analyzer for abstract parsing. Our analyzer treats
grammar nonterminals as valid inputs, just like sequences of terminal sym-
bols. For example, if the range of user inputs is contained within this syntax:

S ::= a | aS

then for this script,

x = getinputS

y = replace ’aa’ by ’b’ in x

print y

S = a ∪ a · S
X = S
Y = replace(aa, b, X)

The analyzer will generate the data-flow equations on the right, which in-
dicate that x’s value can be any S-string. x’s values are composed with the
transducer defining y to ensure that the printed string conforms to the ref-
erence grammar.

2 LR(k)-parsing

Our treatment of string-replacement operators depends on LR(k)-parsing tech-
nology. For review, Figure 1 shows an LR(1)-grammar, its parse controller, its

a!. S
S . Sa

.aS

s
0

.S
s4

S a.S
S .a S

.aS

s
2 S a .S

s3

S a.
s1

S!

la

laS!

a!

Shift transitions:
[ℓ →֒ a →֒ s0] → s0 :: [ℓ →֒ s2]
[! →֒ a →֒ s0] → s0 :: [! →֒ s1]
[! →֒ S →֒ s0] → s0 :: [! →֒ s4]
[ℓ →֒ a →֒ s2] → s2 :: [ℓ →֒ s2]
[! →֒ a →֒ s2] → s2 :: [! →֒ s1]
[! →֒ S →֒ s2] → s2 :: [! →֒ s3]

Reduce transitions:
si[m →֒ s1] → [m →֒ S →֒ si]
si :: sj [m →֒ s3] → [m →֒ S →֒ si]

where ! denotes end of input and ℓ denotes any non-! input symbol.

parse stack (top lies at right) input sequence

[s0] aa!

[a →֒ s0] a!

[a →֒ a →֒ s0] ! (next, do shift transition)
s0 :: [a →֒ s2] !

s0 :: [! →֒ a →֒ s2] (do shift transition)
s0 :: s2 :: [! →֒ s1] (reduce S → a; pop one state and insert S)
s0 :: [! →֒ S →֒ s2] (do shift transition)
s0 :: s2 :: [! →֒ s3] (reduce S → aS; pop two states and insert S)
[! →֒ S →֒ s0] (do final transition)
s0 :: [! →֒ s4] (finished)

Fig. 1. goto controller for S → aS | a and an example parse of aa!

state-transition rules, and an example parse. An LR(k)-parse configuration is a
parse-stack, current state pair, si :: sj :: · · · :: sn[ℓk →֒ ℓk−1 →֒ · · · →֒ ℓ0 →֒ sm].
That is, state sm, on the top of the stack, determines the next parse move based
on the inputs, ℓk · · · ℓ0, where ℓ1 · · · ℓk form the lookahead and ℓ0 is the input
symbol.

3 Abstract parsing

Here is a small example that shows how to apply the parser in the previous
section to predict the grammatical structure of a string to be generated by a
program. See Figure 2, left column, for a sample script, and see the right column
for the flow equations generated from the script. Say this program should print
only well-formed S-phrases. We must analyze the value of x at point X3 to see

x = ’a’

while ...

x = ’a’ . x . ’a’

print x !

X0 = a

X1 = X0 ⊔ X2
X2 = a · X1 · a
X3 = X2 · !

(Read . as an infix string-append operation.)

Fig. 2. Sample program and its data-flow equations

if it is S-structured. To do this, we both calculate the string and parse it — we
interpret the flow equations in Figure 2 as functions that map an input parse
state to (a set of) LR(1)-parse configurations.

We calculate the set of parses (parse configurations) for X3 from start state
[s0]. We write this as the function call, X3[s0], and generate this first-order flow
equation:

X3[s0] = (X2 · !)[s0]

which itself demands a parse of the string generated at point X2 followed by a
parse of the ”end-of-input” token, !. The calculation proceeds like this:

X3[s0] = (X2 · !)[s0] = X2[s0] ⊕ !

X2[s0] = (a · X1 · a)[s0] = a[s0] ⊕ (X1 · a)
= [a →֒ s0] ⊕ (X1 · a) = (X1 · a)[a →֒ s0]
= X1[a →֒ s0] ⊕ a

Combinator · is composition, and ⊕ sequences the parse steps: for parse con-
figuration, c, and function, F , c ⊕ F = tail(c) :: F (head(c)). (E.g., (s0 :: [a →֒
s2]) ⊕ F = s0 :: (F [a →֒ s2]) — F operates on the current parse state, and the
underlying stack is left untouched.)

The above calculation demands a parse of the string defined by X1 starting
from state [a →֒ s0]:

X1[a →֒ s0] = X0[a →֒ s0] ∪ X2[a →֒ s0]
X0[a →֒ s0] = a[a →֒ s0] = [a →֒ a →֒ s0] = s0 :: [a →֒ s2]
X2[a →֒ s0] = (a · X1 · a)[a →֒ s0] = a[a →֒ s0] ⊕ (X1 · a)

= s0 :: [a →֒ s2] ⊕ (X1 · a) = s0 :: (X1[a →֒ s2] ⊕ a)

That is, X1[a →֒ s0]’s parse configurations is a set union, where X0[a →֒ s0]
computes to a shift step, where s0 is shifted onto the stack and the new state is
[a →֒ s2]. (Since our examples are simplistic and most all of the calculated sets
are singletons, we normally omit the enclosing {· · ·} brackets.)

The parse of X2[a →֒ s0] causes a shift of s0 and a parse of X1[a →֒ s2]. This
last request generates these three new first-order equations:

X1[a →֒ s2] = X0[a →֒ s2] ∪ X2[a →֒ s2]
X0[a →֒ s2] = s2 :: [a →֒ s2]
X2[a →֒ s2] = s2 :: (X1[a →֒ s2] ⊕ a)

This completes the set of equations that must be solved to compute the parse
configurations for the original query, X3[s0]. We use the usual least-fixed point
calculations to solve the equations. First,

X1[a →֒ s2] = s2 :: [a →֒ s2] ∪ s2 :: (X1[a →֒ s2] ⊕ a)

The solution is {si
2 :: [a →֒ s2] | i ∈ 1, 3, 5, · · ·}. Our analysis approximates

this infinite set by the configuration, s+

2 :: [a →֒ s2], which is the least-fixed
point in the finite-height lattice of finite stack configurations coded with regular-
expression notation [6]. From this result, we obtain

X1[a →֒ s2] = s+
2 :: [a →֒ s2]

X1[a →֒ s0] = s0 :: s∗2 :: [a →֒ s2]
X2[s0] = s0 :: s+

2 :: [a →֒ s2]

which let us calculate

X3[s0] = X2[s0] ⊕ ! = s0 :: s+

2 :: ![a →֒ s2] = s0 :: s+

2 :: [! →֒ a →֒ s2]
= s0 :: s+

2 :: [! →֒ s1] (s+
2 :: s2 is approximated to s+

2)
= s0 :: s∗2 :: [! →֒ S →֒ s2] (reduce S → a)
= s0 :: s+

2 :: [! →֒ s3]
= s0 :: s2 :: [! →֒ s3] ∪ s0 :: s+

2 :: [! →֒ s3] (case split)
= [! →֒ S →֒ s0] ∪ s0 :: s∗2[! →֒ S →֒ s2] (reduce S → aS)
= s0 :: [! →֒ s4] (right operand repeats; adds nothing to fixed point)

This proves that all possible string values of x at the print command are well-
structured S-phrases. The implementation calculates the answer with a demand-
driven version of the classic least-fixed-point worklist algorithm [1, 7–9].

4 Definitions of parsing and collecting semantics

An LR(k) parse-stack configuration is a sequence, s0 :: s1 :: · · · si :: [ℓj →֒ · · · →֒
ℓ0 →֒ s], 0 ≤ j ≤ k, where s0 · · · si, s are states from the parser controller; ℓ0 is
the input symbol; and ℓ1 · · · ℓj are the lookahead symbols. [ℓj →֒ · · · →֒ ℓ0 →֒ s]
is the parse state and will always be presented as the “top” of the parse-stack
configuration.

A parse of input symbols a1 · · ·an! is defined as [[a1 · · · an!]][s0], where s0 is
the parse controller’s start state. Let c stand for a parse state. The transition
rules in Figure 1 can be formalized as

[[a]][ℓj →֒ · · · →֒ ℓ0 →֒ s] = move([a →֒ ℓj →֒ · · · →֒ ℓ0 →֒ s])

[[E1 · E2]]c = move([[E1]]c ⊕ [[E2]])
where (s0 :: s1 :: · · · si :: c′) ⊕ F = s0 :: s1 :: · · · si :: F (c′)

move(s0 :: · · · :: si :: [ℓj →֒ · · · →֒ ℓ0 →֒ s]) =
if s is a final (reduce) state for grammar rule, N → U1U2 · · ·Um, and m ≤ n,
then return move(s0 :: · · · :: sn−m :: [ℓj →֒ · · · →֒ ℓ0 →֒ N →֒ sn−m+1])

(pop top m states, and insert N at front of input stream)
else if there is a match of [ℓj →֒ · · · →֒ ℓ0 →֒ s] to the left-hand-side of a transition rule,

[ℓk →֒ · · · →֒ ℓ0 →֒ s] → [ℓk →֒ · · · →֒ ℓ1 →֒ s′],
then return move(s0 :: s1 :: · · · si :: s :: [ℓk →֒ · · · →֒ ℓ1 →֒ s′])

(shift)
else return s0 :: s1 :: · · · si :: [ℓj →֒ · · · →֒ ℓ0 →֒ s], as is.

The next definition of interest is the semantics of the flow equations extracted
from a script. A flow equation takes the form, X = E, where

E ::= a | E1 · E2 | E1 ⊔ E2 | Xj

The semantics is called the collecting semantics and is defined like this:

[[E]] : ParseState → P(ParseConfiguration)

[[a]][ℓj →֒ · · · →֒ ℓ0 →֒ s] = {move([a →֒ ℓj →֒ · · · →֒ ℓ0 →֒ s])}

[[E1 · E2]]c = {move(c′) | c′ ∈ [[E1]]c ⊕ [[E2]]}
where S ⊕ F = {tail(c) :: F (head(c)) | c ∈ S}

[[E1 ⊔ E2]]c = [[E1]]c ∪ [[E2]]c

[[Xj]]c = [[Ej]]c, where Xj = Ej is the corresponding flow equation

The definition shows that sets can result from the calculation of the collecting
semantics. See [6] for examples.

From the collecting semantics domain of sets of parse configurations, one
defines an abstract interpretation by approximating a set of configurations by a
finite set of finite configurations or by just a single configuration, say, written in
regular-expression notation. This is developed in [6].

The resulting interpretation can be applied to a set of flow equations and
solved with the usual least-fixed-point techniques. This yields abstract parsing
of the strings generated by a script.

5 Abstract parsing with string-replacement operations

Recall that a parse configuration is a sequence of controller states topped off by
a parse state of form, [ℓj →֒ · · · →֒ ℓ1 →֒ s]. The state is updated by the parse
controller, which is a finite automaton.

Next, a script’s string update operation, replace, e.g.,

y = replace ’aa’ by ’b’ in x

defines an automaton (more precisely, a transducer):

α0 α1

l = ’a’ : ε

l != ’a’ : l

l = ’a’ : ’b’

l != ’a’ : ’a’. l

(We use B : ℓ to mean ”take the transition if B holds true and emit letter ℓ as
output”.) Here is the linear encoding of the automaton’s transitions:

α0(a) → α1/ǫ
α0(ℓ) → α0/ℓ, if ℓ 6= a

α1(a) → α0/b
α1(ℓ) → α0/a · ℓ, if ℓ 6= a

When a replace operation appears in a program, the automaton defined by
replace is composed with the parse-controller automaton to consume the input
stream. In effect, we generate a new parser to process the input.

From this assignment,

x = replace S1 by S2 in E

We generate this flow equation

X = replaceαE

Where α names the finite automaton (transducer) generated from the string
pattern, S1, and the replacement pattern, S2. When the above equation is called
with a parse state, [ℓj →֒ · · · →֒ ℓ1 →֒ s], we generate this first-order equation:

X [ℓj →֒ · · · →֒ ℓ1 →֒ s] = eraseα(E[α0, ℓj →֒ · · · →֒ ℓ1 →֒ s])

where α0 is the start state of the α automaton that defines the string replace-
ment.

The string generated from expression E is given to state α0, which processes
it and emits string output that is added to state s’s input stream. For example,
the operator, replace ’b’ by ’a’ in Y, generates this automaton, β:

β0(b) → β0/a
β0(ℓ) → β0/ℓ, if ℓ 6= b

For this script and its flow equations,

y = ’b’

x = ’a’.(replace ’b’ by ’a’ in y)

Y = b

X = a · replaceβ(Y)

The abstract parse of X · ! would proceed like this:

(X · !)[s0] = X [s0] ⊕ !

X [s0] = (a · replaceβ(Y))[s0]
= a[s0] ⊕ replaceβ(Y)
= replaceβ(Y)[a →֒ s0]
= eraseβ(Y [β0, a →֒ s0])

Y [β0, a →֒ s0] = b[β0, a →֒ s0]
= [b →֒ β0, a →֒ s0]
= [β0, a →֒ a →֒ s0]
= s0 :: [β0, a →֒ s2]

This shows how the string input is updated by the replace operator before
the string is parsed. Once all of Y ’s string is processed, automaton β is erased
from the compound parse state:

eraseβ(Y [β0, a →֒ s0]) = eraseβ(s0 :: [β0, a →֒ s2])
= s0 :: [a →֒ s2]

Figure 3 displays a more complex example, where multiple string replacements
compose with the parse-controller state.

There is a last, important, technical point: a string-replacement automaton
must finish its work in a final state, e.g., for

y = replace ’aa’ by ’b’ in ’aaa’

whose automaton, α, uses α0 as its final state, the string replacement of ’aaa’
causes α to finish in state α1, implicitly holding the letter, ’a’ in its state. In
this situation, the ’a’ must be ”flushed” out; this is done by adding this last
transition to α:

α(endOfString) → α0/a

This transition is enacted by the eraseα operation. Similar transitions are added
to all non-final states in the automata generated from string-replacement oper-
ations.

Our embedding of string-replacement operations into the parse state lets
us retain the existing least-fixed point machinery for computing the solutions
to the a script’s flow equations. So, it is perfectly acceptable to allow string
replacements within loop bodies — this surmounts existing techniques [4, 5, 10],
because we are not generating a new grammar to approximate and check.

6 Using string-replacement automata to implement
conditional tests

One fundamental technique needed for implementing taint analysis [13, 14, 12] is
implementing filter functions for the tests of conditional commands. For example,

read x

if isAllDigits(x) :

then · · · the analysis assumes that x holds all digits · · ·

x = ’a’

y = replace ’aa’ by ’b’ in x . x

z = x . replace ’b’ by ’a’ in (y.’a’)

print z !

X = a

Y = replaceα(X · X)
Z = X · replaceβ(Y · a)
Z′ = Z · !

Z′[s0] = Z[s0] ⊕ !

Z[s0] = X[s0] ⊕ (replaceβY · a) = (replaceβY · a)[a →֒ s0]
= eraseβ((Y · a)[β0, a →֒ s0] = eraseβ(Y [β0, a →֒ s0] ⊕ a)

Y [β0, a →֒ s0] = (replaceαX · X)[β0, a →֒ s0]
= eraseα((X · X)[α0, β0, a →֒ s0])

(X · X)[α0, β0, a →֒ s0] = X[a →֒ α0, β0, a →֒ s0]
= X[α1, β0, a →֒ s0] = [a →֒ α1, β0, a →֒ s0]
= [α0, b →֒ β0, a →֒ s0] = [α0, β0, a →֒ a →֒ s0]
= s0 :: [α0, β0, a →֒ s2]

Hence,

Y [β0, a →֒ s0] = eraseα(s0 :: [α0, β0, a →֒ s2]) = s0 :: [β0, a →֒ s2]
Z[s0] = eraseβ(s0 :: a[β0, a →֒ s2])

= eraseβ(s0 :: [a →֒ β0, a →֒ s2]
= eraseβ(s0 :: [β0, a →֒ a →֒ s2]
= eraseβ(s0 :: s2 :: [β0, a →֒ s2]
= s0 :: s2 :: [a →֒ s2]

Z′[s0] = (Z · !)[s0] = s0 :: s2 :: ![a →֒ s2]
= s0 :: s2 :: [! →֒ a →֒ s2]
= · · · see Figure 1 · · ·
= s0 :: [! →֒ s4]

Fig. 3. Compound string replacement and abstract parse

Think of the test expression, isAllDigits(x), as an automaton (transducer)
that reads the string contents of x and emits failure if a character of the input
string is a nondigit. A failure causes the subsequent analysis to fail, too. In
this fashion, the automaton acts as a “diode” or “filter function” that prevents
non-digit string input from entering the conditional’s body.

Here is the filter automaton for the test, isAllDigits(x):

βfail

l ε’0’..’9’ : l

β0

l ε’0’..’9’ :/ fail
l ε’0’..’9’ :/ fail

: faileos

: faill

β1
l ε’0’..’9’ : l

The filter automaton is a string-replacement automaton that emits fail when the
input string does not satisfy the boolean test. The complement automaton, ¬β,
merely swaps the outputs, ℓ and fail.

Our approach to analyzing conditional statements goes as follows:

For the conditional,
if B(x):
then · · · x · · ·
else · · · x · · ·

generate these flow equations:
XB = replaceβX
· · ·XB · · ·
X¬B = replace¬βX
· · ·X¬B · · ·

where β is the automaton that implements test B and ¬β implements ¬B.
The fail character is special — when it is processed as an input, it causes

the parse itself to denote ⊥ (empty set in the powerset lattice):

[· · · , fail, · · ·] = ⊥

For example,

x = ’a’

if isAllDigits(x):

print x !

X0 = a

X1 = replaceβX0
X2 = X1 · !

and
X2[s0] = X1 · ![s0] = X1[s0] ⊕ !

X1[s0] = replaceβX0[s0] = eraseβ(X0[β0, s0])
X0[β0, s0] = a[β0, s0] = [a →֒ β0, s0] = [β0, fail →֒ s0] = ⊥

Hence,
X1[s0] = eraseβ(⊥) = ⊥
X2[s0] = ⊥⊕ ! = ⊥

The analysis correctly predicts that nothing prints within the body of the con-
ditional.

7 Modelling user input with nonterminals and unfolding

One of the advantages of our abstract parsing technique is that it can process a
grammar’s nonterminal symbol as input exactly the same way it processes ter-
minal symbols as input: the symbol is supplied to the parse state, which can shift
or reduce. For example, say that a module uses a string-valued global variable
that is initialized outside of the module. If we can assume that the variable’s
value has the structure named by a nonterminal, then the global variable can
be used in an abstract parse. For example, if and we assume global variable g

holds an S-structured string, we can readily define the flow equations for this
sequence,

x = ’a’.g

print x !

G = S
X = a · G
X ′ = X · !

and compute the abstract parse for X ′[s0]:

(a · G · !)[s0] = G[a →֒ s0] ⊕ !

G[a →֒ s0] = [S →֒ a →֒ s0] = s0 :: [S →֒ s2]

Hence,

G[a →֒ s0] ⊕ ! = s0 :: ![S →֒ s2] = s0 :: [! →֒ S →֒ s2]
= s0 :: s2 :: [! →֒ s3] = [! →֒ S →֒ s0]
= s0 :: [! →֒ s4]

In a similar way, user input, supplied via read commands, can be assumed to
have structure named by a nonterminal, and abstract parsing can be undertaken:

g = readS()
x = ’a’.g

print x !

G = S
X = a · G
X ′ = X · !

This proceeds just like the previous example. (Of course, we must supply a
script that parses the input at runtime, to ensure that the input assumption is
not violated.)

But there is a rub — say that the script includes string-replacement opera-
tions, which cannot process nonterminals. We solve this problem by generating
the strings named by a nonterminal, and supplying the generated strings to the
string-replacement automaton. Since the grammar is defined by a finite num-
ber of rules and there are a finite quantity of parse states, there are a finite
number of reachable configurations to be analyzed in the abstract parse — the
least-fixed-point semantics finitely solves the generated configurations. Here is
an example:

x = readS()
y = replace ’aa’ by ’a’ in x

print y !

X = S
S = a · S ⊔ a

Y = replaceγX
Y ′ = Y · !

where automaton γ is defined,

γ0(a) = γ1/ǫ
γ0(ℓ) = γ0/ℓ, if ℓ 6= a

γ1(a) = γ0/a

γ1(ℓ) = γ0/a · ℓ, if ℓ 6= a

γ0(eos) = γ0/ǫ
γ1(eos) = γ0/a

where γ0 is the final state.
The analysis of the print command generates these first-order equations to

solve:

Y ′[s0] = Y [s0] ⊕ !

Y [s0] = eraseγ(X [γ0, s0])
X [γ0, s0] = S[γ0, s0]

The call to S generates these equations, which explain how to replace and parse
all strings generated from nonterminal, S:

S[γ0, s0] = (a · S)[γ0, s0] ∪ a[γ0, s0] = [a →֒ γ0, s0] ⊕ S ∪ [a →֒ γ0, s0]
= [γ1, s0] ⊕ S ∪ [γ1, s0]
= S[γ1, s0] ∪ [γ1, s0]

S[γ1, s0] = (a · S)[γ1, s0] ∪ a[γ1, s0] = S[γ0, a →֒ s0] ∪ [γ0, a →֒ s0]
S[γ0, a →֒ s0] = S[γ1, a →֒ s0] ∪ [γ1, a →֒ s0]
S[γ1, a →֒ s0] = [γ0, a →֒ a →֒ s0] ⊕ S ∪ [γ0, a →֒ a →֒ s0]

= s0 :: S[γ0, a →֒ s2] ∪ s0 :: [γ0, a →֒ s2]
S[γ0, a →֒ s2] = S[γ1, a →֒ s2] ∪ [γ1, a →֒ s2]
S[γ1, a →֒ s2] = s2 :: S[γ0, a →֒ s2] ∪ s2 :: [γ0, a →֒ s2]

All reachable combinations of the string-replacement automaton and parse con-
troller are generated. This completes the equation set, which is solved in the
usual way.

The state explosion that is typical in such examples can be controlled by
using SLR(k) or LALR(k) grammars to define string structure.

With the technique just illustrated, we can show the correctness of input-
validation codings. For example, a script that goes

x = readS()

if isAllDigits(x):

then · · ·

can be analyzed with respect to the automaton defined by isAllDigits and
this reference grammar:

S ::= C | CS
C ::= D | N
D ::= 0 · · · 9
N ::= all characters not in D

From here, it is only a small step to analyzing string-replacement and conditional-
test automata to check for language inclusion, that is, all strings generated by a
grammar nonterminal are accepted by the automaton.

8 Conclusion

We have demonstrated the applicability of LR(k) parsing and finite automata to
static enforcement of correct dynamic string generation in scripts. The techniques
described in this paper have been implemented are currently under evaluation.

Acknowledgements: We thank GTOne’s CEO Soo-Yong Lee for inspiration and

support and the anonymous referees for valuable suggestions and comments.

References

1. G. Agrawal. Simultaneous demand-driven data-flow and call graph analysis. In
Proc. Int’l. Conf. Software Maintenance, Oxford, 1999.

2. C. Brabrand, A. Møller, and M.I. Schwartzbach. The <bigwig> project. ACM

Trans. Internet Technology, 2, 2002.
3. T.-H. Choi, O. Lee, H. Kim, and K.-G. Doh. A practical string analyzer by the

widening approach. In Proc. Asian Symp. Prog. Lang. and Systems, pages 374–388.
Springer LNCS 4279, 2006.

4. A.S. Christensen, A. Møller, and M.I. Schwartzbach. Static analysis for dynamic
XML. In Proc. PLAN-X-02, 2002.

5. A.S. Christensen, A. Møller, and M.I. Schwartzbach. Extending Java for high-level
web service construction. ACM TOPLAS, 25, 2003.

6. K.-G. Doh, H. Kim, and D.A. Schmidt. Abstract parsing: static analysis of dynam-
ically generated string output using lr-parsing technology. In Proc. Static Analysis

Symp., pages 256–272. Springer LNCS 5673, 2009.
7. E. Duesterwald, R. Gupta, and M.L. Soffa. A practical framework for demand-

driven interprocedural data flow analysis. ACM TOPLAS, 19:992–1030, 1997.
8. S. Horwitz, T. Reps, and M. Sagiv. Demand interprocedural dataflow analysis. In

Proc. 3rd ACM SIGSOFT Symp. Foundations of Software Engg., 1995.
9. N.D. Jones and A. Mycroft. Data flow analysis of applicative programs using

minimal function graphs. In Proc. 13th Symp. POPL, pages 296–306. ACM Press,
1986.

10. Y. Minamide. Static approximation of dynamically generated web pages. In Proc.

14th ACM Int’l Conf. on the World Wide Web, pages 432–441, 2005.
11. Y. Minimide and A. Tozawa. XML validation for context-free grammars. In Proc.

Asian Symp. Prog. Lang. and Systems, pages 357–373. Springer LNCS 4279, 2006.
12. G. Wassermann, C. Gould, Z. Su, and P. Devanbu. Static checking of dymanically

generated queries in database applications. ACM Trans. Software Engineering and

Methodology, 16(4):14:1–27, 2007.
13. G. Wassermann and Z. Su. The essence of command injection attacks in web

applications. In Proc. 33d ACM Symp. POPL, pages 372–382, 2006.
14. G. Wassermann and Z. Su. Sound and precise analysis of web applications for

injection vulnerabilities. In Proc. ACM PLDI, pages 32–41, 2007.

