
1

TAINTDROID: AN INFORMATION-FLOW
TRACKING SYSTEM FOR REALTIME
PRIVACY MONITORING ON SMARTPHONES

Byung-Gon Chun
Intel Labs Berkeley

Joint work with Jaeyeon Jung (ILS), Anmol Seth (ILS), William
Enck (PSU), Patrick McDaniel (PSU), Landon Cox (Duke), Peter
Gilbert (Duke)

2

Intel Labs Berkeley
• A lablet located at

Berkeley next to the
UC Berkeley campus

• Exploratory research
• An open collaborative

model
• Systems/networking,

security, programming
language, machine
learning, HCI

3

Smartphone Privacy Risks Posed
by Third-party Apps

(Credit: WSJ)

4

Smartphone Privacy Risks
Posed by Third-party Apps

5

A Movie

6

Roadmap

• Motivation
• Our approach
• TaintDroid design
• Performance study
• Application study
• Other research work

7

TaintDroid Goal

Monitor app behavior to determine when
privacy sensitive information leaves the

phone in real time

8

Current “Best” Practice

• Trust-or-cancel
• Coarse-grained access control
• No visibility into the actual behavior

8

9

Our Approach

• Look inside of applications to watch how
they use privacy sensitive data

• Trust-or-cancel Trust-but-verify

10

Challenges

• Smartphones are resource constrained
• Third-party applications are entrusted with

several types of privacy sensitive
information

• Context-based privacy information is
dynamic and can be difficult to identify
when sent

• Applications can share information

11

Dynamic Taint Analysis

• A technique that tracks information
dependencies from an origin

• Taint
– Source
– Propagation
– Sink

C = Taint_source()
…
A = B + C
…
Network_send(A)

12

Dynamic Taint Analysis in Action

MOV B,A

backup register state
SetTaint (B, GetTaint(A))
restore register state
MOV B,A

instrumentation

code snippet from iexplore.exe

k

k
memory

…
ret
mov al, byte ptr ds[esi]
mov byte ptr ds[edi], al
pop esi
…

taint map

0
1

memory

register

0
0
0

0

0

0

0

1

…
ret
mov al, byte ptr ds[esi]
mov byte ptr ds[edi], al
pop esi
…

1• Expensive! 2-20x slowdown.
• Overtainting/undertainting problems.
• Whole-system tracking!

13

TaintDroid
Leverage Android Platform Virtualization

native system libraries

Virtual
machine

Application
code

Virtual
machine

Application
code

Variable-level
tracking

Method-level
tracking

Message-level tracking

msg

Network interface Secondary storage
File-level
tracking

14

VM Variable-level Tracking
• We modified the Dalvik VM interpreter to

store and propagate taint tags (a taint
bitvector) on variables
– Local variables and method args: taint tags

stored adjacent to variables on the internal
execution stack.

– Class fields: similar to locals, but inside static field
heap objects

– Arrays: one taint tag per array to minimize
overhead

15

DEX Taint Propagation Logic
Op Format Op Semantics Taint Propagation Description

const-op vA C vA ← C T(vA) ← 0 Clear vA taint

move-op vA vB vA ← vB T(vA) ← T(vB) Set vA taint to vB taint

move-op-R vA vA ← R T(vA) ← T(R) Set vA taint to return taint

return-op vA R ← vA T(R) ← T(vA) Set return taint (0 if void)

move-op-E vA vA ← E T(vA) ← T(E) Set vA taint to exception taint

throw-op vA E ← vA T(E) ← T(vA) Set exception taint

unary-op vA vB vA ← op vB T(vA) ← T(vB) Set vA taint to vB taint

binary-op vA vB vC vA ← vB op vC T(vA) ← T(vB)UT(vC) Set vA taint to vB taint U vC taint

binary-op vA vB vA ← vA op vB T(vA) ← T(vA)UT(vB) Set vA taint to vA taint U vB taint

binary-op vA vB C vA ← vB op C T(vA) ← T(vB) Set vA taint to vB taint

aput-op vA vB vC vB[vC] ← vA T(vB[]) ← T(vB[]) UT(vA) Update array vB taint with vA taint

…

17

Native Methods

• Applications execute native methods
through the Java Native Interface (JNI)

• TaintDroid uses a combination of
heuristics and method profiles to patch VM
tracking state

18

IPC and File Taint Propagation

• Message-level tracking for IPC
– Marshall data items
– Unmarshall data items

• Persistent storage tracked at the file level
– Single taint tag stored in the file system

XATTR

19

Roadmap

• Motivation
• Our approach
• TaintDroid design
• Performance study
• Application study
• Other research work

20

Performance Study:
Microbenchmark

0

200

400

600

800

1000

1200

1400

1600

1800

2000

sieve loop logic string float method total

Android

TaintDroid
CaffeineMark
3.0 benchmark

14% overhead

21

Performance Study

• Memory overhead: 4.4%
• IPC overhead: 27%
• Macro-benchmark

– App load: 3% (2ms)
– Address book: (<20ms) 5.5% create, 18%

read
– Phone call: 10% (10ms)
– Take picture: 29% (0.5s)

22

Taint Adaptors
• Taint sources and sinks must be carefully

integrated into the existing architectural
framework.

• Sources
– Low-bandwidth sensors: location, accelerometer
– High-bandwidth sensors: microphone, camera
– Information databases: address book, SMS

storage
– Device identifiers: IMEI, IMSI, ICC-ID, Phone #

• Sink: network

23

Application Study
Applications (with the Internet permission) # Permissions

The Weather
Channel, Cetos, Solitarie, Movies, Babble, Manga
Browser

6

Bump, Wertago, Antivirus, ABC --- Animals, Traffic
Jam, Hearts, Blackjack, Horoscope, 3001 Wisdom
Quotes Lite, Yellow Pages, Datelefonbuch, Astrid, BBC
News Live Stream, Ringtones

14

Layer, Knocking, Barcode Scanner, Coupons, Trapster,
Spongebot Slide, ProBasketBall 7

MySpace, ixMAT 2
Evernote 1

24

Findings: Location

• 15 of the 30 apps shared physical location with
an ad server (admob.com, ad.qwapi.com,
ads.mobclix.com, data.flurry.com)

e.g., received data with tag 0x411 data=[GET
/servernameA1?hello=1&time=1&bumpid=354957
030504982&locale=en_US&gpslong=-
122.316&gpslat=47.662&gpsaccuracy=32.000&t
imezone=0…

• In no case was sharing obvious to user or in EULA
– In some cases, periodic and occurred without app use

25

Findings: Phone Identifiers

• 7 apps sent device (IMEI) and 2 apps sent
phone #, IMSI, ICC-ID to remote servers
without informing the user

• Frequency was app-specific, e.g., one app
sent phone information every time the phone
booted

26

Demo

27

What We’ve Learned

• Efficient, system-wide, dynamic taint
tracking for mobile platforms.
– 14% overhead for computing-intensive work

• Private data leak is prevalent
– 20 of the 30 studied applications share

information in a way that was not expected

28

On-going Work

• AppInspector: automated privacy testing of
smartphone applications

• AppShield: exploring runtime context for
flexible and useful control of personal data
exposure, UI issues

29

THANK YOU!
Q & A

	TaintDROId: An Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones
	Intel Labs Berkeley
	Smartphone Privacy Risks Posed by Third-party Apps
	Smartphone Privacy Risks Posed by Third-party Apps
	A Movie
	Roadmap
	TaintDroid Goal
	Current “Best” Practice
	Our Approach
	Challenges
	Dynamic Taint Analysis
	Dynamic Taint Analysis in Action
	TaintDroid�Leverage Android Platform Virtualization
	VM Variable-level Tracking
	DEX Taint Propagation Logic
	Native Methods
	IPC and File Taint Propagation
	Roadmap
	Performance Study: Microbenchmark
	Performance Study
	Taint Adaptors
	Application Study
	Findings: Location
	Findings: Phone Identifiers
	Demo
	What We’ve Learned
	On-going Work
	Thank YOU!�Q & A

