
Sung Kim <hunkim@cse.ust.hk>
The Hong Kong University of Science and Technology

with Ning Chen and Hojun Jaygarl

STAR: Stack-Trace based
Automatic crash Reproduction

ROSAEC Workshop Jan 6, 2011

mailto:hunkim@ust.hk
mailto:hunkim@ust.hk

Sung’s research areas

• MSR: Mining Software Repositories
- Defect prediction (learning from repositories)
- Bug triage/bug report mining
- Crash report/stack trace mining
- Code clones

• Static Analysis
- Unit test generation
- Crash reproduction
- Patch generation

Objects

E-mails
Bug reports

ChangesSpecs

Traces

Raw data

History
Information

Mine

Bug
 Prediction

Resource
Allocation

Software
Understanding

Change
Impact Analysis

Bug
 Prediction

Mining Software Repositores

Feedback

Produce

objects

stack traces

Mine Testing

Mine Crash repro

ROSAEC Workshop 2010

objects

stack traces

Mine Testing

Mine Crash repro

Reproducing Crashes

• Must be able to reproduce crashes for
debugging
- To fix bugs and validate fixes

• Reproducing crashes (faults) is hard!
- Require the exact configuration of crash (in

field)

reproduceProgram

ReCrash

6-64% performance overhead

Crash

Unit	 tests

generate

ReCrash	

Crash Reporting System

Crash
Database

Crash Reporting System

Crash
Database

reproduceCrash

Test	 case

Crash Stack Traces

org.apache.bcel.classfile.ClassFormatException

at org.apache.bcel.classfile.ClassParser.readClassInfo(ClassParser.java:242)

at org.apache.bcel.classfile.ClassParser.parse(ClassParser.java:165)

at org.aspectj.weaver.bcel.Utility.makeJavaClass(Utility.java:358)

at org.aspectj.weaver.bcel.UnwovenClassFile.getJavaClass(UnwovenClassFile.java:63)

at org.aspectj.weaver.bcel.UnwovenClassFile.getClassName(UnwovenClassFile.java:147)...

Exception

Frame 5

C
all Stack

Frame 1

Frame n

12

Direc6on?

13

Crash

org.apache.bcel.classfile.ClassFormatException

at org.apache.bcel.classfile.ClassParser.readClassInfo(ClassParser.java:242)

at org.apache.bcel.classfile.ClassParser.parse(ClassParser.java:165)

at org.aspectj.weaver.bcel.Utility.makeJavaClass(Utility.java:358)

at org.aspectj.weaver.bcel.UnwovenClassFile.getJavaClass(UnwovenClassFile.java:63)

at org.aspectj.weaver.bcel.UnwovenClassFile.getClassName(UnwovenClassFile.java:147)...

Exception

Frame 5

C
all Stack

Frame 1

Frame n

Crash Inputs

Frame 1:

ClassParser.readClassInfo(ClassInfo x)

(1) Receiver

ClassParser.readClassInfo(ClassInfo x)

(2) Arguments

ClassParser.readClassInfo(ClassInfo x)

Problem Definition

void testCase() {

 ClassParser cp = ?

 ClassInfo x = ?

 cp.readClassInfo(x)

}

Problem Definition

void testCase() {

 ClassParser cp = ?

 ClassInfo x = ?

 cp.readClassInfo(x)

}

Problem Definition

void testCase() {

 ClassParser cp = ?

 ClassInfo x = ?

 cp.readClassInfo(x)

}

Three Approaches to Find
Crash Inputs

• Feedback based random approach (feed)

• Object-capture based (objcap)

• Static analysis (precondition)

Feedback (Randoop)

• Find methods that return Bar
- Bar foo() {..}
- Bar getBar(List x) {..}

• Generates object instances recursively
- foo = getFoo()
- bar = get(foo)

• Mutate objects using method sequences
- bar = get(Foo)
- setBar(bar)
- ...

Feedback (Randoop)

• Find methods that return Bar
- Bar foo() {..}
- Bar getBar(List x) {..}

• Generates object instances recursively
- foo = getFoo()
- bar = get(foo)

• Mutate objects using method sequences
- bar = get(Foo)
- setBar(bar)
- ...

Feedback (Randoop)

• Find methods that return Bar
- Bar foo() {..}
- Bar getBar(List x) {..}

• Generates object instances recursively
- foo = getFoo()
- bar = get(foo)

• Mutate objects using method sequences
- bar = get(Foo)
- setBar(bar)
- ...

OCAT

STAR

OCAT

STAR

Mutating Object (precondition)

foo (Object o) {
 if (o.x>o.y) {
 o.x = o.x + o.y;
 o.y = o.x - o.y;
 o.x = o.x - o.y;
 if (o.x - o.y > 0) {
 // throw exception
 }
 }
}

Mutating Object (precondition)

• Identify crash condition
(postcondition)

• Compute weakest precondition (wp)

• There is a wp rule for each statement
in the programming language

!!"#$%&'()*+*'(,"--
!"#"$%

!!"#'.+&'()*+*'(,"/

!"#$%&'()(%&*+*,*-().*/00*12"##3*%$$4""#&$#5*%2*6*"#70/$#'*
89*#

:6/;70#<
!!"0..%$+,""--

=55(>&;#&)

12*)%"3

!!"0..%$+,""--
!"#"!"&"'%

!!"0..%$+"4"5"6

7$%&'()*+*'("8""94:;<"5"6

?#*-"()#*).(5*/5*-7 2%"*@-#/A#5)*7"#$%&'()(%&B
=#9>!"#$?@"/<"8"/"=*+A"4"$%#20&%)"BC"%

wp rules: assignment

wp: if statement

!!"#$%&'()*+*'(,""--
!"#$%&#'(#)*+)#',

!!"#'.+&'()*+*'(,"/

!""#$%&'(()*+'"#*'$'()"&"

,-./!"#$%&#'(#)*+)#',01*23*4

.******5*!!!! ,-./'(01*23*

!!!!

67*"%'%#8#$%"

01*)%"23

.******5*!!!! ,-./'(01*23*

!!!! """"5*!!!! ,-./',01*23**3

!!"#$%&'()*+*'(,"--
!"# !!".'/%".+0+%/%(+
!$# !!"0('+1%$".+0+%/%(+

!!"#'.+&'()*+*'(,""2

!"#$%&#"'%()*$%+"%&#",+

3'.+&'()*+*'("4"5#67!"#$!%#89"2:"4"5#67!"#89"5#67!%#89"2::

-.)'/012

3"'/"45+5",%64+)+1'1,+%41781,*149%(0"*$4:

;<*)%"==

-.)'/012

!!"#$%&'()*+*'(,"--
%&'&(#

)&'&%*"#

!!"#'.+&'()*+*'(,">"?"@

wp: composition

wp example

foo (Object o) {
 if (o.x>o.y) {
 o.x = o.x + o.y;
 o.y = o.x - o.y;
 o.x = o.x - o.y;
 if (o.x - o.y > 0) {
 throw exception
 }
 }
}

Q: x-y>0
wp: (x-y)-y>0
wp: (x-(x-y))-(x-y)>0
wp: ((x+y)-((x+y)-y))-((x+y)-y)>0
wp: x>y & ((x+y)-((x+y)-y))-((x+y)-y)>0
wp: o.x>o.y & o.y-o.x>0

Three Approaches to Find
Crash Inputs

• Feedback based random approach (feed)

• Object-capture based (objcap)

• Static analysis (precondition)

Final Test Case

void testCase() {

 ClassParser cp = createCP(); // random

 ClassInfo x = loadClassInfo(); // object-capture

 x. b = false; // based on wp

cp.readClassInfo(x)

}

STAR Approach

• Challenge1: Crash points?
-Crash reporting system (MSR)

• Challenge II: missing objects
-Collect from normal execution (MSR)

• Challenge III: not suitable objects
-Mutate objects (Static Analysis)

Experiments

Figure 9 presents the generated test case guided by the satisfiable
model in Figure 8.

2.5 Implementation

We briefly describe the implementation of each phase in our ap-
proach.

Stack Trace Processing We parse a crash stack trace to ex-
tract necessary information. To identify receiver and argument
classes and its compatible classes, we use a program analysis li-
brary, WALA [25].

Object Capturing We use OCAT [27] to capture objects. OCAT
uses an instrumentation framework, ASM [18] to insert object-
capturing code. For storing objects, OCAT uses the XStream frame-
work [37], which serializes objects into XML files. XStream can
serialize objects that do not implement the java.io. Serializable
interface. The captured objects are de-serialized for captured-based
and precondition-based input generation techniques.

Input Generation. To compute the weakest preconditions for
the crashes, STAR first translates the related program code from
Java bytecode into static single assignment (SSA) form [21] using
WALA APIs. It then applies the inter-procedural backward com-
putation algorithm to compute the weakest preconditions. STAR
employs a satisfiability modulo theories solver, Yices [23] to check
for the satisfiability of the computed preconditions. Finally, STAR
mutates objects by using Java reflection APIs [36] based on mod-
els from Yices. The generated test cases are finally converted to
JUnit [11] test cases that reproduce a crash.

3. EXPERIMENTAL EVALUATION

This section presents our experimental setup and evaluation re-
sults of STAR.

3.1 Experimental Setup

The objective of the evaluation is to investigate the following
research questions:

RQ1 How many crashes can STAR reproduce based on crash stack
traces?

RQ2 Are generated test cases that reproduce crashes helpful for
debugging?

3.1.1 Subjects

We use crash stack traces collected from bug report systems of
three open source systems, AJDT, ACC, ACM. AJDT is a tool that
supports aspect-oriented software development including a AspectJ
compiler. We use eight versions of AJDT (1.1.0, 1.1.1, 1.2.0, 1.2.1,
1.5.0, 1.5.2, 1.5.3, and 1.5.4). Particularly, we use the org.aspectj
package for AJDT. ACC implements known data structures such as
buffer, queue, map, and bag. We use two versions of ACC, version
3.1, and 3.2. ACM is a library of self-contained mathematics and
statistics components. We use ACM version 1.2 and 2.0 for our
evaluation.

3.1.2 Bug Report Collecting and Processing

Bug reports include metadata and textual contents to describe
crashes. Some users include crash stack traces in their bug reports,
and we use bug reports which contain crash stack traces for our
experiment. From bug reports, we extract a bug id, version number
and crash stack traces by using InfoZilla [13].

We exclude some bug reports. First, we do not use bug reports
with invalid crash traces. After extracting stack traces, we obtain
method names and their line numbers. Then, we check if the meth-
ods exist and the line numbers match with the corresponding ver-
sion of the system. We prune cases where users report incorrect

of # of bug reports # of valid
system bug reports with stack traces stack traces
AJDT 461 162 83
ACC 97 8 8
ACM 116 14 10
Total 674 184 101

Table 2: Bug reports used in our experiment

system # of # of reproducible crashes
crashes feed objcap precond total

AJDT 1.1.x 21 0 0 +10 10
AJDT 1.2.x 16 2 +2 0 4
AJDT 1.5.x 46 9 +10 +5 24

ACC 8 1 +2 +2 5
ACM 10 1 0 +1 2
total 101 13 +14 +18 45

percent 12.9% +13.9% +17.8% 44.6%

Table 3: Reproducible crashes of AJDT, ACC and ACM. The

“feed” column shows the number of reproducible crashes using

feedback-directed input generation technique. The column de-

noted as “objcap” represents the number of additional repro-

ducible crashes by object-capture-based technique. Similarly,

“precond” presents the number of additional reproducible cra-

shes by the precondition-based technique.

version or wrong stack trace information. In addition, we also ex-
clude all non-fixed bug reports. Even if they include valid stack
traces, we cannot determine whether they are real bugs.

Table 2 shows the number of the bug reports2used in our exper-
iments. We extracted 674 bug reports, but only 184 bug reports
include stack traces. After pruning non-fixed bug reports and bug
reports with invalid stack traces, we are left with 101 bug reports.

3.1.3 Criteria of Reproducibility

To determine whether a crash is reproduced or not, we check
the exception type and location of the original and reproduced cra-
shes [8]. If the reproduced exception type and the original type are
identical, and both crashed in the same line, we assume the crash is
successfully reproduced.

3.1.4 Object Capturing

STAR requires captured objects from normal program execution.
To capture objects, we instrument our subject systems and execute
system tests provided by each subject. The instrumented systems
capture objects and serialize them during execution of the system
tests.

By executing instrumented systems with their system tests, we
captured and serialized 12,420 objects zipped in 342MB on aver-
age for each version of AJDT, 61,408 objects zipped in 104MB for
ACC and 7,012 objects zipped in 4MB for ACM. Often, executing
instrumented systems incurs a huge overhead [8, 31, 33, 35]. How-
ever, note that this capturing process is conducted once in house,
the deployed software does not incur any additional overhead.

3.2 Reproducibility

In this section, we show how many crashes are reproducible by
2Bug reports of AJDT can be found in http://bugs.
eclipse.org, and bug reports of both ACC and ACM can be
found in https://issues.apache.org/.

Figure 9 presents the generated test case guided by the satisfiable
model in Figure 8.

2.5 Implementation

We briefly describe the implementation of each phase in our ap-
proach.

Stack Trace Processing We parse a crash stack trace to ex-
tract necessary information. To identify receiver and argument
classes and its compatible classes, we use a program analysis li-
brary, WALA [25].

Object Capturing We use OCAT [27] to capture objects. OCAT
uses an instrumentation framework, ASM [18] to insert object-
capturing code. For storing objects, OCAT uses the XStream frame-
work [37], which serializes objects into XML files. XStream can
serialize objects that do not implement the java.io. Serializable
interface. The captured objects are de-serialized for captured-based
and precondition-based input generation techniques.

Input Generation. To compute the weakest preconditions for
the crashes, STAR first translates the related program code from
Java bytecode into static single assignment (SSA) form [21] using
WALA APIs. It then applies the inter-procedural backward com-
putation algorithm to compute the weakest preconditions. STAR
employs a satisfiability modulo theories solver, Yices [23] to check
for the satisfiability of the computed preconditions. Finally, STAR
mutates objects by using Java reflection APIs [36] based on mod-
els from Yices. The generated test cases are finally converted to
JUnit [11] test cases that reproduce a crash.

3. EXPERIMENTAL EVALUATION

This section presents our experimental setup and evaluation re-
sults of STAR.

3.1 Experimental Setup

The objective of the evaluation is to investigate the following
research questions:

RQ1 How many crashes can STAR reproduce based on crash stack
traces?

RQ2 Are generated test cases that reproduce crashes helpful for
debugging?

3.1.1 Subjects

We use crash stack traces collected from bug report systems of
three open source systems, AJDT, ACC, ACM. AJDT is a tool that
supports aspect-oriented software development including a AspectJ
compiler. We use eight versions of AJDT (1.1.0, 1.1.1, 1.2.0, 1.2.1,
1.5.0, 1.5.2, 1.5.3, and 1.5.4). Particularly, we use the org.aspectj
package for AJDT. ACC implements known data structures such as
buffer, queue, map, and bag. We use two versions of ACC, version
3.1, and 3.2. ACM is a library of self-contained mathematics and
statistics components. We use ACM version 1.2 and 2.0 for our
evaluation.

3.1.2 Bug Report Collecting and Processing

Bug reports include metadata and textual contents to describe
crashes. Some users include crash stack traces in their bug reports,
and we use bug reports which contain crash stack traces for our
experiment. From bug reports, we extract a bug id, version number
and crash stack traces by using InfoZilla [13].

We exclude some bug reports. First, we do not use bug reports
with invalid crash traces. After extracting stack traces, we obtain
method names and their line numbers. Then, we check if the meth-
ods exist and the line numbers match with the corresponding ver-
sion of the system. We prune cases where users report incorrect

of # of bug reports # of valid
system bug reports with stack traces stack traces
AJDT 461 162 83
ACC 97 8 8
ACM 116 14 10
Total 674 184 101

Table 2: Bug reports used in our experiment

system # of # of reproducible crashes
crashes feed objcap precond total

AJDT 1.1.x 21 0 0 +10 10
AJDT 1.2.x 16 2 +2 0 4
AJDT 1.5.x 46 9 +10 +5 24

ACC 8 1 +2 +2 5
ACM 10 1 0 +1 2
total 101 13 +14 +18 45

percent 12.9% +13.9% +17.8% 44.6%

Table 3: Reproducible crashes of AJDT, ACC and ACM. The

“feed” column shows the number of reproducible crashes using

feedback-directed input generation technique. The column de-

noted as “objcap” represents the number of additional repro-

ducible crashes by object-capture-based technique. Similarly,

“precond” presents the number of additional reproducible cra-

shes by the precondition-based technique.

version or wrong stack trace information. In addition, we also ex-
clude all non-fixed bug reports. Even if they include valid stack
traces, we cannot determine whether they are real bugs.

Table 2 shows the number of the bug reports2used in our exper-
iments. We extracted 674 bug reports, but only 184 bug reports
include stack traces. After pruning non-fixed bug reports and bug
reports with invalid stack traces, we are left with 101 bug reports.

3.1.3 Criteria of Reproducibility

To determine whether a crash is reproduced or not, we check
the exception type and location of the original and reproduced cra-
shes [8]. If the reproduced exception type and the original type are
identical, and both crashed in the same line, we assume the crash is
successfully reproduced.

3.1.4 Object Capturing

STAR requires captured objects from normal program execution.
To capture objects, we instrument our subject systems and execute
system tests provided by each subject. The instrumented systems
capture objects and serialize them during execution of the system
tests.

By executing instrumented systems with their system tests, we
captured and serialized 12,420 objects zipped in 342MB on aver-
age for each version of AJDT, 61,408 objects zipped in 104MB for
ACC and 7,012 objects zipped in 4MB for ACM. Often, executing
instrumented systems incurs a huge overhead [8, 31, 33, 35]. How-
ever, note that this capturing process is conducted once in house,
the deployed software does not incur any additional overhead.

3.2 Reproducibility

In this section, we show how many crashes are reproducible by
2Bug reports of AJDT can be found in http://bugs.
eclipse.org, and bug reports of both ACC and ACM can be
found in https://issues.apache.org/.

45%

Results

Summary

• STAR approaches
- Feedback based random approach (feed)
- Object-capture based (objcap)
- Static analysis (precondition)

• 45 % crash reproduction (with 0 overhead)

• Repository data (captured objects, crash
traces) help static analysis

Future Work

• Common change patterns + autofix?
- Most autofix approaches are random mutation

based

• Translation + Static analysis
- “press x% when %x is on”

• Any other combinations with MSR?

Sung Kim <hunkim@cse.ust.hk>
http://www.cse.ust.hk/~hunkim

http://www.se.or.kr (Korean Blog)

STAR: Stack-Trace based
Automatic crash Reproduction

mailto:hunkim@ust.hk
mailto:hunkim@ust.hk
http://www.cse.ust.hk/~hunkim
http://www.cse.ust.hk/~hunkim
http://www.se.or.kr
http://www.se.or.kr

