

Simulation Walls For System Architects

Jangwoo Kim

January 7, 2011

High Performance Computing Lab Department of Computer Science & Engineering Pohang University of Science and Technology (POSTECH)

SIMULATION: What is it?

• Simulation is the key of all system R&Ds.

Simulators are S/Ws to do

- explore design choices
- come up with a new design
- evaluate the design's
 - performance
 - power
 - reliability
 - ...
- improve the design with feedbacks

No simulation \rightarrow No product & No research!

SIMULATION: When you fail on it..

• WORST NIGHTMARE for system developers

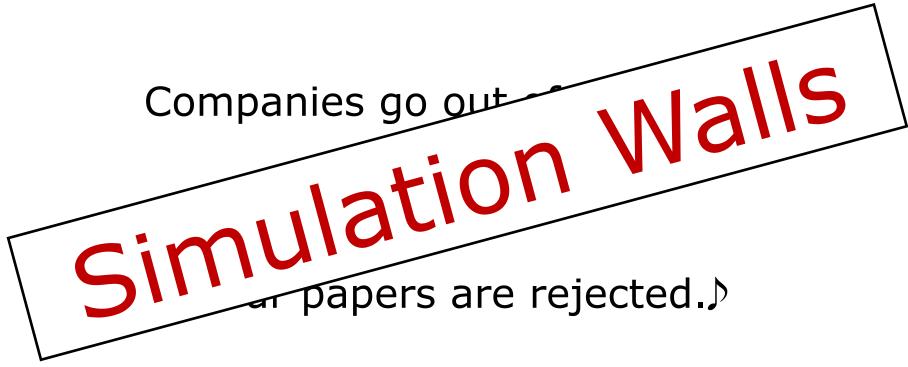
- -When simulation results are **wrong**
 - You spend MONEY & TIME only to find out your design is wrong.
- –When simulation takes **too long**
 - Your bright ideas never become a real product.
- -When simulation is **too expensive**
 - You don't want to buy a supercomputer to simulate your iPhone.

How serious are these threats?♪

SIMULATION: Where are we now?

• Simulation is 'THE' BOTTLENECK.

Companies go out of business.


You lose jobs.

Your papers are rejected.♪

SIMULATION: Where are we now?

• Simulation is 'THE' BOTTLENECK.

SIMULATION: What do we want?

Correct Simulation

-Can we trust simulation results?

Fast Simulation

-Can we get useful results early enough?

• Inexpensive Simulation

-Can we do it at low costs?

Simulation must be correct, fast, and efficient!>

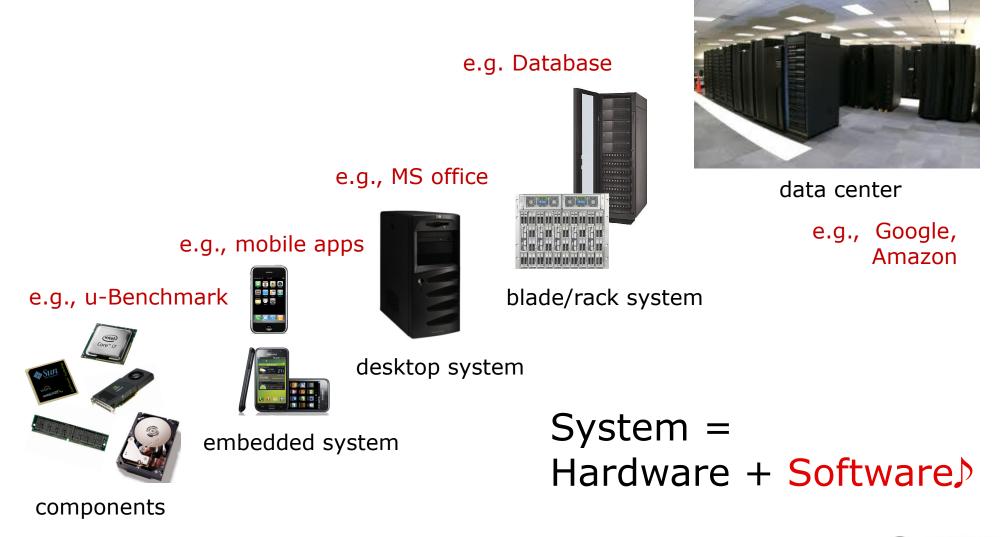
SIMULATION: Why is it so difficult?

Must know everything about HW & SW!

- -Hardware abstraction
 - How to simplify the details of model?
- -Simulator development
 - How to develop a good simulator?
- -Workload abstraction
 - What to run on the simulator?
- -Evaluation methodology
 - What to report as a single metric?

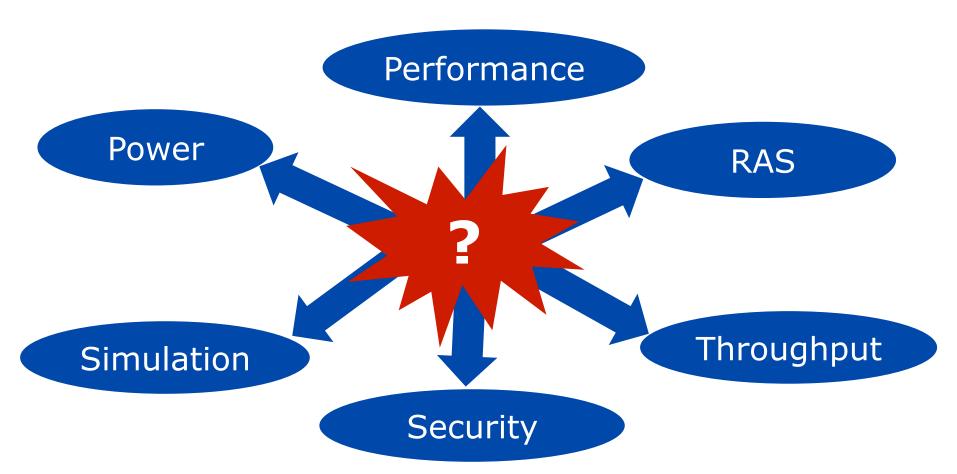
See the challenges are real?

Outline


Introduction

Challenges in Simulation

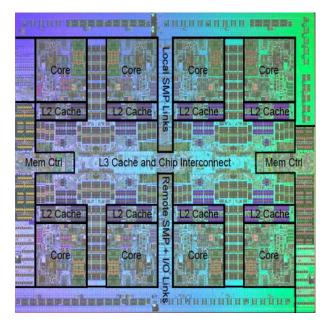
- HW perspective
- -SW perspective
- Next-generation simulation
- Incoming challenges

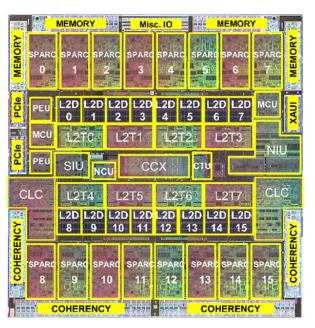


Scope of computer systems

Design issues to be considered

Extremely difficult to find a balanced design


Real world microprocessor (1/2)


>1B transistors!

Multi-core/Multi-thread CPUs are REAL!

Real world microprocessor (2/2)

- IBM Power7
- 32 threads on 8 cores
- 32MB L2 cache
- >1B transistors!

- Sun Rainbow Fall
- 128 threads on 16 cores
- 6MB L2 cache
- >1B transistors!

We are getting 'Many-core/Many-thread' CPUs!

Increasing HW complexity

• Existing systems already complex enough

- -E.g., modern CPU designs
 - Multi-core / multi-thread architecture
 - Deep pipeline with speculative execution
 - Multi-level caches

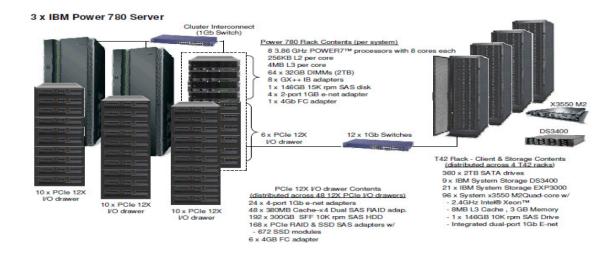
New HW technologies make things worse

- Heterogeneous cores
- Flash / PCM / 3D memory
- FPGA, reconfigurable computing
- Next-generation platform (e.g., smart phone, datacenter, etc.)

Simulation \rightarrow too slow, buggy and expensive.

Outline

Introduction


Challenges in Simulation

-HW perspective

-SW perspective

- Next-generation simulation
- Incoming challenges

Real world workload: e.g., database, facebook

http://www.tpc.org/tpcc

- TPC-C run on DB2 / IBM Power 780 (8/17/2010) → 8M users, 10.3M tpmC
- 768 threads /192 cores /24 CPUs
- ~2TB memory/~40TB SSD /~250TB disks → >\$14M USD
- 2 hour measurement after 2.5 hour warm-up !!

Real workloads are extremely large-scale, long-latency, full-system workloads.

Increasing SW complexity

Existing SWs already complex enough

-E.g., Database engine, Web Server

- Full-system requirement
- Large-scale deployment
- Long-latency benchmarking

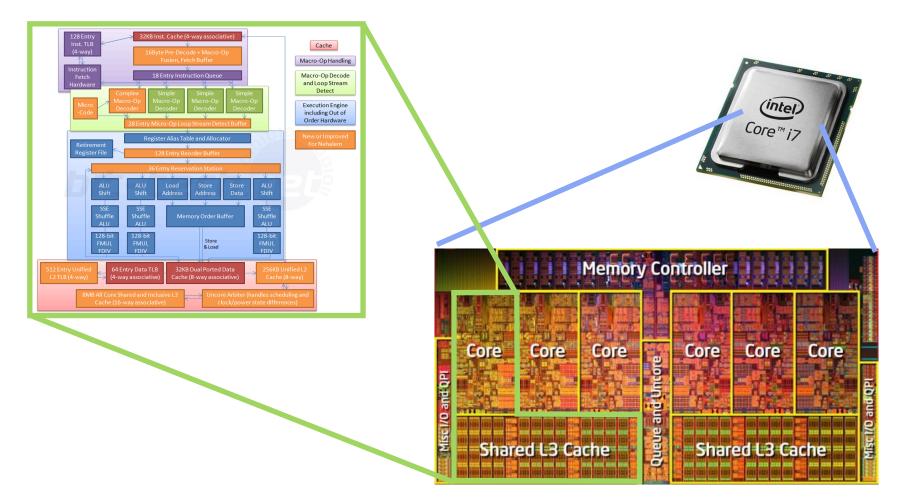
Incoming SWs make things worse

- Cloud/ Web2.0+
- // Handling many users?
 - // Mixed workloads on Virtual Machine?
- Mobile applications

// App store?

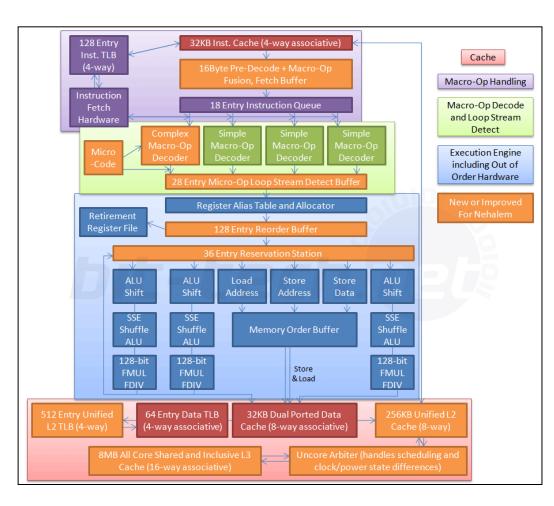
// What is coming next?

Simulation becoming too slow, too buggy and too expensive. \triangleright


■ ?

Outline

- Introduction
- Simulation challenges
- Next-generation simulation
 Scalable simulation
 - Full-system simulation
 - -Simulation acceleration
 - -Simulation validation
- Incoming challenges


Abstraction: What to simulate?

Abstraction can be applied at every level.

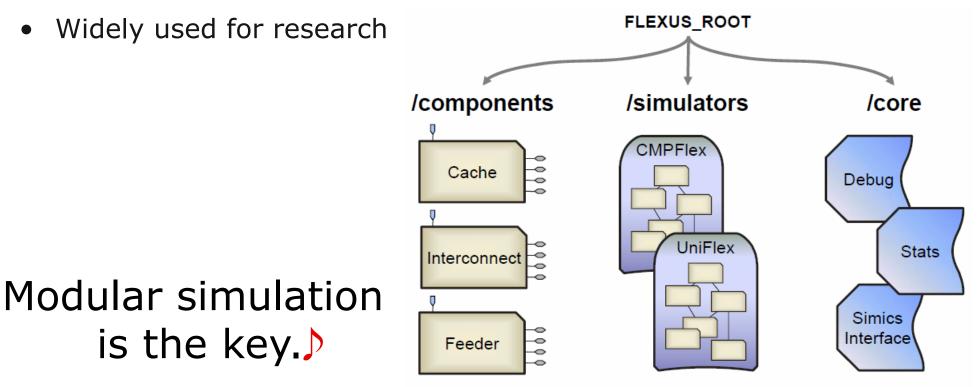
Architect's view of CPU

- Core pipeline
 - CISC->RISC translation
 - Hyper-threading
 - Branch prediction
 - Out-of-order execution
- Multi-core/multi-thread
 - 2 thread per core
 - 4-6 cores per chip
- Cache
 - 32KB L1 i-cache
 - 32KB L1 d-cache
 - 256KB L2 cache
 - 8-12MB L3 cache

This is 'micro-architecture' of Intel i7 CPU. >

Even this is already too complex

• CPU simulator is a very very very large SW.


- ->100K lines of high perf. codes (usually in C/C++)
- Everything should be written for design explorations.
 - More cores? more threads?
 - Higher clock? deeper pipeline?
 - In-order execution VS out-of-execution?
 - Larger caches? high associative caches?
 - Different cache protocols?
 - Memory consistency?
 - ...

How to make a flexible and scalable simulator?

Flexus: open-source CPU simulator (1/2)

- Cycle-accurate CPU and system simulator built by `modules.'
- Multi cores, multi threads, multi nodes and distributed memory.
- > 100K lines written in C++ by >5 PhDs at CMU for 3+ years

Flexus: open-source CPU simulator (2/2)

CPU simulator

포항공과대학교

Various modules

П Drive Drive -Ports Component -D Component Ports Feeder --ᅎ Drive Drive IFetch Execute Component Ports р Р Component Ports -L11 L1D Drive Drive Component \square Ports Mux Component Ports Ā Drive L2 \neg Ports Component --

Simulator is made by connecting modules \rightarrow scalable & flexible!

Warning..

- Modular simulation is for scalability & flexibility.

- Typical software engineering issues still remain.

(e.g., slow and expensive simulation, many-people involved project, impractical code review, bugs bugs bugs bugs bugs ..)

Outline

- Introduction
- Challenges in simulation
- Next-generation simulation
 - Scalable simulation

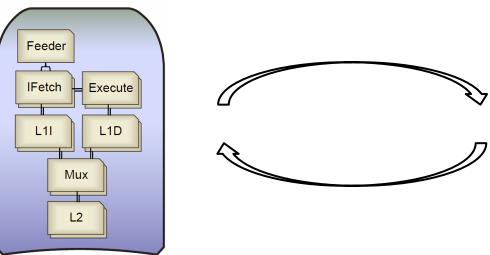
- Full-system simulation

- -Simulation acceleration
- -Simulation validation
- Incoming issues

Full-system simulation is a MUST!

• What is a full system?

- –Made of entire stacks of HW and SW
 - HW: CPU + memory + I/O + network + ...
 - SW: OS + device drivers + commercial applications + ...
- -Runs system-level applications (e.g., DB, Web server).
- > Modern mobile devices are full systems.


• Full-system simulation is difficult.

– Difficult to model every detail of HW and SW.

How to do efficient full-system simulation?

Full-system simulation using VM (1/2)

Flexus : detailed timing simulator

Simics: Virtual Machine functional simulator

- cycle accurate timing simulation

- full-system functional simulation

For system-level functionality, we can use existing Virtual Machine S/Ws!

Full-system simulation using VM (2/2)

• **Simics** (or similar VMs)

- supports various full-system platforms
 - ISA: x86, PowerPC, SPARC, ARM, etc.
 - OS: Window, Linux, Solaris, AIX, etc.
 - Devices: memory, disk, bridges, etc.
 - → Can run system-level workloads on commercial OS!

• **Flexus** (or other timing sims)

 communicate with VM to offload full-system functionality (e.g., IO system call handling)

Flexus & Simics → detailed timing simulation of full-system commercial workloads!

Outline

- Introduction
- Challenges in simulation
- Next-generation simulation
 - Scalable simulation
 - Full-system simulation

- Simulation acceleration

- -Simulation validation
- Incoming challenges

Detailed simulation is very SLOW

Typical simulation speed

- -Speed granularity as Instruction Per Second (IPS)
 - Real machine (e.g., Intel CPU) : 1,000,000,000 IPS
 - Same ISA/arch functional VM simulator : 500,000,000 IPS
 - Different ISA/arch functional VM simulator : 1,000,000 IPS
 - Timing simulator (e.g., Flexus) : 1,000 IPS
- -1 min on real machine \rightarrow >1 year on timing simulator
- -However, real-world workloads require long-period benchmarking (e.g., hours for TPCC on database engine)

Must accelerate simulation as much as possible!

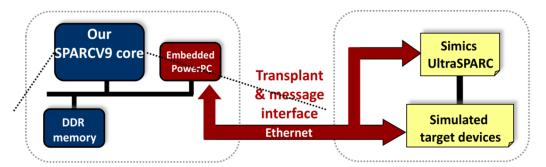
Reduce the size of workload

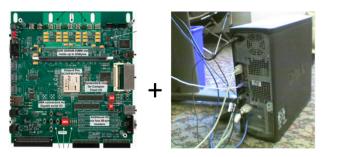
Parallel runs of only fractions of workload

- -Run only few frequently-visited long routines
 - Require fast profiling on a real machine
 - Difficult to apply for parallel workloads
- –Alternatively, run many small samples in parallel
 - Simulating small samples (e.g., 1M instructions) in parallel
 - A small sample must restore some uArch info (e.g., cache state)
 - Too slow to re-create samples even with a fast simulator

Real machine

: 1 hour


- \rightarrow Sequential simulation to create 1K samples : > 1 month Parallel timing simulation with 1K samples : < 1 day \rightarrow



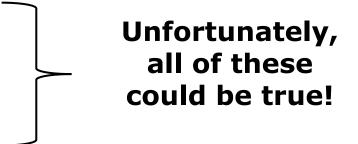
HW/SW co-simulation

Fast, functional CPUs on FPGA

Simics: Virtual Machine functional simulator

HW/SW co-simulation accelerated Flexus sample creation by > 100x!

Outline


- Introduction
- Challenges in simulation
- Next-generation simulation
 - Scalable simulation
 - Full-system simulation
 - -Simulation acceleration
 - Simulation validation
- Incoming challenges

Can we trust simulation results?

Suppose you modeled & simulated a CPU

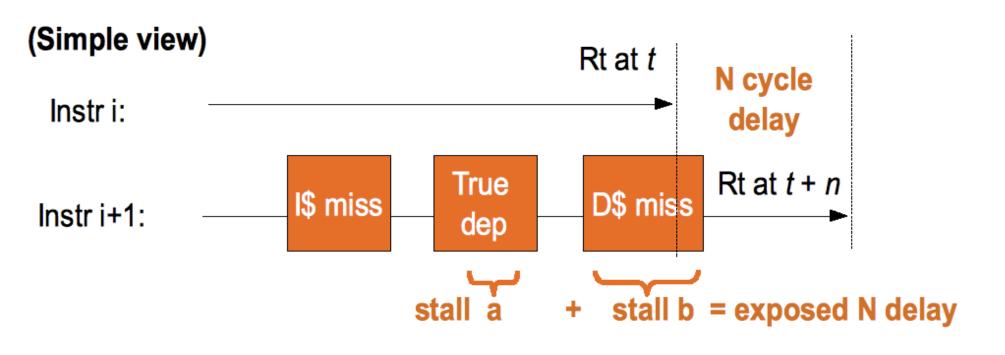
- -4-way execution engine architecture
 - Can commit up to 4 instruction per cycle (Ideal IPC=4)
 - However, you got IPC of 2 for a target workload (< Ideal IPC)</p>
- -Now, we are in serious dilemma!
 - Is this the real performance?
 - Is there a bug in model?
 - Is there a bug in simulator?
 - Is there a bug in workload?

We must validate our simulation results!

Simulation validation is difficult

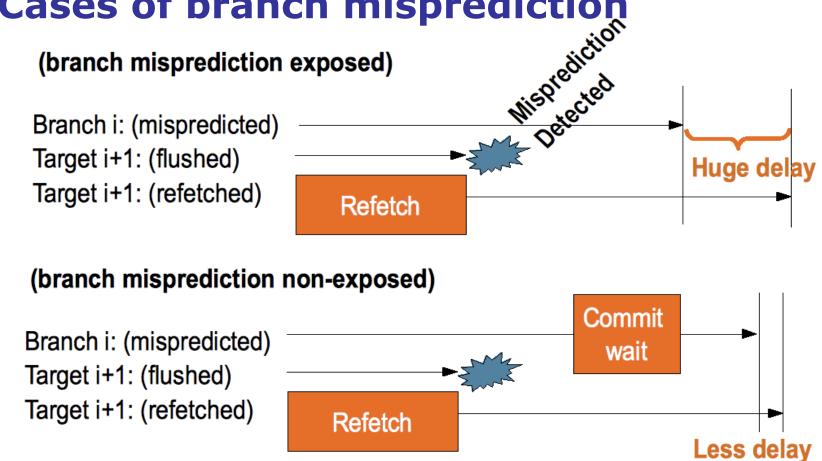
Old methods do not work well any more

- -Instruction Per Clock (IPC) / Clock Per Instruction (CPI)
 - Can't explain internal pipeline behaviors
- -Performance counters
 - Can't explain timing behaviors
- -Per-cycle pipeline-view outputs
 - Human eyes can track of only 100s instructions at a time
- -Per-cycle RTL signal-view outputs
 - Human eyes can track of only few instructions at a time


We need a new way to validate sim. results

Sim. validation with Perf. Analyzer (1/3)

• Let's find out where we lose timing


-If an instruction in a given pipe stage does not move to the next stage, there is a perf. losing event. What is it?

Sim. validation with Perf. Analyzer (2/3)

Cases of branch misprediction

Now we know the exact impact of misprediction!♪

Sim. validation with Perf. Analyzer (3/3)

• We can tell where and why we lost timing

 E.g. "35% loss due to L2 d-cache miss 30% loss due to branch misprediction 20% loss due to floating-point division 15% loss due to data dependency"

can compare these values!

- -Key advantages
 - Algorithm needs to analyze only in-flight instructions
 - Statistical data-correlation methods can be applied
 - Post-analysis tools can be used to avoid re-simulations
 - Sim VS Sim comparison is easy(e.g., RTL vs Timing)

Currently being implemented in Flexus @ POSTECH!

Outline

- Introduction
- Challenges in simulation
- Next-generation simulation
- Incoming challenges

Future (or now) challenges (1/2)

• Simulation issue

- -How to simulate 100s cores, 100s nodes, data centers?
- -How to measure power, reliability, variability, etc?
- -How to parallelize a S/W simulator?
- -How to apply HW/SW co-simulation more aggressively?

Workload issue

- -What is a representative workload for a future system?
- -How to profile future workloads?
- -How to re-size future workloads?

Future (or now) challenges (2/2)

• Full system simulation issue

- -How to parallelize VM?
- -How to move on open-source VM?

Validation issue

- -How to validate trace/execution-driven simulations?
- -How to validate RTL simulations?
- -How to validate multi-phase simulations?

A long, challenging journey waiting for us.

Final messages

- Simulation is THE KILLER.

- We needs fast, accurate, inexpensive simulators.
 - No real solution yet.
 - Let's work on it together!

Thank You!

Jangwoo Kim e-mail: jangwoo@postech.ac.kr http://www.postech.ac.kr/~jangwoo

@ 2011 Jangwoo Kim

