
Jangwoo Kim

January 7, 2011

High Performance Computing Lab
Department of Computer Science & Engineering
Pohang University of Science and Technology (POSTECH)

@ 2011 Jangwoo Kim

SIMULATION: What is it?

•  Simulation is the key of all system R&Ds.

1

No simulation  No product & No research!

 Simulators are S/Ws to do
-  explore design choices
-  come up with a new design
-  evaluate the design’s

  performance
  power
  reliability
  …

-  improve the design with feedbacks

@ 2011 Jangwoo Kim

SIMULATION: When you fail on it..

•  WORST NIGHTMARE for system developers
− When simulation results are wrong

 You spend MONEY & TIME only to find out your design is wrong.

− When simulation takes too long
 Your bright ideas never become a real product.

− When simulation is too expensive

 You don’t want to buy a supercomputer to simulate your iPhone.

2

How serious are these threats?

@ 2011 Jangwoo Kim

SIMULATION: Where are we now?

•  Simulation is ‘THE’ BOTTLENECK.

3

Companies go out of business.

You lose jobs.

Your papers are rejected.

@ 2011 Jangwoo Kim

SIMULATION: Where are we now?

4

Companies go out of business.

You lose jobs.

Your papers are rejected.
Simulation Walls
•  Simulation is ‘THE’ BOTTLENECK.

@ 2011 Jangwoo Kim

SIMULATION: What do we want?

•  Correct Simulation
− Can we trust simulation results?

•  Fast Simulation
− Can we get useful results early enough?

•  Inexpensive Simulation
− Can we do it at low costs?

5

Simulation must be correct, fast, and efficient!

@ 2011 Jangwoo Kim

SIMULATION: Why is it so difficult?

•  Must know everything about HW & SW!
− Hardware abstraction

 How to simplify the details of model?

− Simulator development
 How to develop a good simulator?

− Workload abstraction

 What to run on the simulator?

− Evaluation methodology
 What to report as a single metric?

6

See the challenges are real?

@ 2011 Jangwoo Kim

Outline

•  Introduction

•  Challenges in Simulation
− HW perspective

− SW perspective

•  Next-generation simulation

•  Incoming challenges

7

@ 2011 Jangwoo Kim

Scope of computer systems

8

System =
Hardware + Software

components

embedded system

desktop system

blade/rack system

data center

e.g., u-Benchmark

e.g., mobile apps

e.g., MS office

e.g. Database

e.g., Google,
 Amazon

@ 2011 Jangwoo Kim

Design issues to be considered

9

RAS

?

Power

Performance

Throughput Simulation

Security

Extremely difficult to find a balanced design

@ 2011 Jangwoo Kim

Real world microprocessor (1/2)

10

•  Intel i7 Nehalem

•  12 threads on 6 cores / 12MB L3 cache

•  > 100W TDP

•  >1B transistors!

Multi-core/Multi-thread CPUs are REAL!

@ 2011 Jangwoo Kim

Real world microprocessor (2/2)

11

•  Sun Rainbow Fall
•  128 threads on 16 cores
•  6MB L2 cache
•  >1B transistors!

We are getting ‘Many-core/Many-thread’ CPUs!

•  IBM Power7
•  32 threads on 8 cores
•  32MB L2 cache
•  >1B transistors!

@ 2011 Jangwoo Kim

Increasing HW complexity

•  Existing systems already complex enough
− E.g., modern CPU designs

 Multi-core / multi-thread architecture

 Deep pipeline with speculative execution

 Multi-level caches

  New HW technologies make things worse
 Heterogeneous cores

 Flash / PCM / 3D memory

 FPGA, reconfigurable computing

 Next-generation platform (e.g., smart phone, datacenter, etc.)

12

Simulation  too slow, buggy and expensive.

@ 2011 Jangwoo Kim

Outline

•  Introduction

•  Challenges in Simulation
− HW perspective

− SW perspective

•  Next-generation simulation

•  Incoming challenges

13

@ 2011 Jangwoo Kim

Real world workload: e.g., database, facebook

14

•  TPC-C run on DB2 / IBM Power 780 (8/17/2010)  8M users, 10.3M tpmC

•  768 threads /192 cores /24 CPUs

•  ~2TB memory/~40TB SSD /~250TB disks  >$14M USD

•  2 hour measurement after 2.5 hour warm-up !!

Real workloads are extremely large-scale,
long-latency, full-system workloads.

http://www.tpc.org/tpcc

@ 2011 Jangwoo Kim

Increasing SW complexity

•  Existing SWs already complex enough
− E.g., Database engine, Web Server

 Full-system requirement

 Large-scale deployment

 Long-latency benchmarking

  Incoming SWs make things worse
 Cloud/ Web2.0+ // Handling many users?

 // Mixed workloads on Virtual Machine?

 Mobile applications // App store?

  ? // What is coming next?

15

Simulation becoming too slow, too buggy
and too expensive.

@ 2011 Jangwoo Kim

Outline

•  Introduction

•  Simulation challenges

•  Next-generation simulation
− Scalable simulation

− Full-system simulation

− Simulation acceleration

− Simulation validation

•  Incoming challenges

16

@ 2011 Jangwoo Kim

Abstraction: What to simulate?

17

Abstraction can be applied at every level.

@ 2011 Jangwoo Kim

Architect’s view of CPU

18

•  Core pipeline

−  CISC->RISC translation

−  Hyper-threading

−  Branch prediction

−  Out-of-order execution

•  Multi-core/multi-thread

−  2 thread per core

−  4-6 cores per chip

•  Cache
−  32KB L1 i-cache

−  32KB L1 d-cache

−  256KB L2 cache

−  8-12MB L3 cache

This is ‘micro-architecture’ of Intel i7 CPU.

@ 2011 Jangwoo Kim

Even this is already too complex

19

•  CPU simulator is a very very very large SW.
− >100K lines of high perf. codes (usually in C/C++)

−  Everything should be written for design explorations.
 More cores? more threads?

 Higher clock? deeper pipeline?

 In-order execution VS out-of-execution?

 Larger caches? high associative caches?

 Different cache protocols?

 Memory consistency?

 …

How to make a flexible and scalable simulator?

@ 2011 Jangwoo Kim

Flexus: open-source CPU simulator (1/2)

20

•  Cycle-accurate CPU and system simulator built by ‘modules.’

•  Multi cores, multi threads, multi nodes and distributed memory.

•  > 100K lines written in C++ by >5 PhDs at CMU for 3+ years

•  Widely used for research

Modular simulation
 is the key.

@ 2011 Jangwoo Kim 21

Simulator is made by connecting modules
 scalable & flexible!

Various modules CPU simulator

Flexus: open-source CPU simulator (2/2)

@ 2011 Jangwoo Kim

Warning..

- Modular simulation is for scalability & flexibility.

- Typical software engineering issues still remain.
(e.g., slow and expensive simulation,

many-people involved project,

impractical code review,

bugs bugs bugs bugs bugs ..)

22

@ 2011 Jangwoo Kim

Outline

•  Introduction

•  Challenges in simulation

•  Next-generation simulation
− Scalable simulation

− Full-system simulation

− Simulation acceleration

− Simulation validation

•  Incoming issues

23

@ 2011 Jangwoo Kim

Full-system simulation is a MUST!

•  What is a full system?
− Made of entire stacks of HW and SW

 HW: CPU + memory + I/O + network + …

 SW: OS + device drivers + commercial applications + …

− Runs system-level applications (e.g., DB, Web server).

  Modern mobile devices are full systems.

•  Full-system simulation is difficult.
− Difficult to model every detail of HW and SW.

24

How to do efficient full-system simulation?

@ 2011 Jangwoo Kim

Full-system simulation using VM (1/2)

25

Flexus : detailed
timing simulator

Simics: Virtual Machine
functional simulator

For system-level functionality, we can use
existing Virtual Machine S/Ws!

- cycle accurate
timing simulation

- full-system
functional simulation

@ 2011 Jangwoo Kim 26

Flexus & Simics  detailed timing simulation of
full-system commercial workloads!

Full-system simulation using VM (2/2)

•  Simics (or similar VMs)
−  supports various full-system platforms

 ISA: x86, PowerPC, SPARC, ARM, etc.

 OS: Window, Linux, Solaris, AIX, etc.

 Devices: memory, disk, bridges, etc.

 Can run system-level workloads on commercial OS!

•  Flexus (or other timing sims)
−  communicate with VM to offload full-system
functionality (e.g., IO system call handling)

@ 2011 Jangwoo Kim

Outline

•  Introduction

•  Challenges in simulation

•  Next-generation simulation
− Scalable simulation

− Full-system simulation

− Simulation acceleration

− Simulation validation

•  Incoming challenges

27

@ 2011 Jangwoo Kim

•  Typical simulation speed
− Speed granularity as Instruction Per Second (IPS)

 Real machine (e.g., Intel CPU) : 1,000,000,000 IPS

 Same ISA/arch functional VM simulator : 500,000,000 IPS

 Different ISA/arch functional VM simulator : 1,000,000 IPS

 Timing simulator (e.g., Flexus) : 1,000 IPS

− 1 min on real machine  >1 year on timing simulator

− However, real-world workloads require long-period
benchmarking (e.g., hours for TPCC on database engine)

28

Must accelerate simulation as much as possible!

Detailed simulation is very SLOW

@ 2011 Jangwoo Kim

•  Parallel runs of only fractions of workload
− Run only few frequently-visited long routines

 Require fast profiling on a real machine

 Difficult to apply for parallel workloads

− Alternatively, run many small samples in parallel
 Simulating small samples (e.g., 1M instructions) in parallel

 A small sample must restore some uArch info (e.g., cache state)

 Too slow to re-create samples even with a fast simulator

29

 Real machine : 1 hour
  Sequential simulation to create 1K samples : > 1 month
  Parallel timing simulation with 1K samples : < 1 day

Reduce the size of workload

@ 2011 Jangwoo Kim

HW/SW co-simulation

30

HW/SW co-simulation accelerated
Flexus sample creation by > 100x!

Simics: Virtual Machine
functional simulator

Fast, functional CPUs
on FPGA

@ 2011 Jangwoo Kim

Outline

•  Introduction

•  Challenges in simulation

•  Next-generation simulation
− Scalable simulation

− Full-system simulation

− Simulation acceleration

− Simulation validation

•  Incoming challenges

31

@ 2011 Jangwoo Kim

Can we trust simulation results?

•  Suppose you modeled & simulated a CPU
− 4-way execution engine architecture

 Can commit up to 4 instruction per cycle (Ideal IPC=4)

 However, you got IPC of 2 for a target workload (< Ideal IPC)

− Now, we are in serious dilemma!
 Is this the real performance?

 Is there a bug in model?

 Is there a bug in simulator?

 Is there a bug in workload?

32

Unfortunately,
all of these

could be true!

We must validate our simulation results!

@ 2011 Jangwoo Kim

Simulation validation is difficult

•  Old methods do not work well any more
− Instruction Per Clock (IPC) / Clock Per Instruction (CPI)

 Can’t explain internal pipeline behaviors

− Performance counters
 Can’t explain timing behaviors

− Per-cycle pipeline-view outputs

 Human eyes can track of only 100s instructions at a time

− Per-cycle RTL signal-view outputs
 Human eyes can track of only few instructions at a time

33

We need a new way to validate sim. results

@ 2011 Jangwoo Kim

Sim. validation with Perf. Analyzer (1/3)

•  Let’s find out where we lose timing
− If an instruction in a given pipe stage does not move to
the next stage, there is a perf. losing event. What is it?

34

@ 2011 Jangwoo Kim 35

Now we know the exact impact of misprediction!

•  Cases of branch misprediction

Sim. validation with Perf. Analyzer (2/3)

@ 2011 Jangwoo Kim

•  We can tell where and why we lost timing
 E.g. “ 35% loss due to L2 d-cache miss

 30% loss due to branch misprediction

 20% loss due to floating-point division

 15% loss due to data dependency “

− Key advantages
 Algorithm needs to analyze only in-flight instructions

 Statistical data-correlation methods can be applied

 Post-analysis tools can be used to avoid re-simulations

 Sim VS Sim comparison is easy(e.g., RTL vs Timing)

36

can compare
these values!

Currently being implemented in Flexus @ POSTECH!

Sim. validation with Perf. Analyzer (3/3)

@ 2011 Jangwoo Kim

Outline

•  Introduction

•  Challenges in simulation

•  Next-generation simulation

•  Incoming challenges

37

@ 2011 Jangwoo Kim

Future (or now) challenges (1/2)

•  Simulation issue
− How to simulate 100s cores, 100s nodes, data centers?

− How to measure power, reliability, variability, etc?

− How to parallelize a S/W simulator?

− How to apply HW/SW co-simulation more aggressively?

•  Workload issue
− What is a representative workload for a future system?

− How to profile future workloads?

− How to re-size future workloads?

38

@ 2011 Jangwoo Kim

Future (or now) challenges (2/2)

•  Full system simulation issue
− How to parallelize VM?

− How to move on open-source VM?

•  Validation issue
− How to validate trace/execution-driven simulations?

− How to validate RTL simulations?

− How to validate multi-phase simulations?

39

A long, challenging journey waiting for us.

@ 2011 Jangwoo Kim

Final messages

-  Simulation is THE KILLER.

-  We needs fast, accurate, inexpensive simulators.

-  No real solution yet.

-  Let’s work on it together!

40

@ 2011 Jangwoo Kim 41

Question?

Thank You!

Jangwoo Kim
e-mail: jangwoo@postech.ac.kr
http://www.postech.ac.kr/~jangwoo

