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Information Spreading in          
Complex Networks 
 Network models play a fundamental role as a 

medium for the spread of information, ideas, and 
influence among its members.  

 Direct Marketing takes the “word-of-mouth” effects 
to significantly increase profits.  

 Examples: 

 A company selects a small number of customers 
and ask them to try a new  

   product. The company wants  

   to choose a small group with  

   largest influence.  
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Erdos-Renyi Random Graph 
 

 n nodes, connect each pair of nodes with probability p 

 

 

 

 

 

 

  Phase transition (For p=z/n, around z=1): 

   many small components        Single giant component  
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Poisson Distribution 

 Coming from Binomial distribution 
 Fix the expectation z=np 

 Let the number of trials n 

A Binomial distribution B(n,z/n) converges to the    
Poisson distribution of rate z 

 

 

 

 

 E[X] = z, Var(X) = z 
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Plots of Poisson Distribution 
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Branching Process 
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Z is the average degree 



Giant component size 

   )1(

!

)( uz
k

zk

k e
k

uz
euPu

u ~ prob. node is not in giant component 

S ~ fraction of nodes in giant component 

uS 1

If node is not in giant component, then neither are its neighbors: 

We can also calculate the solution iteratively. 

Fraction of nodes in giant component: zSeS 1

Notice: this depends crucially on degree dist. 
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Giant component size 

 
 
 

 For z<1, the only non-negative solution is S=0. 
 

 For z>1 (after the phase transition), the only non-
negative solution is the fractional size of the giant 
component. 
 

 

zSeS 1
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Scale Free Networks 

So what underlying mechanism is responsible for the power law distribution? 

There is something special about power law distributions… 

One particularly ubiquitous degree distribution form is the power law: 

Network Size Ref 

www 2x108 2.1 2.71 Broder (2000) 

Movie actors 2.12x105 2.3 2.3 (Barabasi 1999) 

Word co-occurence 4.62x105 2.7 2.7 (Cancho 2001) 
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Power Laws and Scale-Free behavior  

Scale-free Criteria:  )()()( xpafaxp 

Differentiating above w.r.t. a and considering the cases  x=1, a=1 yields: 

)(
)1(

)1('
xp

p

p

dx

dp
x   xxp )(with the solution: 

Power law distributions are the only functions that 

satisfy the Scale Free Criteria. 
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Preferential Attachment Model 

Attach new node to existing  

graph with probability: 
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This model was derived in the 1950’s by Herbert Simon. 

  who won a Nobel Prize in economics for entirely 

different work. 
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Preferential Attachment Model 
),( tkN ~ number of nodes with degree k at time t 

A decrease in          implies an increase in  ),( tkN )1,1(  tkN
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Information Spreading Models 

 A network is represented as a graph. Each 
customer is considered as a node.  

 Each node can be either active (accept the 
information) or inactive.  

 By the “word-of-mouth” effects, each node’s 
tendency to become active increases 
monotonically as more of its neighbors become 
active.  

 Assumption: node can switch to active from 
inactive, but does not switch in the other 
direction.   
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Independent Cascade Model 

Starts with an initial set of active nodes A0 

 The diffusion process keeps in discrete steps  

 When node V first becomes active in step t, 
it is given a single chance to activate each 
currently inactive neighbor W. It succeeds at 
probability pv,w  - a parameter of the system. 

V 

W 

0.7 0.2 
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Example 
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Linear Threshold Model 

A node    is influenced by each neighbor 
according to a weight          such that  

 

 

 

 Each node    has a threshold      which is chosen 
from the interval [0,1]. 

A node    becomes active if  

Alice Bob 

You 

0.7 0.2 

w is active 
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Example 
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Threshold phenomenon in 
information spreading 
 We observe giant information spreading suddenly 

occurs according to a parameter in real social 
networks. 

 We are developing models, and mathematically 
and statistically analyzing this phenomenon. 
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Influence Maximization Problem 

 Define       to be the number of active nodes at 
the end of the information spreading process.  

 Problem Definition: 

Given a parameter k, find a k-node set A to 
maximize         .  

NP-hard for both independent cascade model 
and linear threshold model.  

 We propose a novel recursive algorithm that 
approximately computes the influence. 

 Our algorithm empirically performs very well. 
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Applied Algorithm Lab 

 Graduate Students 
 Nam-ju Kwak (branching process in social networks) 

 Boyoung Kim (decentralized ranking learning) 

 Yongsub Lim (graphical model, multi-agent system analysis)  

 Sungsu Lim (modeling random scale-free network) 

 Wooram Heo (influence maximization) 

 Seulki Lee (threshold analysis of information spreading) 

 Undergraduate Research Program 
 Taejin Chin (sorting algorithm for partially sorted list) 

Kyomin Jung, KAIST 20 


