Jan 07 2011 ERC Workshop

Analyzing Information Spreading in Complex Networks

Kyomin Jung

Applied Algorithm Lab KAIST

Information Spreading in Complex Networks

- Network models play a fundamental role as a medium for the spread of information, ideas, and influence among its members.
- Direct Marketing takes the "word-of-mouth" effects to significantly increase profits.
- Examples:
 - A company selects a small number of customers

and ask them to try a new product. The company wants to choose a small group with largest influence.

Erdos-Renyi Random Graph

n nodes, connect each pair of nodes with probability p

Phase transition (For p=z/n, around z=1):

many small components

→ Single giant component

Poisson Distribution

- Coming from Binomial distribution
 □ Fix the expectation z=np
 □ Let the number of trials n→∞
 - A Binomial distribution B(n,z/n) converges to the Poisson distribution of rate z

$$\Pr(X = x) = \mathcal{P}_{\theta}(x) = \begin{cases} \frac{z^{x}}{x!}e^{-z} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

■ E[X] = z, Var(X) = z

Plots of Poisson Distribution

Z is the average degree

Giant component size

u ~ prob. node is not in giant component

S ~ fraction of nodes in giant component

$$S = 1 - u$$

If node is not in giant component, then neither are its neighbors:

$$u = \sum P_k u^k = e^{-z} \sum \frac{(uz)^k}{k!} = e^{z(u-1)}$$
Notice: this depends crucially on degree dist.

Fraction of nodes in giant component:

$$S = 1 - e^{-zS}$$

We can also calculate the solution iteratively.

Giant component size

$$S=1-e^{-zS}$$

■ For z<1, the only non-negative solution is S=0.

For z>1 (after the phase transition), the only nonnegative solution is the fractional size of the giant component.

Scale Free Networks

One particularly ubiquitous degree distribution form is the power law:

$$P(k) \sim k^{-\gamma}$$

Network	Size	γ^{in}	γ^{out}	Ref
WWW	2x10 ⁸	2.1	2.71	Broder (2000)
Movie actors	2.12x10⁵	2.3	2.3	(Barabasi 1999)
Word co-occurence	4.62x10 ⁵	2.7	2.7	(Cancho 2001)

So what underlying mechanism is responsible for the power law distribution?

There is something special about power law distributions...

Power Laws and Scale-Free behavior

Scale-free Criteria: p(ax) = f(a)p(x)

Differentiating above w.r.t. a and considering the cases x=1, a=1 yields:

 $x \frac{dp}{dx} = \frac{p'(1)}{p(1)} p(x)$ with the solution:

 $p(x) \propto x^{-\alpha}$

Power law distributions are the only functions that satisfy the Scale Free Criteria.

Preferential Attachment Model

This model was derived in the 1950's by Herbert Simon.

 who won a Nobel Prize in economics for entirely different work.

Preferential Attachment Model

N(k,t) ~ number of nodes with degree k at time t

A decrease in N(k,t) implies an increase in N(k+1,t+1)

$$p(k,t+1) = \left(\frac{k-1}{2t}\right) p(k-1,t) + \left(1-\frac{k}{2t}\right) p(k,t)$$
Prob. a new
node born
at time t_i has _______ Prob. a new
node pref.
attaches to a
node with
degree k at
time t+1
The above becomes:
$$P(k) = \begin{cases} (k-1)/(k+2) * P(k-1) & k \ge m+1\\ 2/(m+2) & k = m \end{cases}$$
Prob. a new
node does not
pref. attach to a
node with
degree k

$$P(k) = \lim_{t \to \infty} \left(\sum_{t_i} p(k, t) \right) / t$$

 $P(k) = \frac{2m(m+1)}{k(k+1)(k+2)}$

Kyomin Jung, KAIST

Information Spreading Models

- A network is represented as a graph. Each customer is considered as a node.
- Each node can be either active (accept the information) or inactive.
- By the "word-of-mouth" effects, each node's tendency to become active increases monotonically as more of its neighbors become active.
- Assumption: node can switch to active from inactive, but does not switch in the other direction.

Independent Cascade Model

- \Box Starts with an initial set of active nodes A_0
- □ The diffusion process keeps in discrete steps
 - When node V first becomes active in step t, it is given a single chance to activate each currently inactive neighbor W. It succeeds at probability p_{v,w} - a parameter of the system.

Example

Linear Threshold Model

 \Box A node v is influenced by each neighbor w according to a *weight* $b_{v,w}$ such that

$$\sum_{w \text{ neighbor of } v} b_{v,w} \leq 1$$

- □ Each node v has a threshold θ_v which is chosen from the interval [0,1].
- \square A node v becomes active if

$$\sum_{\substack{w \text{ neighbor of } v \\ w \text{ is active}}} b_{v,w} \geq \theta_v$$

Example

Threshold phenomenon in information spreading

- We observe giant information spreading suddenly occurs according to a parameter in real social networks.
- We are developing models, and mathematically and statistically analyzing this phenomenon.

Kyomin Jung, KAIST

Influence Maximization Problem

Define \(\sigma(A)\) to be the number of active nodes at the end of the information spreading process.

Problem Definition:

- Given a parameter k, find a k-node set A to maximize $\sigma(A)$.
- NP-hard for both independent cascade model and linear threshold model.
- We propose a novel recursive algorithm that approximately computes the influence.
 - □ Our algorithm empirically performs very well.

Applied Algorithm Lab

Graduate Students

- Nam-ju Kwak (branching process in social networks)
- Boyoung Kim (decentralized ranking learning)
- Yongsub Lim (graphical model, multi-agent system analysis)
- Sungsu Lim (modeling random scale-free network)
- Wooram Heo (influence maximization)
- Seulki Lee (threshold analysis of information spreading)

Undergraduate Research Program

□ Taejin Chin (sorting algorithm for partially sorted list)