Implicit Programming

Bruno C. d.S. Oliveira
(ongoing work jointly with Wonchan Lee,VWontae Choi,
Tom Schrijvers and Kwangkeun Yi)

Wednesday, January 12, 2011

What is it!

Implicit programming is a programming style
that relies on the compiler to infer certain
pieces of code in programs.

Wednesday, January 12, 2011

Relation to Type-Inference

® Type-inference help us by inferring types

® |mplicit programming uses types to infer
code.

Wednesday, January 12, 2011

Related Mechanisms

® Two closely related and useful language
mechanisms:

® Type Classes (Haskell and other
languages)

® |mplicits (Scala)

Wednesday, January 12, 2011

Example
(Without Implicit Programming)

Sorting

A sorting function parametrized by a
comparison function:

data Ordering = LT | EQ | GT
sort :: (a — a — Ordering) — |a| — |a]

Wednesday, January 12, 2011

Comparison functions

cmplnt ;. Int — Int — Ordering
cmpInt x y = compare T y

cmdPair :: (a — a — Ordering) — (b — b — Ordering) —
(a,b) = (a,b) — Ordering
cmdPair ca cb (z1, y1) (22, y2) =
case ca 11 x2 of

LT — LT
GT — GT

EQ) — cb y1 vy

Wednesday, January 12, 2011

Client code

programl :: | Int
programl = sort

cmplint

program?2 :: | (Int, Int)]

Programe =

13,2,4]

sort ((cmdPair cmplnt cmplnt)

[(2,3), (4,1), (2,2)]

- -

Wednesday, January 12, 2011

Example
(With Implicit Programming - Type Classes)

Sorting

Type classes can be used for constraining generic
(parametric polymorphic) functions

sort::Ord a = |a| — |a]

Prelude > List.sort |(3,3),(2,4),(3,4)]

Wednesday, January 12, 2011

Type Classes

type class

.

class Ord a where

compare :: a — a — Ordering

-

type class instance

\

J

instance (Ord a, Ord b) = Ord (a, b) where
compare (x1,1y1) (22, y2) = case compare 1 T2 of

LT — LT

GT — GT
EQ) — compare y1 yo

Wednesday, January 12, 2011

sort ;.

Code Inference

Ord a =

a] — |a]

Prelude > List.sort [(3,3),(2,4),(3,4)]

[(2,4),(3,3),(3,4)

' NJnferred by the compiler

cmdPair cmplnt cmplnt

Wednesday, January 12, 2011

Example
(With Implicit Programming - Scala Implicits)

Implicits
Sorting with an implicit argument:
def sort |T| (xs: List|T|) (implicit ordT : Ord |T)) : List |T |

Using implicits:
SOrt (l])
sort (List (3,2,1)) (mySpecialOrd)

Wednesday, January 12, 2011

Towards a calculus for
Implicit Programming

¢ Why!?

® Type classes are well-studied, but have limited
expressiveness;

® Scala implicits are not formalized;

® Understanding the essence of implicit
programming: type-directed instantiation of code

Wednesday, January 12, 2011

Type Classes vs Implicits

Type Classes Implicits What we want
Scoping Global Local Local
Implicit No Yes Yes
overriding
First-class No Yes Yes
types
Constra?nts Set List Set* ?
semantics
Type-inference Yes No Yes
Formalized Yes No Yes

Wednesday, January 12, 2011

Current Status

® Draft operational semantics; type system
and translation semantics

® Operational semantics is tricky because we
need to use types

® \Wonchan Lee will talk more about this

Wednesday, January 12, 2011

Conclusion

® |mplicit programming is useful

® |ots of applications in the Haskell and Scala
community

® Type classes and Scala implicits have trade-
offs (no mechanism subsumes the other)

® We believe there is a more general
mechanism that generalizes both

Wednesday, January 12, 2011

