
Implicit Programming

Bruno C. d. S. Oliveira
(ongoing work jointly with Wonchan Lee, Wontae Choi,

Tom Schrijvers and Kwangkeun Yi)

Wednesday, January 12, 2011

What is it?

Implicit programming is a programming style
that relies on the compiler to infer certain
pieces of code in programs.

Wednesday, January 12, 2011

Relation to Type-Inference

• Type-inference help us by inferring types

• Implicit programming uses types to infer
code.

Wednesday, January 12, 2011

Related Mechanisms

• Two closely related and useful language
mechanisms:

• Type Classes (Haskell and other
languages)

• Implicits (Scala)

Wednesday, January 12, 2011

Example
(Without Implicit Programming)

Wednesday, January 12, 2011

Sorting

A sorting function parametrized by a
comparison function:

A Calculus for Implicit Programming

DRAFT

Abstract
This paper presents a let-polymorphic calculus that can be used to
model several forms of implicit programming. Implicit program-
ming describes a particular programming style in which certain val-
ues used by a program can be inferred by exploiting type-inference.
Examples of mechanisms which support some form of implicit pro-
gramming are Haskell type classes and implicit parameters, and
Scala implicits. We show that our calculus is sufficient to model the
essence of those mechanisms and present the operational seman-
tics, type system and type-inference algorithm, as well as sound-
ness results, for the calculus.

1. Introduction
data Ordering = LT | EQ | GT
sort :: (a → a → Ordering) → [a] → [a]
sort = ⊥
cmpInt :: Int → Int → Ordering
cmpInt x y = compare x y
cmdPair :: (a → a → Ordering) → (b → b → Ordering) →

(a, b) → (a, b) → Ordering
cmdPair ca cb (x1, y1) (x2, y2) =

case ca x1 x2 of
LT → LT
GT → GT
EQ → cb y1 y2

program1 :: [Int]
program1 = sort cmpInt [3, 2, 4]

program2 :: [(Int , Int)]
program2 = sort (cmdPair cmpInt) [(2, 3), (4, 1), (2, 2)]

Implicit programming describes a particular programming style in
which certain values used by a program can be inferred by ex-
ploiting type-inference1. The most prominent example of a mecha-
nism that supports implicit programming is given by Haskell type
classes. With type classes, type-class dictionaries (which are a spe-
cific kind of records) are inferred while performing type-inference.
A canonical example is given by a sorting function for lists in
Haskell. The type of the sort function is as follows:

sort ::Ord a ⇒ [a] → [a]
In this case Ord a is a type-class constraint, which ensures that we
need to know how to compare values of type a . The type class Ord
is a kind of a record type, which specifies a number of methods (or
interface) that should be supported by instances of the type class—
in the case of Ord we will have several comparision methods.
The Ord type class can be implemented for various types such as
integers or lists of some type a . When the sort function is called
the right implementation of Ord is selected by the compiler based
on the instantiation of the type variable a . For example, calls like:

sort [1, 5, 3]
sort [[1, 5], [4, 3]]

1 This should probably be generalized to entail selection based on types,
rather than just type-inference

will trigger the selection of different implementations of the Ord
type class: in the first case, we need an implementation of type
Ord Int , whereas in the second case, we need an implementation
of type Ord [Int].

Type classes are not the only mechanism that supports implicit
programming. The Haskell extension for implicit parameters pro-
vides another example. In this case, named parameters of a certain
type can be implicitly propragated through a call-chain. Scala im-
plicits provide yet another example. In Scala values of any type can
be made implicit and passed around implicitly provided suitable
implicit declararions which describes which values should be used
by the compiler for particular types. For example, in Scala it is pos-
sible to describe a simple logging function, which takes an implicit
PrintStream as follows:

implicit val out = System.out
def lof (msg : String) (implicit o : PrintStream) = o ◦ println (msg)

This function can be used without explicitly providing the second
argument, since there is an implicit value out on scope. Neverthe-
less, it is possible to explicitly pass the second argument (for ex-
ample, if we wanted to output to System.err instead) and override
the default compiler choice.

While there is a substantial amount of work dedicated to study-
ing and formalizing type classes and also implicit parameters, there
are no formalizations of Scala-implicits-like mechanisms. Further-
more, while type classes, implicit parameters and Scala-style im-
plicits have a lot in common, there are also many differences and
each mechanism seems to have trade-offs in comparison to the
other mechanisms. For example while type classes support type-
inference of constraints, Scala implicits do not but, on the other
hand, Scala implicits can be used to make any type of values im-
plicit whereas with type classes only type class dictionaries can be
made implicit.

The purpose of this paper is to study how these mechanisms for
doing implicit programming relate to each other and to provide a
calculus that describes the essence behind those mechanisms. In
other words, this calculus can be seen as a unified foundation for
all these mechanisms, being expressive enough to model each par-
ticular mechanism, while at the same time allowing for programs
to be written conviniently2.

The calculus itself is an extension of Hindley-Milner. We
present the operational semantics, type system and type-inference
algorithm, as well as soundness results, for the calculus. We also
present a simple calculus for type classes and Scala-style implicits
and show how programs written in those calculi can be translated
into our calculus by a type-preserving translation.

In summary, our contributions are:

• λ? - A let-polymorphic calculus which provides a unified model
for implicit programming mechanisms. We present the opera-
tional semantics, type system and type-inference algorithm, as
well as soundness results, for the calculus.

2 improve?

1 2011/1/7

Wednesday, January 12, 2011

Comparison functions

A Calculus for Implicit Programming

DRAFT

Abstract
This paper presents a let-polymorphic calculus that can be used to
model several forms of implicit programming. Implicit program-
ming describes a particular programming style in which certain val-
ues used by a program can be inferred by exploiting type-inference.
Examples of mechanisms which support some form of implicit pro-
gramming are Haskell type classes and implicit parameters, and
Scala implicits. We show that our calculus is sufficient to model the
essence of those mechanisms and present the operational seman-
tics, type system and type-inference algorithm, as well as sound-
ness results, for the calculus.

1. Introduction
data Ordering = LT | EQ | GT
sort :: (a → a → Ordering) → [a] → [a]
sort = ⊥
cmpInt :: Int → Int → Ordering
cmpInt x y = compare x y
cmdPair :: (a → a → Ordering) → (b → b → Ordering) →

(a, b) → (a, b) → Ordering
cmdPair ca cb (x1, y1) (x2, y2) =

case ca x1 x2 of
LT → LT
GT → GT
EQ → cb y1 y2

program1 :: [Int]
program1 = sort cmpInt [3, 2, 4]

program2 :: [(Int , Int)]
program2 = sort (cmdPair cmpInt) [(2, 3), (4, 1), (2, 2)]

Implicit programming describes a particular programming style in
which certain values used by a program can be inferred by ex-
ploiting type-inference1. The most prominent example of a mecha-
nism that supports implicit programming is given by Haskell type
classes. With type classes, type-class dictionaries (which are a spe-
cific kind of records) are inferred while performing type-inference.
A canonical example is given by a sorting function for lists in
Haskell. The type of the sort function is as follows:

sort ::Ord a ⇒ [a] → [a]
In this case Ord a is a type-class constraint, which ensures that we
need to know how to compare values of type a . The type class Ord
is a kind of a record type, which specifies a number of methods (or
interface) that should be supported by instances of the type class—
in the case of Ord we will have several comparision methods.
The Ord type class can be implemented for various types such as
integers or lists of some type a . When the sort function is called
the right implementation of Ord is selected by the compiler based
on the instantiation of the type variable a . For example, calls like:

sort [1, 5, 3]
sort [[1, 5], [4, 3]]

1 This should probably be generalized to entail selection based on types,
rather than just type-inference

will trigger the selection of different implementations of the Ord
type class: in the first case, we need an implementation of type
Ord Int , whereas in the second case, we need an implementation
of type Ord [Int].

Type classes are not the only mechanism that supports implicit
programming. The Haskell extension for implicit parameters pro-
vides another example. In this case, named parameters of a certain
type can be implicitly propragated through a call-chain. Scala im-
plicits provide yet another example. In Scala values of any type can
be made implicit and passed around implicitly provided suitable
implicit declararions which describes which values should be used
by the compiler for particular types. For example, in Scala it is pos-
sible to describe a simple logging function, which takes an implicit
PrintStream as follows:

implicit val out = System.out
def lof (msg : String) (implicit o : PrintStream) = o ◦ println (msg)

This function can be used without explicitly providing the second
argument, since there is an implicit value out on scope. Neverthe-
less, it is possible to explicitly pass the second argument (for ex-
ample, if we wanted to output to System.err instead) and override
the default compiler choice.

While there is a substantial amount of work dedicated to study-
ing and formalizing type classes and also implicit parameters, there
are no formalizations of Scala-implicits-like mechanisms. Further-
more, while type classes, implicit parameters and Scala-style im-
plicits have a lot in common, there are also many differences and
each mechanism seems to have trade-offs in comparison to the
other mechanisms. For example while type classes support type-
inference of constraints, Scala implicits do not but, on the other
hand, Scala implicits can be used to make any type of values im-
plicit whereas with type classes only type class dictionaries can be
made implicit.

The purpose of this paper is to study how these mechanisms for
doing implicit programming relate to each other and to provide a
calculus that describes the essence behind those mechanisms. In
other words, this calculus can be seen as a unified foundation for
all these mechanisms, being expressive enough to model each par-
ticular mechanism, while at the same time allowing for programs
to be written conviniently2.

The calculus itself is an extension of Hindley-Milner. We
present the operational semantics, type system and type-inference
algorithm, as well as soundness results, for the calculus. We also
present a simple calculus for type classes and Scala-style implicits
and show how programs written in those calculi can be translated
into our calculus by a type-preserving translation.

In summary, our contributions are:

• λ? - A let-polymorphic calculus which provides a unified model
for implicit programming mechanisms. We present the opera-
tional semantics, type system and type-inference algorithm, as
well as soundness results, for the calculus.

2 improve?

1 2011/1/7

A Calculus for Implicit Programming

DRAFT

Abstract
This paper presents a let-polymorphic calculus that can be used to
model several forms of implicit programming. Implicit program-
ming describes a particular programming style in which certain val-
ues used by a program can be inferred by exploiting type-inference.
Examples of mechanisms which support some form of implicit pro-
gramming are Haskell type classes and implicit parameters, and
Scala implicits. We show that our calculus is sufficient to model the
essence of those mechanisms and present the operational seman-
tics, type system and type-inference algorithm, as well as sound-
ness results, for the calculus.

1. Introduction
data Ordering = LT | EQ | GT
sort :: (a → a → Ordering) → [a] → [a]
sort = ⊥
cmpInt :: Int → Int → Ordering
cmpInt x y = compare x y
cmdPair :: (a → a → Ordering) → (b → b → Ordering) →

(a, b) → (a, b) → Ordering
cmdPair ca cb (x1, y1) (x2, y2) =

case ca x1 x2 of
LT → LT
GT → GT
EQ → cb y1 y2

program1 :: [Int]
program1 = sort cmpInt [3, 2, 4]

program2 :: [(Int , Int)]
program2 = sort (cmdPair cmpInt) [(2, 3), (4, 1), (2, 2)]

Implicit programming describes a particular programming style in
which certain values used by a program can be inferred by ex-
ploiting type-inference1. The most prominent example of a mecha-
nism that supports implicit programming is given by Haskell type
classes. With type classes, type-class dictionaries (which are a spe-
cific kind of records) are inferred while performing type-inference.
A canonical example is given by a sorting function for lists in
Haskell. The type of the sort function is as follows:

sort ::Ord a ⇒ [a] → [a]
In this case Ord a is a type-class constraint, which ensures that we
need to know how to compare values of type a . The type class Ord
is a kind of a record type, which specifies a number of methods (or
interface) that should be supported by instances of the type class—
in the case of Ord we will have several comparision methods.
The Ord type class can be implemented for various types such as
integers or lists of some type a . When the sort function is called
the right implementation of Ord is selected by the compiler based
on the instantiation of the type variable a . For example, calls like:

sort [1, 5, 3]
sort [[1, 5], [4, 3]]

1 This should probably be generalized to entail selection based on types,
rather than just type-inference

will trigger the selection of different implementations of the Ord
type class: in the first case, we need an implementation of type
Ord Int , whereas in the second case, we need an implementation
of type Ord [Int].

Type classes are not the only mechanism that supports implicit
programming. The Haskell extension for implicit parameters pro-
vides another example. In this case, named parameters of a certain
type can be implicitly propragated through a call-chain. Scala im-
plicits provide yet another example. In Scala values of any type can
be made implicit and passed around implicitly provided suitable
implicit declararions which describes which values should be used
by the compiler for particular types. For example, in Scala it is pos-
sible to describe a simple logging function, which takes an implicit
PrintStream as follows:

implicit val out = System.out
def lof (msg : String) (implicit o : PrintStream) = o ◦ println (msg)

This function can be used without explicitly providing the second
argument, since there is an implicit value out on scope. Neverthe-
less, it is possible to explicitly pass the second argument (for ex-
ample, if we wanted to output to System.err instead) and override
the default compiler choice.

While there is a substantial amount of work dedicated to study-
ing and formalizing type classes and also implicit parameters, there
are no formalizations of Scala-implicits-like mechanisms. Further-
more, while type classes, implicit parameters and Scala-style im-
plicits have a lot in common, there are also many differences and
each mechanism seems to have trade-offs in comparison to the
other mechanisms. For example while type classes support type-
inference of constraints, Scala implicits do not but, on the other
hand, Scala implicits can be used to make any type of values im-
plicit whereas with type classes only type class dictionaries can be
made implicit.

The purpose of this paper is to study how these mechanisms for
doing implicit programming relate to each other and to provide a
calculus that describes the essence behind those mechanisms. In
other words, this calculus can be seen as a unified foundation for
all these mechanisms, being expressive enough to model each par-
ticular mechanism, while at the same time allowing for programs
to be written conviniently2.

The calculus itself is an extension of Hindley-Milner. We
present the operational semantics, type system and type-inference
algorithm, as well as soundness results, for the calculus. We also
present a simple calculus for type classes and Scala-style implicits
and show how programs written in those calculi can be translated
into our calculus by a type-preserving translation.

In summary, our contributions are:

• λ? - A let-polymorphic calculus which provides a unified model
for implicit programming mechanisms. We present the opera-
tional semantics, type system and type-inference algorithm, as
well as soundness results, for the calculus.

2 improve?

1 2011/1/7

Wednesday, January 12, 2011

Client code

A Calculus for Implicit Programming

DRAFT

Abstract
This paper presents a let-polymorphic calculus that can be used to
model several forms of implicit programming. Implicit program-
ming describes a particular programming style in which certain val-
ues used by a program can be inferred by exploiting type-inference.
Examples of mechanisms which support some form of implicit pro-
gramming are Haskell type classes and implicit parameters, and
Scala implicits. We show that our calculus is sufficient to model the
essence of those mechanisms and present the operational seman-
tics, type system and type-inference algorithm, as well as sound-
ness results, for the calculus.

1. Introduction
data Ordering = LT | EQ | GT
sort :: (a → a → Ordering) → [a] → [a]
sort = ⊥
cmpInt :: Int → Int → Ordering
cmpInt x y = compare x y
cmdPair :: (a → a → Ordering) → (b → b → Ordering) →

(a, b) → (a, b) → Ordering
cmdPair ca cb (x1, y1) (x2, y2) =

case ca x1 x2 of
LT → LT
GT → GT
EQ → cb y1 y2

program1 :: [Int]
program1 = sort cmpInt [3, 2, 4]

program2 :: [(Int , Int)]
program2 =

sort (cmdPair cmpInt cmpInt) [(2, 3), (4, 1), (2, 2)]
Implicit programming describes a particular programming style in
which certain values used by a program can be inferred by ex-
ploiting type-inference1. The most prominent example of a mecha-
nism that supports implicit programming is given by Haskell type
classes. With type classes, type-class dictionaries (which are a spe-
cific kind of records) are inferred while performing type-inference.
A canonical example is given by a sorting function for lists in
Haskell. The type of the sort function is as follows:

sort ::Ord a ⇒ [a] → [a]
In this case Ord a is a type-class constraint, which ensures that we
need to know how to compare values of type a . The type class Ord
is a kind of a record type, which specifies a number of methods (or
interface) that should be supported by instances of the type class—
in the case of Ord we will have several comparision methods.
The Ord type class can be implemented for various types such as
integers or lists of some type a . When the sort function is called
the right implementation of Ord is selected by the compiler based
on the instantiation of the type variable a . For example, calls like:

1 This should probably be generalized to entail selection based on types,
rather than just type-inference

sort [1, 5, 3]
sort [[1, 5], [4, 3]]

will trigger the selection of different implementations of the Ord
type class: in the first case, we need an implementation of type
Ord Int , whereas in the second case, we need an implementation
of type Ord [Int].

Type classes are not the only mechanism that supports implicit
programming. The Haskell extension for implicit parameters pro-
vides another example. In this case, named parameters of a certain
type can be implicitly propragated through a call-chain. Scala im-
plicits provide yet another example. In Scala values of any type can
be made implicit and passed around implicitly provided suitable
implicit declararions which describes which values should be used
by the compiler for particular types. For example, in Scala it is pos-
sible to describe a simple logging function, which takes an implicit
PrintStream as follows:

implicit val out = System.out
def lof (msg : String) (implicit o : PrintStream) = o ◦ println (msg)

This function can be used without explicitly providing the second
argument, since there is an implicit value out on scope. Neverthe-
less, it is possible to explicitly pass the second argument (for ex-
ample, if we wanted to output to System.err instead) and override
the default compiler choice.

While there is a substantial amount of work dedicated to study-
ing and formalizing type classes and also implicit parameters, there
are no formalizations of Scala-implicits-like mechanisms. Further-
more, while type classes, implicit parameters and Scala-style im-
plicits have a lot in common, there are also many differences and
each mechanism seems to have trade-offs in comparison to the
other mechanisms. For example while type classes support type-
inference of constraints, Scala implicits do not but, on the other
hand, Scala implicits can be used to make any type of values im-
plicit whereas with type classes only type class dictionaries can be
made implicit.

The purpose of this paper is to study how these mechanisms for
doing implicit programming relate to each other and to provide a
calculus that describes the essence behind those mechanisms. In
other words, this calculus can be seen as a unified foundation for
all these mechanisms, being expressive enough to model each par-
ticular mechanism, while at the same time allowing for programs
to be written conviniently2.

The calculus itself is an extension of Hindley-Milner. We
present the operational semantics, type system and type-inference
algorithm, as well as soundness results, for the calculus. We also
present a simple calculus for type classes and Scala-style implicits
and show how programs written in those calculi can be translated
into our calculus by a type-preserving translation.

In summary, our contributions are:

• λ? - A let-polymorphic calculus which provides a unified model
for implicit programming mechanisms. We present the opera-

2 improve?

1 2011/1/7

Wednesday, January 12, 2011

Example
(With Implicit Programming - Type Classes)

Wednesday, January 12, 2011

Sorting

constraints on the type arguments, and passing all of these
explicitly is tedious and cumbersome.
The second role of type classes is to propagate constraints

like ordT automatically, making generic algorithms conve-
nient and practical to use. Scala took inspiration from type
classes and introduced implicits: a mechanism for implicitly
passing arguments based on their types. Thus, in Scala, the
ordering constraint can be implicitly passed by adding an
implicit qualifier before the argument:
def sort [T] (xs :List [T]) (implicit ordT :Ord [T]) :List [T]

Likewise potential candidate models can be considered by
the compiler by being qualified with an implicit keyword:
implicit object intOrd extends Ord [Int] . . .

This allows a convinient use of sort
scala> sort (List (3,2,1))
res1 :List [Int] = List (1,2,3)

just like a version of the program using type classes. Further-
more, it also allows sort to be called with an additional order-
ing argument such as: sort (List (3,2,1)) (mySpecialOrd),
where mySpecialOrd is another model of the ordering con-
cept for integers. This is useful for resolving ambiguities:
it is perfectly reasonable to have various orderings for the
same type.
In a way type-class style concepts provide a similar ser-

vice to F-bounded polymorphism (Canning et al. 1989),
which is supported by conventional OO languages like Java,
C# or Scala. Unlike type-parameter bounds, which impose
constraints directly on the values of the bounded type, con-
cepts like Ord [T] provide the evidence that T satisfies the
constraints externally. The drawback of concept-style con-
straints is that dynamic dispatching over the instances of
T is not available, but in return support for multi-type con-
cepts is better and retroactive modeling of concepts becomes
possible. Concept-style constraints are often more suitable
than type parameter bounds for expressing generic algo-
rithms (Järvi et al. 2003).

Contributions The first contribution of this paper is to
show how type classes can be encoded using generic OO
classes and implicits. The implicits mechanism has been part
of Scala for a while now (Moors et al. 2008; Odersky et al.
2006), and in the Scala community the type class encoding is
folklore knowledge. However, a detailed account of the en-
coding and a comparison between type classes and implicits
was missing so far. This paper provides a clear, complete,
account of the encoding, and introduces the CONCEPT pat-
tern as a way to express concept-style interfaces in any OO
languages that support generics (such as current versions of
Java or C#). Furthermore some interesting applications of
the CONCEPT pattern are presented. For example we offer
an interesting answer to Cook (2009)’s dinner quiz on the
relation between objects and ADTs: in an OO language with
generics, ADT signatures can be viewed as a particular class
of objects.

The second contribution of this paper is to show how
Scala’s rich class system gives us many common exten-
sions of type classes for free. In particular we show that
a combination of type members and dependent method types
allow us to express associated types (Chakravarty et al.
2005a); prioritized overlapping implicits offer an alternative
to type classes overlapping instances (Jones et al. 1997);
and multiple-parameter type classes (Jones et al. 1997) are
expressed naturally by standard generics. Furthermore, the
combination of implicits and Scala’s OO features surpasses
Haskell’s type classes in several regards: implicit arguments
can be optionally be passed explicitly; and models are lexi-
cally scoped. Finally, we show that these features make Scala
ideally suited for generic programming in the large (Siek
and Lumsdaine 2008).

Running the examples Most examples compile as-is us-
ing Scala 2.8. Some of the more advanced ones rely on ex-
perimental support for dependent method types, which must
be enabled using the−Xexperimental switch. Unfortunately,
some examples are affected by bugs related to the interac-
tion between dependent method types and implicits. How-
ever, they are fixed in a development branch1. At the time
of writing, this branch could not be merged into the main
distribution, as the 2.8.0 release was pending. They will be
available in nightly builds and releases in the near future.

2. Type Classes in Haskell
This section introduces Haskell type classes as originally
proposed byWadler and Blott (1989) as well as some simple,
common extensions.

2.1 Single Parameter Type Classes
The original model of type classes consists of single parame-
ter type classes, which enables the definition of ad-hoc over-
loaded functions like comparison, pretty printing or parsing.
class Ord a where

! ::a→ a→ Bool
class Show a where
show ::a→ String

class Read a where
read ::String→ a

A type class declaration consists of a class name such as Eq,
Show or Read; a type parameter; and a set of method dec-
larations. Each of the methods in the type class declaration
should have at least one occurrence of the type parameter in
their signature (either as an argument or as a return type).
If we think of the type parameter a in these type class dec-
larations as the equivalent of the self argument in an OO
language, we can see that a few different types of methods
can be modeled:

1 http://github.com/adriaanm/scala/tree/topic/
retire_debruijn_depmet

2 2010/3/26

constraints on the type arguments, and passing all of these
explicitly is tedious and cumbersome.
The second role of type classes is to propagate constraints

like ordT automatically, making generic algorithms conve-
nient and practical to use. Scala took inspiration from type
classes and introduced implicits: a mechanism for implicitly
passing arguments based on their types. Thus, in Scala, the
ordering constraint can be implicitly passed by adding an
implicit qualifier before the argument:
def sort [T] (xs :List [T]) (implicit ordT :Ord [T]) :List [T]

Likewise potential candidate models can be considered by
the compiler by being qualified with an implicit keyword:
implicit object intOrd extends Ord [Int] . . .

This allows a convinient use of sort
scala> sort (List (3,2,1))
res1 :List [Int] = List (1,2,3)

just like a version of the program using type classes. Further-
more, it also allows sort to be called with an additional order-
ing argument such as: sort (List (3,2,1)) (mySpecialOrd),
where mySpecialOrd is another model of the ordering con-
cept for integers. This is useful for resolving ambiguities:
it is perfectly reasonable to have various orderings for the
same type.
In a way type-class style concepts provide a similar ser-

vice to F-bounded polymorphism (Canning et al. 1989),
which is supported by conventional OO languages like Java,
C# or Scala. Unlike type-parameter bounds, which impose
constraints directly on the values of the bounded type, con-
cepts like Ord [T] provide the evidence that T satisfies the
constraints externally. The drawback of concept-style con-
straints is that dynamic dispatching over the instances of
T is not available, but in return support for multi-type con-
cepts is better and retroactive modeling of concepts becomes
possible. Concept-style constraints are often more suitable
than type parameter bounds for expressing generic algo-
rithms (Järvi et al. 2003).

Contributions The first contribution of this paper is to
show how type classes can be encoded using generic OO
classes and implicits. The implicits mechanism has been part
of Scala for a while now (Moors et al. 2008; Odersky et al.
2006), and in the Scala community the type class encoding is
folklore knowledge. However, a detailed account of the en-
coding and a comparison between type classes and implicits
was missing so far. This paper provides a clear, complete,
account of the encoding, and introduces the CONCEPT pat-
tern as a way to express concept-style interfaces in any OO
languages that support generics (such as current versions of
Java or C#). Furthermore some interesting applications of
the CONCEPT pattern are presented. For example we offer
an interesting answer to Cook (2009)’s dinner quiz on the
relation between objects and ADTs: in an OO language with
generics, ADT signatures can be viewed as a particular class
of objects.

The second contribution of this paper is to show how
Scala’s rich class system gives us many common exten-
sions of type classes for free. In particular we show that
a combination of type members and dependent method types
allow us to express associated types (Chakravarty et al.
2005a); prioritized overlapping implicits offer an alternative
to type classes overlapping instances (Jones et al. 1997);
and multiple-parameter type classes (Jones et al. 1997) are
expressed naturally by standard generics. Furthermore, the
combination of implicits and Scala’s OO features surpasses
Haskell’s type classes in several regards: implicit arguments
can be optionally be passed explicitly; and models are lexi-
cally scoped. Finally, we show that these features make Scala
ideally suited for generic programming in the large (Siek
and Lumsdaine 2008).

Running the examples Most examples compile as-is us-
ing Scala 2.8. Some of the more advanced ones rely on ex-
perimental support for dependent method types, which must
be enabled using the−Xexperimental switch. Unfortunately,
some examples are affected by bugs related to the interac-
tion between dependent method types and implicits. How-
ever, they are fixed in a development branch1. At the time
of writing, this branch could not be merged into the main
distribution, as the 2.8.0 release was pending. They will be
available in nightly builds and releases in the near future.

2. Type Classes in Haskell
This section introduces Haskell type classes as originally
proposed byWadler and Blott (1989) as well as some simple,
common extensions.

2.1 Single Parameter Type Classes
The original model of type classes consists of single parame-
ter type classes, which enables the definition of ad-hoc over-
loaded functions like comparison, pretty printing or parsing.
class Ord a where

! ::a→ a→ Bool
class Show a where
show ::a→ String

class Read a where
read ::String→ a

A type class declaration consists of a class name such as Eq,
Show or Read; a type parameter; and a set of method dec-
larations. Each of the methods in the type class declaration
should have at least one occurrence of the type parameter in
their signature (either as an argument or as a return type).
If we think of the type parameter a in these type class dec-
larations as the equivalent of the self argument in an OO
language, we can see that a few different types of methods
can be modeled:

1 http://github.com/adriaanm/scala/tree/topic/
retire_debruijn_depmet

2 2010/3/26

• Type classes can be used for constraining generic
(parametric polymorphic) functions

Wednesday, January 12, 2011

Type Classes
type class

type class instance

A Calculus for Implicit Programming

DRAFT

Abstract
This paper presents a let-polymorphic calculus that can be used to
model several forms of implicit programming. Implicit program-
ming describes a particular programming style in which certain val-
ues used by a program can be inferred by exploiting type-inference.
Examples of mechanisms which support some form of implicit pro-
gramming are Haskell type classes and implicit parameters, and
Scala implicits. We show that our calculus is sufficient to model the
essence of those mechanisms and present the operational seman-
tics, type system and type-inference algorithm, as well as sound-
ness results, for the calculus.

1. Introduction
data Ordering = LT | EQ | GT
sort :: (a → a → Ordering) → [a] → [a]
sort = ⊥
cmpInt :: Int → Int → Ordering
cmpInt x y = compare x y
cmdPair :: (a → a → Ordering) → (b → b → Ordering) →

(a, b) → (a, b) → Ordering
cmdPair ca cb (x1, y1) (x2, y2) =

case ca x1 x2 of
LT → LT
GT → GT
EQ → cb y1 y2

program1 :: [Int]
program1 = sort cmpInt [3, 2, 4]

program2 :: [(Int , Int)]
program2 =

sort (cmdPair cmpInt cmpInt) [(2, 3), (4, 1), (2, 2)]
class Ord a where

compare :: a → a → Ordering

instance (Ord a,Ord b) ⇒ Ord (a, b) where
compare (x1, y1) (x2, y2) = case compare x1 x2 of
LT → LT
GT → GT
EQ → compare y1 y2

Implicit programming describes a particular programming style in
which certain values used by a program can be inferred by ex-
ploiting type-inference1. The most prominent example of a mecha-
nism that supports implicit programming is given by Haskell type
classes. With type classes, type-class dictionaries (which are a spe-
cific kind of records) are inferred while performing type-inference.
A canonical example is given by a sorting function for lists in
Haskell. The type of the sort function is as follows:

sort ::Ord a ⇒ [a] → [a]
In this case Ord a is a type-class constraint, which ensures that we
need to know how to compare values of type a . The type class Ord

1 This should probably be generalized to entail selection based on types,
rather than just type-inference

is a kind of a record type, which specifies a number of methods (or
interface) that should be supported by instances of the type class—
in the case of Ord we will have several comparision methods.
The Ord type class can be implemented for various types such as
integers or lists of some type a . When the sort function is called
the right implementation of Ord is selected by the compiler based
on the instantiation of the type variable a . For example, calls like:

sort [1, 5, 3]
sort [[1, 5], [4, 3]]

will trigger the selection of different implementations of the Ord
type class: in the first case, we need an implementation of type
Ord Int , whereas in the second case, we need an implementation
of type Ord [Int].

Type classes are not the only mechanism that supports implicit
programming. The Haskell extension for implicit parameters pro-
vides another example. In this case, named parameters of a certain
type can be implicitly propragated through a call-chain. Scala im-
plicits provide yet another example. In Scala values of any type can
be made implicit and passed around implicitly provided suitable
implicit declararions which describes which values should be used
by the compiler for particular types. For example, in Scala it is pos-
sible to describe a simple logging function, which takes an implicit
PrintStream as follows:

implicit val out = System.out
def lof (msg : String) (implicit o : PrintStream) = o ◦ println (msg)

This function can be used without explicitly providing the second
argument, since there is an implicit value out on scope. Neverthe-
less, it is possible to explicitly pass the second argument (for ex-
ample, if we wanted to output to System.err instead) and override
the default compiler choice.

While there is a substantial amount of work dedicated to study-
ing and formalizing type classes and also implicit parameters, there
are no formalizations of Scala-implicits-like mechanisms. Further-
more, while type classes, implicit parameters and Scala-style im-
plicits have a lot in common, there are also many differences and
each mechanism seems to have trade-offs in comparison to the
other mechanisms. For example while type classes support type-
inference of constraints, Scala implicits do not but, on the other
hand, Scala implicits can be used to make any type of values im-
plicit whereas with type classes only type class dictionaries can be
made implicit.

The purpose of this paper is to study how these mechanisms for
doing implicit programming relate to each other and to provide a
calculus that describes the essence behind those mechanisms. In
other words, this calculus can be seen as a unified foundation for
all these mechanisms, being expressive enough to model each par-
ticular mechanism, while at the same time allowing for programs
to be written conviniently2.

The calculus itself is an extension of Hindley-Milner. We
present the operational semantics, type system and type-inference
algorithm, as well as soundness results, for the calculus. We also
present a simple calculus for type classes and Scala-style implicits

2 improve?

1 2011/1/7

A Calculus for Implicit Programming

DRAFT

Abstract
This paper presents a let-polymorphic calculus that can be used to
model several forms of implicit programming. Implicit program-
ming describes a particular programming style in which certain val-
ues used by a program can be inferred by exploiting type-inference.
Examples of mechanisms which support some form of implicit pro-
gramming are Haskell type classes and implicit parameters, and
Scala implicits. We show that our calculus is sufficient to model the
essence of those mechanisms and present the operational seman-
tics, type system and type-inference algorithm, as well as sound-
ness results, for the calculus.

1. Introduction
data Ordering = LT | EQ | GT
sort :: (a → a → Ordering) → [a] → [a]
sort = ⊥
cmpInt :: Int → Int → Ordering
cmpInt x y = compare x y
cmdPair :: (a → a → Ordering) → (b → b → Ordering) →

(a, b) → (a, b) → Ordering
cmdPair ca cb (x1, y1) (x2, y2) =

case ca x1 x2 of
LT → LT
GT → GT
EQ → cb y1 y2

program1 :: [Int]
program1 = sort cmpInt [3, 2, 4]

program2 :: [(Int , Int)]
program2 =

sort (cmdPair cmpInt cmpInt) [(2, 3), (4, 1), (2, 2)]
class Ord a where

compare :: a → a → Ordering

instance (Ord a,Ord b) ⇒ Ord (a, b) where
compare (x1, y1) (x2, y2) = case compare x1 x2 of
LT → LT
GT → GT
EQ → compare y1 y2

Implicit programming describes a particular programming style in
which certain values used by a program can be inferred by ex-
ploiting type-inference1. The most prominent example of a mecha-
nism that supports implicit programming is given by Haskell type
classes. With type classes, type-class dictionaries (which are a spe-
cific kind of records) are inferred while performing type-inference.
A canonical example is given by a sorting function for lists in
Haskell. The type of the sort function is as follows:

sort ::Ord a ⇒ [a] → [a]
In this case Ord a is a type-class constraint, which ensures that we
need to know how to compare values of type a . The type class Ord

1 This should probably be generalized to entail selection based on types,
rather than just type-inference

is a kind of a record type, which specifies a number of methods (or
interface) that should be supported by instances of the type class—
in the case of Ord we will have several comparision methods.
The Ord type class can be implemented for various types such as
integers or lists of some type a . When the sort function is called
the right implementation of Ord is selected by the compiler based
on the instantiation of the type variable a . For example, calls like:

sort [1, 5, 3]
sort [[1, 5], [4, 3]]

will trigger the selection of different implementations of the Ord
type class: in the first case, we need an implementation of type
Ord Int , whereas in the second case, we need an implementation
of type Ord [Int].

Type classes are not the only mechanism that supports implicit
programming. The Haskell extension for implicit parameters pro-
vides another example. In this case, named parameters of a certain
type can be implicitly propragated through a call-chain. Scala im-
plicits provide yet another example. In Scala values of any type can
be made implicit and passed around implicitly provided suitable
implicit declararions which describes which values should be used
by the compiler for particular types. For example, in Scala it is pos-
sible to describe a simple logging function, which takes an implicit
PrintStream as follows:

implicit val out = System.out
def lof (msg : String) (implicit o : PrintStream) = o ◦ println (msg)

This function can be used without explicitly providing the second
argument, since there is an implicit value out on scope. Neverthe-
less, it is possible to explicitly pass the second argument (for ex-
ample, if we wanted to output to System.err instead) and override
the default compiler choice.

While there is a substantial amount of work dedicated to study-
ing and formalizing type classes and also implicit parameters, there
are no formalizations of Scala-implicits-like mechanisms. Further-
more, while type classes, implicit parameters and Scala-style im-
plicits have a lot in common, there are also many differences and
each mechanism seems to have trade-offs in comparison to the
other mechanisms. For example while type classes support type-
inference of constraints, Scala implicits do not but, on the other
hand, Scala implicits can be used to make any type of values im-
plicit whereas with type classes only type class dictionaries can be
made implicit.

The purpose of this paper is to study how these mechanisms for
doing implicit programming relate to each other and to provide a
calculus that describes the essence behind those mechanisms. In
other words, this calculus can be seen as a unified foundation for
all these mechanisms, being expressive enough to model each par-
ticular mechanism, while at the same time allowing for programs
to be written conviniently2.

The calculus itself is an extension of Hindley-Milner. We
present the operational semantics, type system and type-inference
algorithm, as well as soundness results, for the calculus. We also
present a simple calculus for type classes and Scala-style implicits

2 improve?

1 2011/1/7

Wednesday, January 12, 2011

Code Inference

constraints on the type arguments, and passing all of these
explicitly is tedious and cumbersome.
The second role of type classes is to propagate constraints

like ordT automatically, making generic algorithms conve-
nient and practical to use. Scala took inspiration from type
classes and introduced implicits: a mechanism for implicitly
passing arguments based on their types. Thus, in Scala, the
ordering constraint can be implicitly passed by adding an
implicit qualifier before the argument:
def sort [T] (xs :List [T]) (implicit ordT :Ord [T]) :List [T]

Likewise potential candidate models can be considered by
the compiler by being qualified with an implicit keyword:
implicit object intOrd extends Ord [Int] . . .

This allows a convinient use of sort
scala> sort (List (3,2,1))
res1 :List [Int] = List (1,2,3)

just like a version of the program using type classes. Further-
more, it also allows sort to be called with an additional order-
ing argument such as: sort (List (3,2,1)) (mySpecialOrd),
where mySpecialOrd is another model of the ordering con-
cept for integers. This is useful for resolving ambiguities:
it is perfectly reasonable to have various orderings for the
same type.
In a way type-class style concepts provide a similar ser-

vice to F-bounded polymorphism (Canning et al. 1989),
which is supported by conventional OO languages like Java,
C# or Scala. Unlike type-parameter bounds, which impose
constraints directly on the values of the bounded type, con-
cepts like Ord [T] provide the evidence that T satisfies the
constraints externally. The drawback of concept-style con-
straints is that dynamic dispatching over the instances of
T is not available, but in return support for multi-type con-
cepts is better and retroactive modeling of concepts becomes
possible. Concept-style constraints are often more suitable
than type parameter bounds for expressing generic algo-
rithms (Järvi et al. 2003).

Contributions The first contribution of this paper is to
show how type classes can be encoded using generic OO
classes and implicits. The implicits mechanism has been part
of Scala for a while now (Moors et al. 2008; Odersky et al.
2006), and in the Scala community the type class encoding is
folklore knowledge. However, a detailed account of the en-
coding and a comparison between type classes and implicits
was missing so far. This paper provides a clear, complete,
account of the encoding, and introduces the CONCEPT pat-
tern as a way to express concept-style interfaces in any OO
languages that support generics (such as current versions of
Java or C#). Furthermore some interesting applications of
the CONCEPT pattern are presented. For example we offer
an interesting answer to Cook (2009)’s dinner quiz on the
relation between objects and ADTs: in an OO language with
generics, ADT signatures can be viewed as a particular class
of objects.

The second contribution of this paper is to show how
Scala’s rich class system gives us many common exten-
sions of type classes for free. In particular we show that
a combination of type members and dependent method types
allow us to express associated types (Chakravarty et al.
2005a); prioritized overlapping implicits offer an alternative
to type classes overlapping instances (Jones et al. 1997);
and multiple-parameter type classes (Jones et al. 1997) are
expressed naturally by standard generics. Furthermore, the
combination of implicits and Scala’s OO features surpasses
Haskell’s type classes in several regards: implicit arguments
can be optionally be passed explicitly; and models are lexi-
cally scoped. Finally, we show that these features make Scala
ideally suited for generic programming in the large (Siek
and Lumsdaine 2008).

Running the examples Most examples compile as-is us-
ing Scala 2.8. Some of the more advanced ones rely on ex-
perimental support for dependent method types, which must
be enabled using the−Xexperimental switch. Unfortunately,
some examples are affected by bugs related to the interac-
tion between dependent method types and implicits. How-
ever, they are fixed in a development branch1. At the time
of writing, this branch could not be merged into the main
distribution, as the 2.8.0 release was pending. They will be
available in nightly builds and releases in the near future.

2. Type Classes in Haskell
This section introduces Haskell type classes as originally
proposed byWadler and Blott (1989) as well as some simple,
common extensions.

2.1 Single Parameter Type Classes
The original model of type classes consists of single parame-
ter type classes, which enables the definition of ad-hoc over-
loaded functions like comparison, pretty printing or parsing.
class Ord a where

! ::a→ a→ Bool
class Show a where
show ::a→ String

class Read a where
read ::String→ a

A type class declaration consists of a class name such as Eq,
Show or Read; a type parameter; and a set of method dec-
larations. Each of the methods in the type class declaration
should have at least one occurrence of the type parameter in
their signature (either as an argument or as a return type).
If we think of the type parameter a in these type class dec-
larations as the equivalent of the self argument in an OO
language, we can see that a few different types of methods
can be modeled:

1 http://github.com/adriaanm/scala/tree/topic/
retire_debruijn_depmet

2 2010/3/26

constraints on the type arguments, and passing all of these
explicitly is tedious and cumbersome.
The second role of type classes is to propagate constraints

like ordT automatically, making generic algorithms conve-
nient and practical to use. Scala took inspiration from type
classes and introduced implicits: a mechanism for implicitly
passing arguments based on their types. Thus, in Scala, the
ordering constraint can be implicitly passed by adding an
implicit qualifier before the argument:
def sort [T] (xs :List [T]) (implicit ordT :Ord [T]) :List [T]

Likewise potential candidate models can be considered by
the compiler by being qualified with an implicit keyword:
implicit object intOrd extends Ord [Int] . . .

This allows a convinient use of sort
scala> sort (List (3,2,1))
res1 :List [Int] = List (1,2,3)

just like a version of the program using type classes. Further-
more, it also allows sort to be called with an additional order-
ing argument such as: sort (List (3,2,1)) (mySpecialOrd),
where mySpecialOrd is another model of the ordering con-
cept for integers. This is useful for resolving ambiguities:
it is perfectly reasonable to have various orderings for the
same type.
In a way type-class style concepts provide a similar ser-

vice to F-bounded polymorphism (Canning et al. 1989),
which is supported by conventional OO languages like Java,
C# or Scala. Unlike type-parameter bounds, which impose
constraints directly on the values of the bounded type, con-
cepts like Ord [T] provide the evidence that T satisfies the
constraints externally. The drawback of concept-style con-
straints is that dynamic dispatching over the instances of
T is not available, but in return support for multi-type con-
cepts is better and retroactive modeling of concepts becomes
possible. Concept-style constraints are often more suitable
than type parameter bounds for expressing generic algo-
rithms (Järvi et al. 2003).

Contributions The first contribution of this paper is to
show how type classes can be encoded using generic OO
classes and implicits. The implicits mechanism has been part
of Scala for a while now (Moors et al. 2008; Odersky et al.
2006), and in the Scala community the type class encoding is
folklore knowledge. However, a detailed account of the en-
coding and a comparison between type classes and implicits
was missing so far. This paper provides a clear, complete,
account of the encoding, and introduces the CONCEPT pat-
tern as a way to express concept-style interfaces in any OO
languages that support generics (such as current versions of
Java or C#). Furthermore some interesting applications of
the CONCEPT pattern are presented. For example we offer
an interesting answer to Cook (2009)’s dinner quiz on the
relation between objects and ADTs: in an OO language with
generics, ADT signatures can be viewed as a particular class
of objects.

The second contribution of this paper is to show how
Scala’s rich class system gives us many common exten-
sions of type classes for free. In particular we show that
a combination of type members and dependent method types
allow us to express associated types (Chakravarty et al.
2005a); prioritized overlapping implicits offer an alternative
to type classes overlapping instances (Jones et al. 1997);
and multiple-parameter type classes (Jones et al. 1997) are
expressed naturally by standard generics. Furthermore, the
combination of implicits and Scala’s OO features surpasses
Haskell’s type classes in several regards: implicit arguments
can be optionally be passed explicitly; and models are lexi-
cally scoped. Finally, we show that these features make Scala
ideally suited for generic programming in the large (Siek
and Lumsdaine 2008).

Running the examples Most examples compile as-is us-
ing Scala 2.8. Some of the more advanced ones rely on ex-
perimental support for dependent method types, which must
be enabled using the−Xexperimental switch. Unfortunately,
some examples are affected by bugs related to the interac-
tion between dependent method types and implicits. How-
ever, they are fixed in a development branch1. At the time
of writing, this branch could not be merged into the main
distribution, as the 2.8.0 release was pending. They will be
available in nightly builds and releases in the near future.

2. Type Classes in Haskell
This section introduces Haskell type classes as originally
proposed byWadler and Blott (1989) as well as some simple,
common extensions.

2.1 Single Parameter Type Classes
The original model of type classes consists of single parame-
ter type classes, which enables the definition of ad-hoc over-
loaded functions like comparison, pretty printing or parsing.
class Ord a where

! ::a→ a→ Bool
class Show a where
show ::a→ String

class Read a where
read ::String→ a

A type class declaration consists of a class name such as Eq,
Show or Read; a type parameter; and a set of method dec-
larations. Each of the methods in the type class declaration
should have at least one occurrence of the type parameter in
their signature (either as an argument or as a return type).
If we think of the type parameter a in these type class dec-
larations as the equivalent of the self argument in an OO
language, we can see that a few different types of methods
can be modeled:

1 http://github.com/adriaanm/scala/tree/topic/
retire_debruijn_depmet

2 2010/3/26

A Calculus for Implicit Programming

DRAFT

Abstract
This paper presents a let-polymorphic calculus that can be used to
model several forms of implicit programming. Implicit program-
ming describes a particular programming style in which certain val-
ues used by a program can be inferred by exploiting type-inference.
Examples of mechanisms which support some form of implicit pro-
gramming are Haskell type classes and implicit parameters, and
Scala implicits. We show that our calculus is sufficient to model the
essence of those mechanisms and present the operational seman-
tics, type system and type-inference algorithm, as well as sound-
ness results, for the calculus.

1. Introduction
data Ordering = LT | EQ | GT
sort :: (a → a → Ordering) → [a] → [a]
sort = ⊥
cmpInt :: Int → Int → Ordering
cmpInt x y = compare x y
cmdPair :: (a → a → Ordering) → (b → b → Ordering) →

(a, b) → (a, b) → Ordering
cmdPair ca cb (x1, y1) (x2, y2) =

case ca x1 x2 of
LT → LT
GT → GT
EQ → cb y1 y2

program1 :: [Int]
program1 = sort cmpInt [3, 2, 4]

program2 :: [(Int , Int)]
program2 =

sort (cmdPair cmpInt cmpInt) [(2, 3), (4, 1), (2, 2)]
class Ord a where

compare :: a → a → Ordering

instance (Ord a,Ord b) ⇒ Ord (a, b) where
compare (x1, y1) (x2, y2) = case compare x1 x2 of
LT → LT
GT → GT
EQ → compare y1 y2

Implicit programming describes a particular programming style in
which certain values used by a program can be inferred by ex-
ploiting type-inference1. The most prominent example of a mecha-
nism that supports implicit programming is given by Haskell type
classes. With type classes, type-class dictionaries (which are a spe-
cific kind of records) are inferred while performing type-inference.
A canonical example is given by a sorting function for lists in
Haskell. The type of the sort function is as follows:

sort ::Ord a ⇒ [a] → [a]
In this case Ord a is a type-class constraint, which ensures that we
need to know how to compare values of type a . The type class Ord

1 This should probably be generalized to entail selection based on types,
rather than just type-inference

is a kind of a record type, which specifies a number of methods (or
interface) that should be supported by instances of the type class—
in the case of Ord we will have several comparision methods.
The Ord type class can be implemented for various types such as
integers or lists of some type a . When the sort function is called
the right implementation of Ord is selected by the compiler based
on the instantiation of the type variable a . For example, calls like:

sort [1, 5, 3]
sort [[1, 5], [4, 3]]

will trigger the selection of different implementations of the Ord
type class: in the first case, we need an implementation of type
Ord Int , whereas in the second case, we need an implementation
of type Ord [Int].

Type classes are not the only mechanism that supports implicit
programming. The Haskell extension for implicit parameters pro-
vides another example. In this case, named parameters of a certain
type can be implicitly propragated through a call-chain. Scala im-
plicits provide yet another example. In Scala values of any type can
be made implicit and passed around implicitly provided suitable
implicit declararions which describes which values should be used
by the compiler for particular types. For example, in Scala it is pos-
sible to describe a simple logging function, which takes an implicit
PrintStream as follows:

implicit val out = System.out
def lof (msg : String) (implicit o : PrintStream) = o ◦ println (msg)

This function can be used without explicitly providing the second
argument, since there is an implicit value out on scope. Neverthe-
less, it is possible to explicitly pass the second argument (for ex-
ample, if we wanted to output to System.err instead) and override
the default compiler choice.

While there is a substantial amount of work dedicated to study-
ing and formalizing type classes and also implicit parameters, there
are no formalizations of Scala-implicits-like mechanisms. Further-
more, while type classes, implicit parameters and Scala-style im-
plicits have a lot in common, there are also many differences and
each mechanism seems to have trade-offs in comparison to the
other mechanisms. For example while type classes support type-
inference of constraints, Scala implicits do not but, on the other
hand, Scala implicits can be used to make any type of values im-
plicit whereas with type classes only type class dictionaries can be
made implicit.

The purpose of this paper is to study how these mechanisms for
doing implicit programming relate to each other and to provide a
calculus that describes the essence behind those mechanisms. In
other words, this calculus can be seen as a unified foundation for
all these mechanisms, being expressive enough to model each par-
ticular mechanism, while at the same time allowing for programs
to be written conviniently2.

The calculus itself is an extension of Hindley-Milner. We
present the operational semantics, type system and type-inference
algorithm, as well as soundness results, for the calculus. We also
present a simple calculus for type classes and Scala-style implicits

2 improve?

1 2011/1/7

Inferred by the compiler

Wednesday, January 12, 2011

Example
(With Implicit Programming - Scala Implicits)

Wednesday, January 12, 2011

ImplicitsImplicits

Allows for convenient use, and explicit
parameter passing as well:

def cmp [T] (x : T,y : T) (implicit ord : Ord [T]) =

ord.compare (x,y)

implicit val IntOrd = new Ord [Int] {. . .}

implicit def ListOrd [T] (implicit ordD:Ord [T]) =
new Ord [List [T]] {. . .}

def ListOrd2 [T] (implicit ordD : Ord [T]) =

new Ord [List [T]] {. . .}

Figure 4. Variation of the Ordering solution using implicits.

The three models illustrate the retroactive capabilities of
the CONCEPT pattern: the models are added after Int and
List [T] have been defined. The two models for lists illustrate
that multiple models can co-exist at the same time.

Comparison with Type Classes The essential difference
between the OO code in Figure 3 and the similar definitions
using type classes (which can be found in Figure 13) is
that models, and model arguments, need to be named. In
Haskell, instances can be viewed as a kind of anonymous

objects, which only the compiler gets direct access to. This
partly explains why the definition of ListOrd2 is grayed out:
in Haskell two instances for the same modeled type are
forbidden.

In the OO version, it is necessary to first create the models
explicitly. For example:

def sort [T] (xs : List [T]) (ordT : Ord [T]) : List [T] = . . .

val l1 = List (7,2,6,4,5,9)
val l2 = List (2,3)

val test = new ListOrd (new IntOrd ()).compare (l1, l2)

val test2 = new ListOrd2 (new IntOrd ()).compare (l1, l2)

val test3 = sort (l1) (new ListOrd (new IntOrd ()))

In the type class version, the equivalent code would be:

sort :: Ord t⇒ [t]→ [t]
l1 =[7,2,6,4,5,9]
l2 =[2,3]
test = compare l1 l2

test3 = sort l1

Clearly, in the OO version, the use of compare in test and
test2 is less convenient than simply calling compare l1 l2,
but it does offer the possibility of switching the implemen-
tation of the comparison operation in test2. In test3 creating
the models explicitly is also somewhat verbose and inconve-
nient.

Solution using implicits The convenience of type classes
can be recovered with implicits. Figure 4 shows a variation

trait Set [S] {
val empty : S

def insert (x : S,y : Int) : S

def contains (x : S,y : Int) : Boolean

def union (x : S,y : S) : S

}
class ListSet extends Set [List [Int]] {

val empty = List ()
def insert (x : List [Int],y : Int) = y :: x

def contains (x : List [Int],y : Int) = x.contains (y)
def union (x : List [Int],y : List [Int]) = x.union (y)

}

class FunctionalSet extends Set [Int⇒ Boolean] {
val empty = (x : Int)⇒ false

def insert (f : Int⇒ Boolean,y : Int) =
z⇒ y.equals (z) ∨ f (z)

def contains (f : Int⇒ Boolean,y : Int) = f (y)
def union (f : Int⇒ Boolean,g : Int⇒ Boolean) =

y⇒ f (y) ∨ g (y)
}

Figure 5. An ADT signature and two implementations.

of the code in Figure 3. Only the differences are shown:
definitions are used instead of conventional OO classes to
define the models for Ord; and we use a definition cmp to
provide a nice interface to the compare method. The first two
models are implicit, but ListOrd2 cannot be made implicit
because it would clash with ListOrd. The client code for the
test functions is simplified, being comparable to the version
with Haskell type classes. Furthermore, it is still possible to
define test2.

val test = cmp (l1, l2)
val test2 = cmp (l1, l2) (ListOrd2)
val test3 = sort (l1)

5.2 Abstract data types
Cook (2009) shows that type classes can be used to imple-
ment what is effectively the algebraic signature of an Ab-
stract Data Type (ADT). Programs using these type classes
in a certain disciplined way have the same abstraction ben-
efits as ADTs. Exploiting this observation, we now show a
simple and practical encoding of ADTs in an object-oriented
language with generics using the CONCEPT pattern. ADT
signatures show an application of the pattern that is differ-
ent from how concepts are traditionally used. Additionally,
it illustrates why passing a model explicitly is sometimes de-
sirable.

Figure 5 models an ADT signature for sets of integers
using the CONCEPT pattern. The trait Set [S], the concept
interface, defines the ADT signature for sets. The type S is

Argument Inference

object intOrd extends Ord [Int] {
def compare (a : Int,b : Int) : Boolean = a � b

}

However, this simple OO approach has one important
limitation in practice: constraints such as ordT have to be
explicitly passed to generic algorithms, like any other argu-
ments. While for the definition of sort above this may not
look too bad, many generic algorithms require multiple con-
straints on their type parameters, and passing all of these
explicitly is cumbersome.

The second role of type classes is to propagate constraints
like ordT automatically, making generic algorithms conve-
nient and practical to use. Scala took inspiration from type
classes and introduced implicits: a mechanism for implicitly
passing arguments based on their types. Thus, in Scala, the
ordering constraint can be implicitly passed by adding an
implicit qualifier before the argument:

def sort [T] (xs : List [T]) (implicit ordT : Ord [T]) : List [T]

Likewise potential candidate models can be considered by
the compiler by being qualified with an implicit keyword:

implicit object intOrd extends Ord [Int] . . .

This allows a convenient use of sort

scala> sort (List (3,2,1))
List (1,2,3)

just like the Haskell program using type classes. Further-
more, sort can be called with an additional ordering ar-
gument such as: sort (List (3,2,1)) (mySpecialOrd), where
mySpecialOrd is another model of the ordering concept for
integers. This is useful for resolving ambiguities: it is rea-
sonable to have various orderings for the same type.

In a way type-class-style concepts provide a service like
F-bounded polymorphism (Canning et al. 1989), which is
found in conventional OO languages like Java, C# or Scala.
Unlike type-parameter bounds, which impose constraints
directly on the values of the bounded type, concepts like
Ord [T] provide the evidence that T satisfies the constraints
externally. The drawback of concept-style constraints is that
dynamic dispatching over the instances of T is not available,
but in return support for multi-type concepts is better and
retroactive modeling of concepts becomes possible.

Contributions We describe a lightweight approach to type
classes that can be employed in any object-oriented language
that supports generics. We capture the essence of type class
programming as the CONCEPT pattern, and show how im-
plicits make the pattern practical to use. We illustrate our
approach using several applications and offer an answer to
Cook (2009)’s dinner quiz on the relation between objects
and ADTs: in an OO language with generics, ADT signa-
tures can be viewed as a particular class of objects.

We should note that implicits have been part of Scala for
a while now (Moors et al. 2008; Odersky et al. 2006) and, in
the Scala community, the encoding of type classes using im-
plicits is folklore. However, as so often with folklore, it was
never written down coherently, while the more advanced fea-
tures have not been documented at all: later sections of this
paper describe Scala’s answer to overlapping instances (Pey-
ton Jones et al. 1997), associated types (Chakravarty et al.
2005b), as well as how Scala’s approach to type classes
has surpasses Haskell type classes in some ways. These ad-
vanced features are used to introduce the idea of specify-
ing relations on types using implicits, which is illustrated
through several examples. Finally, we show that Scala has
excellent support for generic programming.

Running the examples Most examples compile as-is us-
ing Scala 2.8.0. Some of the more advanced ones rely on ex-
perimental support for dependent method types, which must
be enabled using the−Xexperimental switch. Unfortunately,
some examples are affected by bugs related to the interac-
tion between dependent method types and implicits. These
are fixed in a development branch1, which will be merged
into trunk shortly, and thus appear in nightly builds leading
up to the 2.8.1 release.

2. Type Classes in Haskell

This section introduces Haskell type classes as originally
proposed by Wadler and Blott (1989), as well as some sim-
ple, common extensions.

2.1 Single-parameter type classes

The original model of type classes consists of single parame-
ter type classes, which enables the definition of ad-hoc over-
loaded functions like comparison, pretty printing or parsing.

class Ord a where

(�) :: a→ a→ Bool

class Show a where

show :: a→ String

class Read a where

read :: String→ a

A type class declaration consists of: a class name such as
Ord, Show or Read; a type parameter; and a set of method
declarations. Each of the methods in the type class declara-
tion should have at least one occurrence of the type param-
eter in their signature (either as an argument or as a return
type). If we think of the type parameter a in these type class
declarations as the equivalent of the self argument in an OO
language, we can see that a few different types of methods
can be modeled:

1 http://github.com/adriaanm/scala/tree/topic/retire_
debruijn_depmet

Declaring implicit arguments:

object intOrd extends Ord [Int] {
def compare (a : Int,b : Int) : Boolean = a � b

}

However, this simple OO approach has one important
limitation in practice: constraints such as ordT have to be
explicitly passed to generic algorithms, like any other argu-
ments. While for the definition of sort above this may not
look too bad, many generic algorithms require multiple con-
straints on their type parameters, and passing all of these
explicitly is cumbersome.

The second role of type classes is to propagate constraints
like ordT automatically, making generic algorithms conve-
nient and practical to use. Scala took inspiration from type
classes and introduced implicits: a mechanism for implicitly
passing arguments based on their types. Thus, in Scala, the
ordering constraint can be implicitly passed by adding an
implicit qualifier before the argument:

def sort [T] (xs : List [T]) (implicit ordT : Ord [T]) : List [T]

Likewise potential candidate models can be considered by
the compiler by being qualified with an implicit keyword:

implicit object intOrd extends Ord [Int] . . .

This allows a convenient use of sort

scala> sort (List (3,2,1))
List (1,2,3)

just like the Haskell program using type classes. Further-
more, sort can be called with an additional ordering ar-
gument such as: sort (List (3,2,1)) (mySpecialOrd), where
mySpecialOrd is another model of the ordering concept for
integers. This is useful for resolving ambiguities: it is rea-
sonable to have various orderings for the same type.

In a way type-class-style concepts provide a service like
F-bounded polymorphism (Canning et al. 1989), which is
found in conventional OO languages like Java, C# or Scala.
Unlike type-parameter bounds, which impose constraints
directly on the values of the bounded type, concepts like
Ord [T] provide the evidence that T satisfies the constraints
externally. The drawback of concept-style constraints is that
dynamic dispatching over the instances of T is not available,
but in return support for multi-type concepts is better and
retroactive modeling of concepts becomes possible.

Contributions We describe a lightweight approach to type
classes that can be employed in any object-oriented language
that supports generics. We capture the essence of type class
programming as the CONCEPT pattern, and show how im-
plicits make the pattern practical to use. We illustrate our
approach using several applications and offer an answer to
Cook (2009)’s dinner quiz on the relation between objects
and ADTs: in an OO language with generics, ADT signa-
tures can be viewed as a particular class of objects.

We should note that implicits have been part of Scala for
a while now (Moors et al. 2008; Odersky et al. 2006) and, in
the Scala community, the encoding of type classes using im-
plicits is folklore. However, as so often with folklore, it was
never written down coherently, while the more advanced fea-
tures have not been documented at all: later sections of this
paper describe Scala’s answer to overlapping instances (Pey-
ton Jones et al. 1997), associated types (Chakravarty et al.
2005b), as well as how Scala’s approach to type classes
has surpasses Haskell type classes in some ways. These ad-
vanced features are used to introduce the idea of specify-
ing relations on types using implicits, which is illustrated
through several examples. Finally, we show that Scala has
excellent support for generic programming.

Running the examples Most examples compile as-is us-
ing Scala 2.8.0. Some of the more advanced ones rely on ex-
perimental support for dependent method types, which must
be enabled using the−Xexperimental switch. Unfortunately,
some examples are affected by bugs related to the interac-
tion between dependent method types and implicits. These
are fixed in a development branch1, which will be merged
into trunk shortly, and thus appear in nightly builds leading
up to the 2.8.1 release.

2. Type Classes in Haskell

This section introduces Haskell type classes as originally
proposed by Wadler and Blott (1989), as well as some sim-
ple, common extensions.

2.1 Single-parameter type classes

The original model of type classes consists of single parame-
ter type classes, which enables the definition of ad-hoc over-
loaded functions like comparison, pretty printing or parsing.

class Ord a where

(�) :: a→ a→ Bool

class Show a where

show :: a→ String

class Read a where

read :: String→ a

A type class declaration consists of: a class name such as
Ord, Show or Read; a type parameter; and a set of method
declarations. Each of the methods in the type class declara-
tion should have at least one occurrence of the type param-
eter in their signature (either as an argument or as a return
type). If we think of the type parameter a in these type class
declarations as the equivalent of the self argument in an OO
language, we can see that a few different types of methods
can be modeled:

1 http://github.com/adriaanm/scala/tree/topic/retire_
debruijn_depmet

Saturday, November 20, 2010

Sorting with an implicit argument:

Using implicits:

Implicits

Allows for convenient use, and explicit
parameter passing as well:

def cmp [T] (x : T,y : T) (implicit ord : Ord [T]) =

ord.compare (x,y)

implicit val IntOrd = new Ord [Int] {. . .}

implicit def ListOrd [T] (implicit ordD:Ord [T]) =
new Ord [List [T]] {. . .}

def ListOrd2 [T] (implicit ordD : Ord [T]) =

new Ord [List [T]] {. . .}

Figure 4. Variation of the Ordering solution using implicits.

The three models illustrate the retroactive capabilities of
the CONCEPT pattern: the models are added after Int and
List [T] have been defined. The two models for lists illustrate
that multiple models can co-exist at the same time.

Comparison with Type Classes The essential difference
between the OO code in Figure 3 and the similar definitions
using type classes (which can be found in Figure 13) is
that models, and model arguments, need to be named. In
Haskell, instances can be viewed as a kind of anonymous

objects, which only the compiler gets direct access to. This
partly explains why the definition of ListOrd2 is grayed out:
in Haskell two instances for the same modeled type are
forbidden.

In the OO version, it is necessary to first create the models
explicitly. For example:

def sort [T] (xs : List [T]) (ordT : Ord [T]) : List [T] = . . .

val l1 = List (7,2,6,4,5,9)
val l2 = List (2,3)

val test = new ListOrd (new IntOrd ()).compare (l1, l2)

val test2 = new ListOrd2 (new IntOrd ()).compare (l1, l2)

val test3 = sort (l1) (new ListOrd (new IntOrd ()))

In the type class version, the equivalent code would be:

sort :: Ord t⇒ [t]→ [t]
l1 =[7,2,6,4,5,9]
l2 =[2,3]
test = compare l1 l2

test3 = sort l1

Clearly, in the OO version, the use of compare in test and
test2 is less convenient than simply calling compare l1 l2,
but it does offer the possibility of switching the implemen-
tation of the comparison operation in test2. In test3 creating
the models explicitly is also somewhat verbose and inconve-
nient.

Solution using implicits The convenience of type classes
can be recovered with implicits. Figure 4 shows a variation

trait Set [S] {
val empty : S

def insert (x : S,y : Int) : S

def contains (x : S,y : Int) : Boolean

def union (x : S,y : S) : S

}
class ListSet extends Set [List [Int]] {

val empty = List ()
def insert (x : List [Int],y : Int) = y :: x

def contains (x : List [Int],y : Int) = x.contains (y)
def union (x : List [Int],y : List [Int]) = x.union (y)

}

class FunctionalSet extends Set [Int⇒ Boolean] {
val empty = (x : Int)⇒ false

def insert (f : Int⇒ Boolean,y : Int) =
z⇒ y.equals (z) ∨ f (z)

def contains (f : Int⇒ Boolean,y : Int) = f (y)
def union (f : Int⇒ Boolean,g : Int⇒ Boolean) =

y⇒ f (y) ∨ g (y)
}

Figure 5. An ADT signature and two implementations.

of the code in Figure 3. Only the differences are shown:
definitions are used instead of conventional OO classes to
define the models for Ord; and we use a definition cmp to
provide a nice interface to the compare method. The first two
models are implicit, but ListOrd2 cannot be made implicit
because it would clash with ListOrd. The client code for the
test functions is simplified, being comparable to the version
with Haskell type classes. Furthermore, it is still possible to
define test2.

val test = cmp (l1, l2)
val test2 = cmp (l1, l2) (ListOrd2)
val test3 = sort (l1)

5.2 Abstract data types
Cook (2009) shows that type classes can be used to imple-
ment what is effectively the algebraic signature of an Ab-
stract Data Type (ADT). Programs using these type classes
in a certain disciplined way have the same abstraction ben-
efits as ADTs. Exploiting this observation, we now show a
simple and practical encoding of ADTs in an object-oriented
language with generics using the CONCEPT pattern. ADT
signatures show an application of the pattern that is differ-
ent from how concepts are traditionally used. Additionally,
it illustrates why passing a model explicitly is sometimes de-
sirable.

Figure 5 models an ADT signature for sets of integers
using the CONCEPT pattern. The trait Set [S], the concept
interface, defines the ADT signature for sets. The type S is

Argument Inference

object intOrd extends Ord [Int] {
def compare (a : Int,b : Int) : Boolean = a � b

}

However, this simple OO approach has one important
limitation in practice: constraints such as ordT have to be
explicitly passed to generic algorithms, like any other argu-
ments. While for the definition of sort above this may not
look too bad, many generic algorithms require multiple con-
straints on their type parameters, and passing all of these
explicitly is cumbersome.

The second role of type classes is to propagate constraints
like ordT automatically, making generic algorithms conve-
nient and practical to use. Scala took inspiration from type
classes and introduced implicits: a mechanism for implicitly
passing arguments based on their types. Thus, in Scala, the
ordering constraint can be implicitly passed by adding an
implicit qualifier before the argument:

def sort [T] (xs : List [T]) (implicit ordT : Ord [T]) : List [T]

Likewise potential candidate models can be considered by
the compiler by being qualified with an implicit keyword:

implicit object intOrd extends Ord [Int] . . .

This allows a convenient use of sort

scala> sort (List (3,2,1))
List (1,2,3)

just like the Haskell program using type classes. Further-
more, sort can be called with an additional ordering ar-
gument such as: sort (List (3,2,1)) (mySpecialOrd), where
mySpecialOrd is another model of the ordering concept for
integers. This is useful for resolving ambiguities: it is rea-
sonable to have various orderings for the same type.

In a way type-class-style concepts provide a service like
F-bounded polymorphism (Canning et al. 1989), which is
found in conventional OO languages like Java, C# or Scala.
Unlike type-parameter bounds, which impose constraints
directly on the values of the bounded type, concepts like
Ord [T] provide the evidence that T satisfies the constraints
externally. The drawback of concept-style constraints is that
dynamic dispatching over the instances of T is not available,
but in return support for multi-type concepts is better and
retroactive modeling of concepts becomes possible.

Contributions We describe a lightweight approach to type
classes that can be employed in any object-oriented language
that supports generics. We capture the essence of type class
programming as the CONCEPT pattern, and show how im-
plicits make the pattern practical to use. We illustrate our
approach using several applications and offer an answer to
Cook (2009)’s dinner quiz on the relation between objects
and ADTs: in an OO language with generics, ADT signa-
tures can be viewed as a particular class of objects.

We should note that implicits have been part of Scala for
a while now (Moors et al. 2008; Odersky et al. 2006) and, in
the Scala community, the encoding of type classes using im-
plicits is folklore. However, as so often with folklore, it was
never written down coherently, while the more advanced fea-
tures have not been documented at all: later sections of this
paper describe Scala’s answer to overlapping instances (Pey-
ton Jones et al. 1997), associated types (Chakravarty et al.
2005b), as well as how Scala’s approach to type classes
has surpasses Haskell type classes in some ways. These ad-
vanced features are used to introduce the idea of specify-
ing relations on types using implicits, which is illustrated
through several examples. Finally, we show that Scala has
excellent support for generic programming.

Running the examples Most examples compile as-is us-
ing Scala 2.8.0. Some of the more advanced ones rely on ex-
perimental support for dependent method types, which must
be enabled using the−Xexperimental switch. Unfortunately,
some examples are affected by bugs related to the interac-
tion between dependent method types and implicits. These
are fixed in a development branch1, which will be merged
into trunk shortly, and thus appear in nightly builds leading
up to the 2.8.1 release.

2. Type Classes in Haskell

This section introduces Haskell type classes as originally
proposed by Wadler and Blott (1989), as well as some sim-
ple, common extensions.

2.1 Single-parameter type classes

The original model of type classes consists of single parame-
ter type classes, which enables the definition of ad-hoc over-
loaded functions like comparison, pretty printing or parsing.

class Ord a where

(�) :: a→ a→ Bool

class Show a where

show :: a→ String

class Read a where

read :: String→ a

A type class declaration consists of: a class name such as
Ord, Show or Read; a type parameter; and a set of method
declarations. Each of the methods in the type class declara-
tion should have at least one occurrence of the type param-
eter in their signature (either as an argument or as a return
type). If we think of the type parameter a in these type class
declarations as the equivalent of the self argument in an OO
language, we can see that a few different types of methods
can be modeled:

1 http://github.com/adriaanm/scala/tree/topic/retire_
debruijn_depmet

Declaring implicit arguments:

object intOrd extends Ord [Int] {
def compare (a : Int,b : Int) : Boolean = a � b

}

However, this simple OO approach has one important
limitation in practice: constraints such as ordT have to be
explicitly passed to generic algorithms, like any other argu-
ments. While for the definition of sort above this may not
look too bad, many generic algorithms require multiple con-
straints on their type parameters, and passing all of these
explicitly is cumbersome.

The second role of type classes is to propagate constraints
like ordT automatically, making generic algorithms conve-
nient and practical to use. Scala took inspiration from type
classes and introduced implicits: a mechanism for implicitly
passing arguments based on their types. Thus, in Scala, the
ordering constraint can be implicitly passed by adding an
implicit qualifier before the argument:

def sort [T] (xs : List [T]) (implicit ordT : Ord [T]) : List [T]

Likewise potential candidate models can be considered by
the compiler by being qualified with an implicit keyword:

implicit object intOrd extends Ord [Int] . . .

This allows a convenient use of sort

scala> sort (List (3,2,1))
List (1,2,3)

just like the Haskell program using type classes. Further-
more, sort can be called with an additional ordering ar-
gument such as: sort (List (3,2,1)) (mySpecialOrd), where
mySpecialOrd is another model of the ordering concept for
integers. This is useful for resolving ambiguities: it is rea-
sonable to have various orderings for the same type.

In a way type-class-style concepts provide a service like
F-bounded polymorphism (Canning et al. 1989), which is
found in conventional OO languages like Java, C# or Scala.
Unlike type-parameter bounds, which impose constraints
directly on the values of the bounded type, concepts like
Ord [T] provide the evidence that T satisfies the constraints
externally. The drawback of concept-style constraints is that
dynamic dispatching over the instances of T is not available,
but in return support for multi-type concepts is better and
retroactive modeling of concepts becomes possible.

Contributions We describe a lightweight approach to type
classes that can be employed in any object-oriented language
that supports generics. We capture the essence of type class
programming as the CONCEPT pattern, and show how im-
plicits make the pattern practical to use. We illustrate our
approach using several applications and offer an answer to
Cook (2009)’s dinner quiz on the relation between objects
and ADTs: in an OO language with generics, ADT signa-
tures can be viewed as a particular class of objects.

We should note that implicits have been part of Scala for
a while now (Moors et al. 2008; Odersky et al. 2006) and, in
the Scala community, the encoding of type classes using im-
plicits is folklore. However, as so often with folklore, it was
never written down coherently, while the more advanced fea-
tures have not been documented at all: later sections of this
paper describe Scala’s answer to overlapping instances (Pey-
ton Jones et al. 1997), associated types (Chakravarty et al.
2005b), as well as how Scala’s approach to type classes
has surpasses Haskell type classes in some ways. These ad-
vanced features are used to introduce the idea of specify-
ing relations on types using implicits, which is illustrated
through several examples. Finally, we show that Scala has
excellent support for generic programming.

Running the examples Most examples compile as-is us-
ing Scala 2.8.0. Some of the more advanced ones rely on ex-
perimental support for dependent method types, which must
be enabled using the−Xexperimental switch. Unfortunately,
some examples are affected by bugs related to the interac-
tion between dependent method types and implicits. These
are fixed in a development branch1, which will be merged
into trunk shortly, and thus appear in nightly builds leading
up to the 2.8.1 release.

2. Type Classes in Haskell

This section introduces Haskell type classes as originally
proposed by Wadler and Blott (1989), as well as some sim-
ple, common extensions.

2.1 Single-parameter type classes

The original model of type classes consists of single parame-
ter type classes, which enables the definition of ad-hoc over-
loaded functions like comparison, pretty printing or parsing.

class Ord a where

(�) :: a→ a→ Bool

class Show a where

show :: a→ String

class Read a where

read :: String→ a

A type class declaration consists of: a class name such as
Ord, Show or Read; a type parameter; and a set of method
declarations. Each of the methods in the type class declara-
tion should have at least one occurrence of the type param-
eter in their signature (either as an argument or as a return
type). If we think of the type parameter a in these type class
declarations as the equivalent of the self argument in an OO
language, we can see that a few different types of methods
can be modeled:

1 http://github.com/adriaanm/scala/tree/topic/retire_
debruijn_depmet

Saturday, November 20, 2010

Implicits

Allows for convenient use, and explicit
parameter passing as well:

def cmp [T] (x : T,y : T) (implicit ord : Ord [T]) =

ord.compare (x,y)

implicit val IntOrd = new Ord [Int] {. . .}

implicit def ListOrd [T] (implicit ordD:Ord [T]) =
new Ord [List [T]] {. . .}

def ListOrd2 [T] (implicit ordD : Ord [T]) =

new Ord [List [T]] {. . .}

Figure 4. Variation of the Ordering solution using implicits.

The three models illustrate the retroactive capabilities of
the CONCEPT pattern: the models are added after Int and
List [T] have been defined. The two models for lists illustrate
that multiple models can co-exist at the same time.

Comparison with Type Classes The essential difference
between the OO code in Figure 3 and the similar definitions
using type classes (which can be found in Figure 13) is
that models, and model arguments, need to be named. In
Haskell, instances can be viewed as a kind of anonymous

objects, which only the compiler gets direct access to. This
partly explains why the definition of ListOrd2 is grayed out:
in Haskell two instances for the same modeled type are
forbidden.

In the OO version, it is necessary to first create the models
explicitly. For example:

def sort [T] (xs : List [T]) (ordT : Ord [T]) : List [T] = . . .

val l1 = List (7,2,6,4,5,9)
val l2 = List (2,3)

val test = new ListOrd (new IntOrd ()).compare (l1, l2)

val test2 = new ListOrd2 (new IntOrd ()).compare (l1, l2)

val test3 = sort (l1) (new ListOrd (new IntOrd ()))

In the type class version, the equivalent code would be:

sort :: Ord t⇒ [t]→ [t]
l1 =[7,2,6,4,5,9]
l2 =[2,3]
test = compare l1 l2

test3 = sort l1

Clearly, in the OO version, the use of compare in test and
test2 is less convenient than simply calling compare l1 l2,
but it does offer the possibility of switching the implemen-
tation of the comparison operation in test2. In test3 creating
the models explicitly is also somewhat verbose and inconve-
nient.

Solution using implicits The convenience of type classes
can be recovered with implicits. Figure 4 shows a variation

trait Set [S] {
val empty : S

def insert (x : S,y : Int) : S

def contains (x : S,y : Int) : Boolean

def union (x : S,y : S) : S

}
class ListSet extends Set [List [Int]] {

val empty = List ()
def insert (x : List [Int],y : Int) = y :: x

def contains (x : List [Int],y : Int) = x.contains (y)
def union (x : List [Int],y : List [Int]) = x.union (y)

}

class FunctionalSet extends Set [Int⇒ Boolean] {
val empty = (x : Int)⇒ false

def insert (f : Int⇒ Boolean,y : Int) =
z⇒ y.equals (z) ∨ f (z)

def contains (f : Int⇒ Boolean,y : Int) = f (y)
def union (f : Int⇒ Boolean,g : Int⇒ Boolean) =

y⇒ f (y) ∨ g (y)
}

Figure 5. An ADT signature and two implementations.

of the code in Figure 3. Only the differences are shown:
definitions are used instead of conventional OO classes to
define the models for Ord; and we use a definition cmp to
provide a nice interface to the compare method. The first two
models are implicit, but ListOrd2 cannot be made implicit
because it would clash with ListOrd. The client code for the
test functions is simplified, being comparable to the version
with Haskell type classes. Furthermore, it is still possible to
define test2.

val test = cmp (l1, l2)
val test2 = cmp (l1, l2) (ListOrd2)
val test3 = sort (l1)

5.2 Abstract data types
Cook (2009) shows that type classes can be used to imple-
ment what is effectively the algebraic signature of an Ab-
stract Data Type (ADT). Programs using these type classes
in a certain disciplined way have the same abstraction ben-
efits as ADTs. Exploiting this observation, we now show a
simple and practical encoding of ADTs in an object-oriented
language with generics using the CONCEPT pattern. ADT
signatures show an application of the pattern that is differ-
ent from how concepts are traditionally used. Additionally,
it illustrates why passing a model explicitly is sometimes de-
sirable.

Figure 5 models an ADT signature for sets of integers
using the CONCEPT pattern. The trait Set [S], the concept
interface, defines the ADT signature for sets. The type S is

Argument Inference

object intOrd extends Ord [Int] {
def compare (a : Int,b : Int) : Boolean = a � b

}

However, this simple OO approach has one important
limitation in practice: constraints such as ordT have to be
explicitly passed to generic algorithms, like any other argu-
ments. While for the definition of sort above this may not
look too bad, many generic algorithms require multiple con-
straints on their type parameters, and passing all of these
explicitly is cumbersome.

The second role of type classes is to propagate constraints
like ordT automatically, making generic algorithms conve-
nient and practical to use. Scala took inspiration from type
classes and introduced implicits: a mechanism for implicitly
passing arguments based on their types. Thus, in Scala, the
ordering constraint can be implicitly passed by adding an
implicit qualifier before the argument:

def sort [T] (xs : List [T]) (implicit ordT : Ord [T]) : List [T]

Likewise potential candidate models can be considered by
the compiler by being qualified with an implicit keyword:

implicit object intOrd extends Ord [Int] . . .

This allows a convenient use of sort

scala> sort (List (3,2,1))
List (1,2,3)

just like the Haskell program using type classes. Further-
more, sort can be called with an additional ordering ar-
gument such as: sort (List (3,2,1)) (mySpecialOrd), where
mySpecialOrd is another model of the ordering concept for
integers. This is useful for resolving ambiguities: it is rea-
sonable to have various orderings for the same type.

In a way type-class-style concepts provide a service like
F-bounded polymorphism (Canning et al. 1989), which is
found in conventional OO languages like Java, C# or Scala.
Unlike type-parameter bounds, which impose constraints
directly on the values of the bounded type, concepts like
Ord [T] provide the evidence that T satisfies the constraints
externally. The drawback of concept-style constraints is that
dynamic dispatching over the instances of T is not available,
but in return support for multi-type concepts is better and
retroactive modeling of concepts becomes possible.

Contributions We describe a lightweight approach to type
classes that can be employed in any object-oriented language
that supports generics. We capture the essence of type class
programming as the CONCEPT pattern, and show how im-
plicits make the pattern practical to use. We illustrate our
approach using several applications and offer an answer to
Cook (2009)’s dinner quiz on the relation between objects
and ADTs: in an OO language with generics, ADT signa-
tures can be viewed as a particular class of objects.

We should note that implicits have been part of Scala for
a while now (Moors et al. 2008; Odersky et al. 2006) and, in
the Scala community, the encoding of type classes using im-
plicits is folklore. However, as so often with folklore, it was
never written down coherently, while the more advanced fea-
tures have not been documented at all: later sections of this
paper describe Scala’s answer to overlapping instances (Pey-
ton Jones et al. 1997), associated types (Chakravarty et al.
2005b), as well as how Scala’s approach to type classes
has surpasses Haskell type classes in some ways. These ad-
vanced features are used to introduce the idea of specify-
ing relations on types using implicits, which is illustrated
through several examples. Finally, we show that Scala has
excellent support for generic programming.

Running the examples Most examples compile as-is us-
ing Scala 2.8.0. Some of the more advanced ones rely on ex-
perimental support for dependent method types, which must
be enabled using the−Xexperimental switch. Unfortunately,
some examples are affected by bugs related to the interac-
tion between dependent method types and implicits. These
are fixed in a development branch1, which will be merged
into trunk shortly, and thus appear in nightly builds leading
up to the 2.8.1 release.

2. Type Classes in Haskell

This section introduces Haskell type classes as originally
proposed by Wadler and Blott (1989), as well as some sim-
ple, common extensions.

2.1 Single-parameter type classes

The original model of type classes consists of single parame-
ter type classes, which enables the definition of ad-hoc over-
loaded functions like comparison, pretty printing or parsing.

class Ord a where

(�) :: a→ a→ Bool

class Show a where

show :: a→ String

class Read a where

read :: String→ a

A type class declaration consists of: a class name such as
Ord, Show or Read; a type parameter; and a set of method
declarations. Each of the methods in the type class declara-
tion should have at least one occurrence of the type param-
eter in their signature (either as an argument or as a return
type). If we think of the type parameter a in these type class
declarations as the equivalent of the self argument in an OO
language, we can see that a few different types of methods
can be modeled:

1 http://github.com/adriaanm/scala/tree/topic/retire_
debruijn_depmet

Declaring implicit arguments:

object intOrd extends Ord [Int] {
def compare (a : Int,b : Int) : Boolean = a � b

}

However, this simple OO approach has one important
limitation in practice: constraints such as ordT have to be
explicitly passed to generic algorithms, like any other argu-
ments. While for the definition of sort above this may not
look too bad, many generic algorithms require multiple con-
straints on their type parameters, and passing all of these
explicitly is cumbersome.

The second role of type classes is to propagate constraints
like ordT automatically, making generic algorithms conve-
nient and practical to use. Scala took inspiration from type
classes and introduced implicits: a mechanism for implicitly
passing arguments based on their types. Thus, in Scala, the
ordering constraint can be implicitly passed by adding an
implicit qualifier before the argument:

def sort [T] (xs : List [T]) (implicit ordT : Ord [T]) : List [T]

Likewise potential candidate models can be considered by
the compiler by being qualified with an implicit keyword:

implicit object intOrd extends Ord [Int] . . .

This allows a convenient use of sort

scala> sort (List (3,2,1))
List (1,2,3)

just like the Haskell program using type classes. Further-
more, sort can be called with an additional ordering ar-
gument such as: sort (List (3,2,1)) (mySpecialOrd), where
mySpecialOrd is another model of the ordering concept for
integers. This is useful for resolving ambiguities: it is rea-
sonable to have various orderings for the same type.

In a way type-class-style concepts provide a service like
F-bounded polymorphism (Canning et al. 1989), which is
found in conventional OO languages like Java, C# or Scala.
Unlike type-parameter bounds, which impose constraints
directly on the values of the bounded type, concepts like
Ord [T] provide the evidence that T satisfies the constraints
externally. The drawback of concept-style constraints is that
dynamic dispatching over the instances of T is not available,
but in return support for multi-type concepts is better and
retroactive modeling of concepts becomes possible.

Contributions We describe a lightweight approach to type
classes that can be employed in any object-oriented language
that supports generics. We capture the essence of type class
programming as the CONCEPT pattern, and show how im-
plicits make the pattern practical to use. We illustrate our
approach using several applications and offer an answer to
Cook (2009)’s dinner quiz on the relation between objects
and ADTs: in an OO language with generics, ADT signa-
tures can be viewed as a particular class of objects.

We should note that implicits have been part of Scala for
a while now (Moors et al. 2008; Odersky et al. 2006) and, in
the Scala community, the encoding of type classes using im-
plicits is folklore. However, as so often with folklore, it was
never written down coherently, while the more advanced fea-
tures have not been documented at all: later sections of this
paper describe Scala’s answer to overlapping instances (Pey-
ton Jones et al. 1997), associated types (Chakravarty et al.
2005b), as well as how Scala’s approach to type classes
has surpasses Haskell type classes in some ways. These ad-
vanced features are used to introduce the idea of specify-
ing relations on types using implicits, which is illustrated
through several examples. Finally, we show that Scala has
excellent support for generic programming.

Running the examples Most examples compile as-is us-
ing Scala 2.8.0. Some of the more advanced ones rely on ex-
perimental support for dependent method types, which must
be enabled using the−Xexperimental switch. Unfortunately,
some examples are affected by bugs related to the interac-
tion between dependent method types and implicits. These
are fixed in a development branch1, which will be merged
into trunk shortly, and thus appear in nightly builds leading
up to the 2.8.1 release.

2. Type Classes in Haskell

This section introduces Haskell type classes as originally
proposed by Wadler and Blott (1989), as well as some sim-
ple, common extensions.

2.1 Single-parameter type classes

The original model of type classes consists of single parame-
ter type classes, which enables the definition of ad-hoc over-
loaded functions like comparison, pretty printing or parsing.

class Ord a where

(�) :: a→ a→ Bool

class Show a where

show :: a→ String

class Read a where

read :: String→ a

A type class declaration consists of: a class name such as
Ord, Show or Read; a type parameter; and a set of method
declarations. Each of the methods in the type class declara-
tion should have at least one occurrence of the type param-
eter in their signature (either as an argument or as a return
type). If we think of the type parameter a in these type class
declarations as the equivalent of the self argument in an OO
language, we can see that a few different types of methods
can be modeled:

1 http://github.com/adriaanm/scala/tree/topic/retire_
debruijn_depmet

Saturday, November 20, 2010

Wednesday, January 12, 2011

Towards a calculus for
Implicit Programming

• Why?

• Type classes are well-studied, but have limited
expressiveness;

• Scala implicits are not formalized;

• Understanding the essence of implicit
programming: type-directed instantiation of code

Wednesday, January 12, 2011

Type Classes vs ImplicitsType Classes vs Implicits
Type Classes Implicits What we want

Scoping Global Local Local

Implicit
overriding

No Yes Yes

First-class
types

No Yes Yes

Constraints
semantics

Set List Set* ?

Type-inference Yes No Yes

Formalized Yes No Yes

Saturday, November 20, 2010Wednesday, January 12, 2011

Current Status

• Draft operational semantics; type system
and translation semantics

• Operational semantics is tricky because we
need to use types

• Wonchan Lee will talk more about this

Wednesday, January 12, 2011

Conclusion

• Implicit programming is useful

• lots of applications in the Haskell and Scala
community

• Type classes and Scala implicits have trade-
offs (no mechanism subsumes the other)

• We believe there is a more general
mechanism that generalizes both

Wednesday, January 12, 2011

