
For More Usable This Type
(This Type as a Hidden Type Variable)

2011.1.6~9

Hyunik Na
(Joint Work with Sukyoung Ryu)

PL Lab@KIAST

ROSAEC 5th Workshop



Overview

n Introduction to This type and Exact type
q with ‘equals()’ method example

n Problems and existing solution
n Our solution
n Conclusion

ROSAEC 5th Workshop 2



Writing ‘equals()’ Method Is Not Easy

ROSAEC 5th Workshop 3



Writing ‘equals()’ Method Is Not Easy
First Naive Version of ‘equals()’ Method

ROSAEC 5th Workshop 4



Writing ‘equals()’ Method Is Not Easy 
Pitfall 1 : Unwanted Overloading

ROSAEC 5th Workshop 5



Writing ‘equals()’ Method Is Not Easy 
Pitfall 1 : Unwanted Overloading - Solution

ROSAEC 5th Workshop 6



Writing ‘equals()’ Method Is Not Easy
Second Version, But Still Incomplete

ROSAEC 5th Workshop 7



Writing ‘equals()’ Method Is Not Easy :
Pitfall 2 : Not Transitive Equality Relation

ROSAEC 5th Workshop 8



Writing ‘equals()’ Method Is Not Easy
Pitfall 2 : Not Transitive Equality Relation - Solution

ROSAEC 5th Workshop 9



Writing ‘equals()’ Method Is Not Easy
Final Version

ROSAEC 5th Workshop 10



Possible Solutions

n Multi-methods (Dynamic Overloading)
q Pros: more flexible, can handle heterogeneous collections
q Cons: runtime overhead and exception
q Care needed for binary methods

n Best match is not the solution, e.g. intransitive equality relation again...

n This Type and Exact Type
q Cons: less flexible 
q Pros: no runtime overhead

ROSAEC 5th Workshop 11



‘equals()’ Using This Type and Exact Type

ROSAEC 5th Workshop 12

n This : type of this
q changes its meaning along 

inheritance

n @This : exact This
q disallows proper subtypes



Typing Rules about Exact Types

n ‘new C(...)’ has @C type

@C c = new C();

n @C is compatible to C, but not vice versa

C c = new C(); // OK
@C c2 = c; // Not OK

n Binary methods can be called on only exactly typed 
expressions

@Point p = ... but Point p = ...
p.equals(...); // OK p.equals(p2) // Not OK

ROSAEC 5th Workshop 13



Why Is the 3rd Rule Required?

n Otherwise, following problematic code

Point p1 = new ColorPoint(...);
@Point p2 = new Point(...);
p1.equals(p2);

// tries to access p2’s color field!

ROSAEC 5th Workshop 14



Problems

n Severely restricts dynamic dispatch of binary methods
q Cannot type clearly type safe binary methods invocations such as 

follows

Point p = ... and LinkedNode n = ...
p.equals(p); n.linkTo( n.next().next() );

n Cannot type factory methods definitions which have @This
as the return type

class Point { 
@This clone() {  return ( new ? );  }

} 

ROSAEC 5th Workshop 15



Existing Solution (Saito & Igarashi, SAC 2009)

n Local exactization
q Locally capture the exact type using exact statement

Point p = ...
exact p as x, X in {

x.equals(x); // locally, x: @X, X<:Point
}

n Nonheritable methods

class Point { 
nonheritable @This clone() {  

// Under nonheritable, @Point <: @This
return ( new Point(...) );  }}

ROSAEC 5th Workshop 16



Our Solution

n Implicit Exact Type Capture (IETC)
q Exact type capture needs not boilerplate code
q It’s done by the type checker’s internal process

Point p = ...
p.equals(p); // just well-typed as is

n Virtual Constructor (This-constructor)

class Point { 
@This clone() {  

return ( new This(...) );  
}

}

ROSAEC 5th Workshop 17



Notions beneath IETC

n class C ... ==    class ChThis<:ChThisii ...
q C is a type constructor mapping (hidden) This type variable 
q Only exact types instantiate This

n This is exact  without @ notation

n @C ==  fixed point of C
q that is, @C = Ch@Ci

n C ==  Ch?i
q ? denotes wildcard
q Exact type capture becomes wildcard capture, 

which can be done by a type checker’s internal process

ROSAEC 5th Workshop 18



How is  ‘p.equals(p)’  type checked

ROSAEC 5th Workshop 19



Virtual Constructor (This-constructor)

n Not a new idea, but insufficiently explored
n Especially, following problem

n How to fill missing values for additional fields
q Possibly from ‘default values’ or from ‘this’

ROSAEC 5th Workshop 20



Conclusion

n This type becomes more usable with IETC and Virtual 
Constructor

n Todo
q Writing paper - typing rules and manuscript. half done
q Type soundness proof
q Implementation – ThisJ

n using a Java extension framework, e.g. PolyGlot

ROSAEC 5th Workshop 21



ROSAEC 5th Workshop 22

Thank you
- Q & A


