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Analysis of Information Cascade in Social Networks Meeyoung Cha (KAIST)

. Abstract )

The tipping point—the moment beyond which a small-scale cascade process proceeds rapidly to become a global-scale
cascade—has received great attention in academia and industry. However, little has been known on the exact conditions for
when such tipping point happens in real networks. In this paper, we conduct numerical analysis of a popular cascade model,
the linear threshold model, to understand the impact of network structures and user susceptibility, on tipping point. We make
two interesting observations: (i) the occurrence of global cascade depends critically on the susceptibility of users, and (ii)
when the conditions are met, a tipping point almost always exists regardless of the size and structure of the network.

Methodology )

s, (t): State vector of each node Global cascade at tipping point
y(t): Number of nodes having state 1 ) )
A(t): A set of early adopter at time t y(t +)=y()+0(V|)
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1. Given a set A of early adopters, setfor s, =1, and for ve A, and s, =0 for vgA. o1 ° o1 o1
05000

2. Update the states of every node by equation (1).

3. Repeat step 2 until there is no state change of nodes. Step 1 Step 2

By increasing the size of A(t) at each time step, we observed the occurrence of a tipping point
By the theorem below, we computed the existence and the value of the tipping point t*, by binary search on t.

Theorem Let ¢ = (V,E) be a graph, and ¢ be a susceptibility vector on G. Let A; c A, c V be any vertex subset, and let
A; =A, —A,. For i=1,2, let S;(G,¢) be the set of nodes having state 1 when the Linear Threshold Process(4;) with ¢ and ¢
finishes. Let S5(G, ¢) be the set of nodes having state 1 when the Linear Threshold Process(S;(G,®) U A3) with G and ¢ finishes.
Then, S,(G, ¢) = S3(G, ¢).

J
Simulations on OSNs Simulations on Random Networks,
a Facebook MySpace o Barabasi-Albert Erdds-Rényi

Jt 0.1 02 03 04 05 01 02 03 04 05 I 01 02 03 04 05 01 02 03 04 05
0.1 100 100 100 100 100 100 100 100 100 100 0.1 [00 100 100 100 100 [00 100 100 100 100
0.2 100 100 100 100 100 100 100 100 100 100 0.2 100 100 100 100 100 100 100 100 100 100
0.3 100 100 100 100 100 100 100 100 100 100 0.3 100 100 100 100 100 100 100 100 100 100
04 100 100 100 100 100 100 100 100 100 100 0.4 100 100 100 100 100 100 100 100 100 100
0.5 100 100 100 70.5 0.5 99 100 100 100 100 0.5 100 100 100 100 100 100 100 100 100 100
0.6 0 0 0 0 0 55 55 695 60 56.5 0.6 955 100 79 13 0 100 100 8 25 0

Table 1: The occurrence probability (%) of a tipping point for ¢ = N (1, o). Table 2: The occurrence probability (%) of a tipping point for ¢ = N (u., o).

Based on 200 simulations, Tipping point almost always occurred Based on 200 simulations, Tipping point almost always occurred when
when the setting for susceptibility ¢ was right the setting for susceptibility ¢ was right

ER graph (n=100,000) BA graph (n=100,000) BA graph

Facebook (n=63,731, z=25.6)
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Very similar results were obtained for both Facebook and MySpace,
indicating that the conditions for tipping point have a week : I : P A i
correlation with the network structure.

Strikingly similar results obtained for two independent random graphs.
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