
3. Solution: Implementing a Teacher both to Answer Queries and Generate Predicates

5. Conclusion
 * Novel approach to invariants generation.

 * Fully automated with new predicate generation
 technique.
 * We are currently working on its extension
 supporting quantified invariants.

1. Problem : Generate enough predicates
for invariants {δ} while ρ do S end {�}

1 21

1 2

Overview

Algorithmic Learning
Query

Answer

...

Query

Answer

SMT
Solver

Formula

SAT with CE
/ UNSAT

Teacher

Predicate
Abstraction

Under Approximation

Invariant

Over Approximation

Yungbum Jung, Wonchan Lee, Bow-Yaw Wang, and Kwangkeun Yi
Seoul National University Academia Sinica and Inria

1

Predicate Generation for Learning-Based Quantifier-Free Loop Invariant Inference

Deriving Invariants by Algorithmic Learning,
Decision Procedures, and Predicate Abstraction1

Yungbum Jung† and Soonho Kong† and Bow-Yaw Wang‡ and Kwangkeun Yi†

† School of Computer Science and Engineering, Seoul National University

{dreameye,soon,kwang}@ropas.snu.ac.kr
‡ Institute of Information Science, Academia Sinica

bywang@iis.sinica.edu.tw

We present a novel technique for finding loop invariants in propositional formulae by com-

bining algorithmic learning, decision procedures, and predicate abstraction. Given invariant

approximations derived from pre- and post-conditions, our new technique exploits the flexibil-

ity in invariants by a simple randomized mechanism.

Algorithmic learning has been applied to assumption generation in compositional reasoning.

In contrast to traditional techniques, the learning approach does not derive assumptions in an

off-line manner. It instead finds assumptions by interacting with a model checker progressively.

Since assumptions in compositional reasoning are generally not unique, algorithmic learning can

exploit the flexibility in assumptions to attain preferable solutions. Applications in verifying

concurrent systems have been reported.

Finding loop invariants follows a similar pattern. Invariants are often not unique. Indeed,

programmers derive invariants incrementally. They usually have their guesses of invariants in

mind, and gradually refine their guesses by observing program behavior more. Since in practice

there are many invariants for given pre- and post-conditions, programmers have more freedom in

deriving invariants. Yet traditional invariant generation techniques do not exploit the flexibility.

They have a similar impediment to traditional assumption generation.

We report our first findings in applying algorithmic learning to invariant generation. We

show that the three technologies (algorithmic learning, decision procedures, and predicate ab-

straction) can be arranged in concert to derive loop invariants in propositional (or, quantifier-

free) formulae. The new technique is able to generate invariants for some Linux device drivers

and SPEC2000 benchmarks without any help from static or dynamic analyses.

For a while loop, an exact learning algorithm for Boolean formulae searches for invariants

by asking queries. Queries can be resolved (not always, see below) by decision procedures

automatically. Recall that the learning algorithm generates only Boolean formulae but deci-

sion procedures work in propositional formulae. We thus perform predicate abstraction and

concretization to integrate the two components.

In reality, information about loop invariant is incomplete. Queries may not be resolvable

due to insufficient information. One striking feature of our learning approach is to exploit the

flexibility in invariants. When query resolution requires information unavailable to decision

procedures, we simply give a random answer. We surely could use static analysis to compute

soundly approximated information other than random answers. Yet there are so many invariants

for the given pre- and post-conditions. A little bit of incorrect information does not prevent

algorithmic learning from inferring correct invariants. Indeed, the learning algorithm is able to

derive invariants in our experiments by coin tossing.

The technique can be seen as a framework for invariant generation. Static analyzers can

contribute by providing information to algorithmic learning. Ours is hence orthogonal to existing

techniques.

1This work is to be presented at VMCAI’10

is work is to be presented at TACAS’11

Deriving Invariants by Algorithmic Learning,
Decision Procedures, and Predicate Abstraction1

Yungbum Jung† and Soonho Kong† and Bow-Yaw Wang‡ and Kwangkeun Yi†

† School of Computer Science and Engineering, Seoul National University

{dreameye,soon,kwang}@ropas.snu.ac.kr
‡ Institute of Information Science, Academia Sinica

bywang@iis.sinica.edu.tw

We present a novel technique for finding loop invariants in propositional formulae by com-

bining algorithmic learning, decision procedures, and predicate abstraction. Given invariant

approximations derived from pre- and post-conditions, our new technique exploits the flexibil-

ity in invariants by a simple randomized mechanism.

Algorithmic learning has been applied to assumption generation in compositional reasoning.

In contrast to traditional techniques, the learning approach does not derive assumptions in an

off-line manner. It instead finds assumptions by interacting with a model checker progressively.

Since assumptions in compositional reasoning are generally not unique, algorithmic learning can

exploit the flexibility in assumptions to attain preferable solutions. Applications in verifying

concurrent systems have been reported.

Finding loop invariants follows a similar pattern. Invariants are often not unique. Indeed,

programmers derive invariants incrementally. They usually have their guesses of invariants in

mind, and gradually refine their guesses by observing program behavior more. Since in practice

there are many invariants for given pre- and post-conditions, programmers have more freedom in

deriving invariants. Yet traditional invariant generation techniques do not exploit the flexibility.

They have a similar impediment to traditional assumption generation.

We report our first findings in applying algorithmic learning to invariant generation. We

show that the three technologies (algorithmic learning, decision procedures, and predicate ab-

straction) can be arranged in concert to derive loop invariants in propositional (or, quantifier-

free) formulae. The new technique is able to generate invariants for some Linux device drivers

and SPEC2000 benchmarks without any help from static or dynamic analyses.

For a while loop, an exact learning algorithm for Boolean formulae searches for invariants

by asking queries. Queries can be resolved (not always, see below) by decision procedures

automatically. Recall that the learning algorithm generates only Boolean formulae but deci-

sion procedures work in propositional formulae. We thus perform predicate abstraction and

concretization to integrate the two components.

In reality, information about loop invariant is incomplete. Queries may not be resolvable

due to insufficient information. One striking feature of our learning approach is to exploit the

flexibility in invariants. When query resolution requires information unavailable to decision

procedures, we simply give a random answer. We surely could use static analysis to compute

soundly approximated information other than random answers. Yet there are so many invariants

for the given pre- and post-conditions. A little bit of incorrect information does not prevent

algorithmic learning from inferring correct invariants. Indeed, the learning algorithm is able to

derive invariants in our experiments by coin tossing.

The technique can be seen as a framework for invariant generation. Static analyzers can

contribute by providing information to algorithmic learning. Ours is hence orthogonal to existing

techniques.

1This work is to be presented at VMCAI’10

I ∧ ρ ⇒ Pre(I , S)(B) I ∧ ¬ρ ⇒ �(C) (A) δ ⇒ I

Programming
Research Laboratory

http://ropas.snu.ac.kr

4. Experimental Result

ρloop guard

while x > 0 do

 x := x - 1;

 y := y - 1;

end

{

n ≥ 0 ∧ x = n ∧ y = n

preconditionδ

x+ y = 0
postcondition�

Invariant : x ≥ 0 ∧ x = y

Atomic predicates from annotated loop:

to be insufficient if lots of random abstract counterexamples have been generated. In this
case, we invoke Algorithm 2 to synthesize more atomic predicates from the incorrect
conjecture, update the threshold to �1.3|P |�, and then restart the main loop.

case SIZE
PREVIOUS (VMCAI’10) CURRENT BLAST
P MEM EQ RE T P MEM EQ RE T P T

ide-ide-tape 16 6 13 7 1 0.05 4 6 5 1 0.05 21 2.38
ide-wait-ireason 9 5 790 445 33 1.51 5 122 91 7 1.09 9 0.33

parser 37 17 4,223 616 13 13.45 9 86 32 1 0.46 8 1.23
riva 82 20 59 11 2 0.51 7 14 5 1 0.37 12 2.67
tar 7 6 ∞ ∞ ∞ ∞ 2 2 5 1 0.02 10 0.37

usb-message 18 10 21 7 1 0.10 3 7 6 1 0.04 4 0.32
vpr 8 5 16 9 2 0.05 1 1 3 1 0.01 4 0.23

Table 1: Experimental Results.
P : # of atomic predicates, MEM : # of membership queries, EQ : # of equivalence queries, RE
: # of the learning algorithm restarts, T : total elapsed time (s).

6 Experimental Results

We have implemented the proposed technique in OCaml4. In our implementation, the
SMT solver YICES and the interpolating theorem prover CSISAT [3] are used for query
resolution and interpolation respectively. In addition to the examples in [14], we add
two more examples: riva is the largest loop expressible in our simple language from
Linux5, and tar is extracted from Tar6. All examples are translated into annotated
loops manually. Data are the average of 100 runs and collected on a 2.4GHz Intel Core2
Quad CPU with 8GB memory running Linux 2.6.31 (Table 2).

In the table, the column PREVIOUS represents the work in [14] where atomic pred-
icates are chosen heuristically. Specifically, all atomic predicates in pre- and post-
conditions, loop guards, and conditions of if statements are selected. The column
CURRENT gives the results for our automatic predicate generation technique. Interest-
ingly, heuristically chosen atomic predicates suffice to infer loop invariants for all ex-
amples except tar. For the tar example, the learning-based loop invariant inference
algorithm fails to find a loop invariant due to ill-chosen atomic predicates. In contrast,
our new algorithm is able to infer a loop invariant for the tar example in 0.02s. The
number of atomic predicates can be significantly reduced as well. Thanks to a smaller
number of atomic predicates, loop invariant inference becomes more economical in
these examples. Without predicate generation, four of the six examples take more than
one second. Only one of these examples takes more than one second using the new
technique. Particularly, the parser example is improved in orders of magnitude.

4 Available at http://ropas.snu.ac.kr/tacas11/ap-gen.tar.gz
5 In Linux 2.6.30 drivers/video/riva/riva hw.c:nv10CalcArbitration()
6 In Tar 1.13 src/mangle.c:extract mangle()

12

Invariants must satisfy the following conditions:

n ≥ 0, x = n, y = n,
x > 0, x+ y = 0

(A)

(B)

(C)

A ⇒ I

I ⇒ B

λ
2. Idea : Use Craig’s interpolation theorem
We can always find an interpolation I from :A ⇒ B

x > 0 ∨ x+ y = 0

Generating new predicates:

n ≥ 0 ∧ x = n ∧ y = n

Propositional Formula
x ≥ 0 ∧ x = y

Boolean Formula
bx≥0 ∧ bx=y

x = y ∧ 0 ≤ yInterpolant

Var(I) ⊂ Var(A) ∪Var(B)

Interpolating
Theorem
Prover

Implication

x = y
0 ≤

y
⇓

⇓

A

B
I

New
predicates

x ≥ 0
x = y

New predicates

From incorrect conjectures From conflicting abstract counterexamples

θ ∧ ρ ⇒ Pre(Ī , S)

Equivalence query asks whether a conjecture is equivalent to
an invariant

1. Interpolating over-approximation

2. Interpolating under-approximation

θ

I ∧ ρ ⇒ Pre(θ, S)

Pre(·, S)
monotonicity of{

Two distinct valuation can have the same abstract valuation
because of the coarse abstraction

x ≥ 5

I = x ≥ 5 ∧ y ≥ 5

x = 7 ∧ y = 3

x = 8 ∧ y = 7

(x = 7 ∧ y = 3) ⇒ ¬(x = 8 ∧ y = 7)

5

5

x

y

y ≥ 3

http://ropas.snu.ac.kr
http://ropas.snu.ac.kr

